Math 280C, Spring 2005

Strong Markov Property

Notation is that introduced in class.

Theorem. (Strong Markov Property of Brownian Motion). If T is an (\mathcal{F}_{t+}) -stopping time and μ is any initial distribution, then

(1)
$$\mathbf{E}_{\mu}[F \circ \theta_T | \mathcal{F}_{T+}] = \mathbf{E}_{B(T)}(F), \qquad \mathbf{P}_{\mu}\text{-a.s. on } \{T < \infty\}$$

for each $F \in b\mathcal{F}$. [Here B(T) is alternate notation for B_T .]

Proof. The right side of (1) is the composition of the \mathcal{F}_{T+} -measurable map $\omega \mapsto B_{T(\omega)}(\omega)$ with the Borel measurable map $x \mapsto \mathbf{E}_x[F]$, and is therefore \mathcal{F}_{T+} -measurable. It remains to show that

(2)
$$\mathbf{E}_{\mu}[H \cdot F \circ \theta_{T}] = \mathbf{E}_{\mu}\left[H \cdot \mathbf{E}_{B(T)}[F]\right]$$

for every $H \in b\mathcal{F}_{T+}$. In view of the monotone class theorem for functions, it suffices to prove (2) for F of the special form

$$F(\omega) = \prod_{k=1}^{n} f_k(B_{t_k}(\omega))$$

where n is a positive integer, $0 < t_1 < t_2 < \cdots < t_n$, and each $f_k : \mathbf{R} \to \mathbf{R}$ is a bounded continuous function. It has been proved in class that for such an F, the function $x \mapsto \mathbf{E}_x[F]$ is (bounded and) continuous. We proceed by approximating the stopping time T as follows:

$$T_n(\omega) = \begin{cases} (k+1)2^{-n}, & \text{if } k2^{-n} \le T(\omega) < (k+1)2^{-n}, \ k = 0, 1, 2, \dots; \\ +\infty, & \text{if } T(\omega) = +\infty. \end{cases}$$

Then, for t > 0,

$$\{T_n \le t\} = \bigcup_{k:(k+1)2^{-n} \le t} \{k2^{-n} \le T < (k+1)2^{-n}\} \in \mathcal{F}_t,$$

since $\{T < (k+1)2^{-n}\} \in \mathcal{F}_{(k+1)2^{-n}+}$ because T is an (\mathcal{F}_{t+}) -stopping time. Thus T_n is a stopping time, and it is clear that $T_n(\omega)$ decreases to $T(\omega)$ for each ω . Consequently, because $t \mapsto B_t(\omega)$ is continuous, $\lim_{n\to\infty} B_{T_n}(\omega) = B_T(\omega)$, and so

$$\lim_{n \to \infty} \mathbf{E}_{B_{T_n(\omega)}(\omega)}[F] = \mathbf{E}_{B_{T(\omega)}(\omega)}[F].$$

Therefore, noting that $\{T < \infty\} = \{T_n < \infty\},\$

(3)
$$\mathbf{E}_{\mu} \left[H \cdot \mathbf{E}_{B(T)}[F]; T < \infty \right] = \mathbf{E}_{\mu} \left[H \cdot \lim_{n} \mathbf{E}_{B(T_{n})}[F]; T_{n} < \infty \right]$$
$$= \lim_{n} \mathbf{E}_{\mu} \left[H \cdot \mathbf{E}_{B(T_{n})}[F]; T_{n} < \infty \right]$$

But, by the law of total probability and Fubini's theorem,

(4)

$$\mathbf{E}_{\mu} \left[H \cdot \mathbf{E}_{B(T_n)}[F]; T_n < \infty \right] = \sum_{k=0}^{\infty} \mathbf{E}_{\mu} \left[H \cdot \mathbf{E}_{B((k+1)2^{-n})}[F]; T_n = (k+1)2^{-n} \right]$$

$$= \sum_{k=0}^{\infty} \mathbf{E}_{\mu} \left[H \cdot F \circ \theta_{(k+1)2^{-n}}; T_n = (k+1)2^{-n} \right]$$

$$= \mathbf{E}_{\mu} \left[H \cdot F \circ \theta_{T_n}; T_n < \infty \right].$$

The second equality above results from the simple Markov property because (i)

$$\{T_n = (k+1)2^{-n}\} = \{k2^{-n} \le T < (k+1)2^{-n}\} \in \mathcal{F}_{(k+1)2^{-n}}\}$$

and (ii) $H \cdot 1_{\{k2^{-n} \leq T < (k+1)2^{-n}\}} \in \mathcal{F}_{(k+1)2^{-n}}$ as H is \mathcal{F}_{T+} -measurable. On the other hand, because of the special choice of F, the map $t \mapsto F(\theta_t \omega)$ is continuous, so $\lim_n F(\theta_{T_n(\omega)}\omega) = F(\theta_{T(\omega)}\omega)$, at least for ω in $\{T < \infty\}$. It now follows from the dominated convergence theorem that

(5)
$$\lim_{n} \mathbf{E}_{\mu}[H \cdot F \circ \theta_{T_{n}}; T_{n} < \infty] = \mathbf{E}_{\mu}[H \cdot F \circ \theta_{T}; T < \infty].$$

Combining (3), (4), and (5), we obtain (2).

The following reformulation of the strong Markov property for Brownian motion is often convenient. For simplicity I assume that T is finite.

Corollary. If T is an (\mathcal{F}_{t+}) -stopping time and μ is any initial distribution such that $\mathbf{P}_{\mu}[T < \infty] = 1$, then the process $B^{(T)}$ defined by

$$B_t^{(T)} := B_{T+t} - B_T, \quad t \ge 0,$$

has the same distribution as Brownian motion started at 0, and is independent of \mathcal{F}_{T+} .

Proof. For this proof only let $\tau_x : \Omega \to \Omega$ be defined by $(\tau_x \omega)(t) := \omega(t) - x$. Then $B^{(T)}(\omega)$ is equal to $\theta_{T(\omega)} = \tau_x [\theta_{T(\omega)} \omega]$ when x is set equal to $B_T(\omega)$. Consequently, if $H \in b\mathcal{F}_{T+}$ and $F \in b\mathcal{F}$,

$$\begin{aligned} \mathbf{E}_{\mu}[H \cdot F(B^{(T)})] &= \mathbf{E}_{\mu}[H \cdot F(\tau_{B(T)}\theta_{T})] \\ &= \mathbf{E}_{\mu}[H \cdot \mathbf{E}_{\mu}[F(\tau_{B(T)}\theta_{T})|\mathcal{F}_{T+}] = \mathbf{E}_{\mu}[H \cdot f(B_{T})], \end{aligned}$$

where $f(x) = \mathbf{E}_x[F(\tau_x)]$. But Brownian motion started at x is equal in distribution to Brownian motion started at 0 and then translated by x. This translation is cancelled by τ_x , so $f(x) = \mathbf{E}_x[F(\tau_x)] = \mathbf{E}_0[F]$. Thus,

$$\mathbf{E}_{\mu}[H \cdot F(B^{(T)})] = \mathbf{E}_{\mu}[H \cdot \mathbf{E}_0[F]] = \mathbf{E}_{\mu}[H] \cdot \mathbf{E}_0[F],$$

which proves both assertions of the theorem. \Box

Example. The Brownian transition density $p_t(x, y)$ induces an operator P_t on functions as follows: If $f : \mathbf{R} \to \mathbf{R}$ is Borel measurable and bounded (or positive) then we define $P_t f$ as the function

$$P_t f(x) := \int_{\mathbf{R}} p_t(x, y) f(y) \, dy, \qquad x \in \mathbf{R}.$$

Evidently, $||P_t f||_{\infty} \leq ||f||_{\infty}$, and (Scheffe's lemma again!) $x \mapsto P_t f(x)$ is a continuous function if f is bounded.

Let T be a stopping time, and let us compute the conditional expectation $\mathbf{E}_{\mu}[f(B_t)|\mathcal{F}_{T+}]$, where t > 0 is fixed. Observe that if $T(\omega) < t$ then

$$f(B_t(\omega)) = g(\theta_{T(\omega)}, T(\omega)),$$

where $g(\omega', s) := f(w'(t-s))$. Since T is \mathcal{F}_{T+} -measurable, we can use (1) to compute

$$\mathbf{E}_{\mu}[f(B_t)|\mathcal{F}_{T+}] = \mathbf{1}_{\{T \ge t\}}f(B_t) + \mathbf{1}_{\{T < t\}}h(B_T, T),$$

where, for $0 \leq s < t$,

$$h(x,s) := \mathbf{E}_x[g(\cdot,s)] = \mathbf{E}_x[f(B_{t-s})] = P_{t-s}f(x).$$

Thus,

$$\mathbf{E}_{\mu}[f(B_t)|\mathcal{F}_{T+}] = \mathbf{1}_{\{T \ge t\}}f(B_t) + \mathbf{1}_{\{T < t\}}P_{t-T}f(B_T).$$