Math 280C, Spring 2005

Strong Markov Property

Notation is that introduced in class.
Theorem. (Strong Markov Property of Brownian Motion). If T is an $\left(\mathcal{F}_{t+}\right)$-stopping time and μ is any initial distribution, then

$$
\begin{equation*}
\mathbf{E}_{\mu}\left[F \circ \theta_{T} \mid \mathcal{F}_{T+}\right]=\mathbf{E}_{B(T)}(F), \quad \mathbf{P}_{\mu} \text {-a.s. on }\{T<\infty\} \tag{1}
\end{equation*}
$$

for each $F \in b \mathcal{F}$. [Here $B(T)$ is alternate notation for B_{T}.]
Proof. The right side of (1) is the composition of the $\mathcal{F}_{T+\text {-measurable map } \omega \mapsto B_{T(\omega)}(\omega)}$ with the Borel measurable map $x \mapsto \mathbf{E}_{x}[F]$, and is therefore $\mathcal{F}_{T+\text {-measurable. It remains }}$ to show that

$$
\begin{equation*}
\mathbf{E}_{\mu}\left[H \cdot F \circ \theta_{T}\right]=\mathbf{E}_{\mu}\left[H \cdot \mathbf{E}_{B(T)}[F]\right] \tag{2}
\end{equation*}
$$

for every $H \in b \mathcal{F}_{T+}$. In view of the monotone class theorem for functions, it suffices to prove (2) for F of the special form

$$
F(\omega)=\prod_{k=1}^{n} f_{k}\left(B_{t_{k}}(\omega)\right)
$$

where n is a positive integer, $0<t_{1}<t_{2}<\cdots<t_{n}$, and each $f_{k}: \mathbf{R} \rightarrow \mathbf{R}$ is a bounded continuous function. It has been proved in class that for such an F, the function $x \mapsto \mathbf{E}_{x}[F]$ is (bounded and) continuous. We proceed by approximating the stopping time T as follows:

$$
T_{n}(\omega)= \begin{cases}(k+1) 2^{-n}, & \text { if } k 2^{-n} \leq T(\omega)<(k+1) 2^{-n}, k=0,1,2, \ldots \\ +\infty, & \text { if } T(\omega)=+\infty\end{cases}
$$

Then, for $t>0$,

$$
\left\{T_{n} \leq t\right\}=\cup_{k:(k+1) 2^{-n} \leq t}\left\{k 2^{-n} \leq T<(k+1) 2^{-n}\right\} \in \mathcal{F}_{t}
$$

since $\left\{T<(k+1) 2^{-n}\right\} \in \mathcal{F}_{(k+1) 2^{-n}+}$ because T is an $\left(\mathcal{F}_{t+}\right)$-stopping time. Thus T_{n} is a stopping time, and it is clear that $T_{n}(\omega)$ decreases to $T(\omega)$ for each ω. Consequently, because $t \mapsto B_{t}(\omega)$ is continuous, $\lim _{n \rightarrow \infty} B_{T_{n}}(\omega)=B_{T}(\omega)$, and so

$$
\lim _{n \rightarrow \infty} \mathbf{E}_{B_{T_{n}(\omega)}(\omega)}[F]=\mathbf{E}_{B_{T(\omega)}(\omega)}[F]
$$

Therefore, noting that $\{T<\infty\}=\left\{T_{n}<\infty\right\}$,

$$
\begin{align*}
\mathbf{E}_{\mu}\left[H \cdot \mathbf{E}_{B(T)}[F] ; T<\infty\right] & =\mathbf{E}_{\mu}\left[H \cdot \lim _{n} \mathbf{E}_{B\left(T_{n}\right)}[F] ; T_{n}<\infty\right] \tag{3}\\
& =\lim _{n} \mathbf{E}_{\mu}\left[H \cdot \mathbf{E}_{B\left(T_{n}\right)}[F] ; T_{n}<\infty\right]
\end{align*}
$$

But, by the law of total probability and Fubini's theorem,

$$
\begin{align*}
\mathbf{E}_{\mu}\left[H \cdot \mathbf{E}_{B\left(T_{n}\right)}[F] ; T_{n}<\infty\right] & =\sum_{k=0}^{\infty} \mathbf{E}_{\mu}\left[H \cdot \mathbf{E}_{B\left((k+1) 2^{-n}\right)}[F] ; T_{n}=(k+1) 2^{-n}\right] \\
& =\sum_{k=0}^{\infty} \mathbf{E}_{\mu}\left[H \cdot F \circ \theta_{(k+1) 2^{-n}} ; T_{n}=(k+1) 2^{-n}\right] \tag{4}\\
& =\mathbf{E}_{\mu}\left[H \cdot F \circ \theta_{T_{n}} ; T_{n}<\infty\right] .
\end{align*}
$$

The second equality above results from the simple Markov property because (i)

$$
\left\{T_{n}=(k+1) 2^{-n}\right\}=\left\{k 2^{-n} \leq T<(k+1) 2^{-n}\right\} \in \mathcal{F}_{(k+1) 2^{-n}}
$$

and (ii) $H \cdot 1_{\left\{k 2^{-n} \leq T<(k+1) 2^{-n}\right\}} \in \mathcal{F}_{(k+1) 2^{-n}}$ as H is $\mathcal{F}_{T+\text {-measurable. On the other hand, }}$ because of the special choice of F, the map $t \mapsto F\left(\theta_{t} \omega\right)$ is continuous, so $\lim _{n} F\left(\theta_{T_{n}(\omega)} \omega\right)=$ $F\left(\theta_{T(\omega)} \omega\right)$, at least for ω in $\{T<\infty\}$. It now follows from the dominated convergence theorem that

$$
\begin{equation*}
\lim _{n} \mathbf{E}_{\mu}\left[H \cdot F \circ \theta_{T_{n}} ; T_{n}<\infty\right]=\mathbf{E}_{\mu}\left[H \cdot F \circ \theta_{T} ; T<\infty\right] \tag{5}
\end{equation*}
$$

Combining (3), (4), and (5), we obtain (2). \square
The following reformulation of the strong Markov property for Brownian motion is often convenient. For simplicity I assume that T is finite.

Corollary. If T is an $\left(\mathcal{F}_{t+}\right)$-stopping time and μ is any initial distribution such that $\mathbf{P}_{\mu}[T<\infty]=1$, then the process $B^{(T)}$ defined by

$$
B_{t}^{(T)}:=B_{T+t}-B_{T}, \quad t \geq 0
$$

has the same distribution as Brownian motion started at 0 , and is independent of \mathcal{F}_{T+}. Proof. For this proof only let $\tau_{x}: \Omega \rightarrow \Omega$ be defined by $\left(\tau_{x} \omega\right)(t):=\omega(t)-x$. Then $B^{(T)}(\omega)$ is equal to $\theta_{T(\omega)}=\tau_{x}\left[\theta_{T(\omega)} \omega\right]$ when x is set equal to $B_{T}(\omega)$. Consequently, if $H \in b \mathcal{F}_{T+}$ and $F \in b \mathcal{F}$,

$$
\begin{aligned}
\mathbf{E}_{\mu}\left[H \cdot F\left(B^{(T)}\right)\right] & =\mathbf{E}_{\mu}\left[H \cdot F\left(\tau_{B(T)} \theta_{T}\right)\right] \\
& =\mathbf{E}_{\mu}\left[H \cdot \mathbf{E}_{\mu}\left[F\left(\tau_{B(T)} \theta_{T}\right) \mid \mathcal{F}_{T+}\right]=\mathbf{E}_{\mu}\left[H \cdot f\left(B_{T}\right)\right]\right.
\end{aligned}
$$

where $f(x)=\mathbf{E}_{x}\left[F\left(\tau_{x}\right)\right]$. But Brownian motion started at x is equal in distribution to Brownian motion started at 0 and then translated by x. This translation is cancelled by τ_{x}, so $f(x)=\mathbf{E}_{x}\left[F\left(\tau_{x}\right)\right]=\mathbf{E}_{0}[F]$. Thus,

$$
\mathbf{E}_{\mu}\left[H \cdot F\left(B^{(T)}\right)\right]=\mathbf{E}_{\mu}\left[H \cdot \mathbf{E}_{0}[F]\right]=\mathbf{E}_{\mu}[H] \cdot \mathbf{E}_{0}[F],
$$

which proves both assertions of the theorem.
Example. The Brownian transition density $p_{t}(x, y)$ induces an operator P_{t} on functions as follows: If $f: \mathbf{R} \rightarrow \mathbf{R}$ is Borel measurable and bounded (or positive) then we define $P_{t} f$ as the function

$$
P_{t} f(x):=\int_{\mathbf{R}} p_{t}(x, y) f(y) d y, \quad x \in \mathbf{R} .
$$

Evidently, $\left\|P_{t} f\right\|_{\infty} \leq\|f\|_{\infty}$, and (Scheffe's lemma again!) $x \mapsto P_{t} f(x)$ is a continuous function if f is bounded.

Let T be a stopping time, and let us compute the conditional expectation $\mathbf{E}_{\mu}\left[f\left(B_{t}\right) \mid \mathcal{F}_{T+}\right]$, where $t>0$ is fixed. Observe that if $T(\omega)<t$ then

$$
f\left(B_{t}(\omega)\right)=g\left(\theta_{T(\omega)}, T(\omega)\right),
$$

where $g\left(\omega^{\prime}, s\right):=f\left(w^{\prime}(t-s)\right)$. Since T is $\mathcal{F}_{T+- \text {-measurable, we can use (1) to compute }}$

$$
\mathbf{E}_{\mu}\left[f\left(B_{t}\right) \mid \mathcal{F}_{T+}\right]=1_{\{T \geq t\}} f\left(B_{t}\right)+1_{\{T<t\}} h\left(B_{T}, T\right),
$$

where, for $0 \leq s<t$,

$$
h(x, s):=\mathbf{E}_{x}[g(\cdot, s)]=\mathbf{E}_{x}\left[f\left(B_{t-s}\right)\right]=P_{t-s} f(x)
$$

Thus,

$$
\mathbf{E}_{\mu}\left[f\left(B_{t}\right) \mid \mathcal{F}_{T+}\right]=1_{\{T \geq t\}} f\left(B_{t}\right)+1_{\{T<t\}} P_{t-T} f\left(B_{T}\right)
$$

