Math 285A, Spring 2006

Minimum Principle for Markov Chains

Let $X = (X_n)_{n\geq 0}$ be a Markov Chain with state space S (finite or countably infinite) and transition matrix P. Let B be a subset of S, and consider a function $f: S \to [0, \infty)$ that is "superharmonic on B^c " in the sense that

(1)
$$f(i) \ge Pf(i) = \sum_{j \in S} p(i,j)f(j), \quad \forall i \in B^c.$$

Let $\tau := \min\{n \geq 0 : X_n \in B\}$ be the hitting time of B, and let us define a new Markov Chain Y by setting

(2)
$$Y_n := X_{n \wedge \tau} = \begin{cases} X_n, & n < \tau, \\ X_{\tau}, & \tau \le n. \end{cases}$$

Let us compute the transition probabilities $\widetilde{p}(i,j)$ for Y. It is clear that if $i \in B$ and $Y_n = i$, then $X_{n \wedge \tau} = i \in B$, so $n \geq \tau$; from this it follows that $Y_{n+1} = X_{(n+1) \wedge \tau} = X_{\tau} = i$. That is, each state of B is a trap for Y. Consequently,

(3)
$$\widetilde{p}(i,j) = \mathbf{P}[Y_{n+1} = j | Y_n = j] = \begin{cases} 1, & j = i, \\ 0, & j \neq i, \end{cases} \quad i \in B, j \in S.$$

If $i \in B^c$, then

(4)
$$\mathbf{P}[Y_{n+1} = j | Y_n = i] = \frac{\mathbf{P}[X_{(n+1) \wedge \tau} = j, X_n = i, n < \tau]}{\mathbf{P}[X_n = i, n < \tau]}$$

$$= \frac{\mathbf{P}[X_{(n+1)} = j, X_n = i, n < \tau]}{\mathbf{P}[X_n = i, n < \tau]}$$

$$= \mathbf{P}[X_{(n+1)} = j | X_n = i, n < \tau]$$

$$= p(i, j).$$

(The final equality above holds by the Markov property, because $\{n < \tau\} = \{X_0 \in B^c, X_1 \in B^c, \dots, X_n \in B^c\}$.) That is, the matrix \widetilde{P} for Y is obtained by replacing the rows of P indexed by B by a matrix of the form [I|0], in which I is an identity matrix whose dimension is the cardinality of B. (I assume the states of S have been partitioned so that those of B are written first and those of B^c second.) It follows from this and (1) that

(5)
$$f(i) \ge \widetilde{P}f(i), \quad \forall i \in S.$$

Applying \widetilde{P} to both sides of (5) repeatedly, we find that

(6)
$$f(i) \ge \widetilde{P}^n f(i), \qquad \forall i \in S, n = 1, 2, 3, \dots$$

That is,

(7)
$$f(i) \ge \mathbf{E}[f(Y_n)|Y_0 = i] = \mathbf{E}[f(X_{n \wedge \tau})|X_0 = i], \quad \forall i \in S, n = 1, 2, 3, \dots$$

Moving everything in (7) to the right side, we have, equivalently,

(8)
$$0 \ge \mathbf{E} [[f(X_{n \wedge \tau}) - f(i)] | X_0 = i], \quad \forall i \in S, n = 1, 2, 3, \dots$$

Suppose now that i is a state at which f attains its minimum value, and that $i \in B^c$. Then $f(X_{n \wedge \tau}) - f(i) \geq 0$, so (8) implies that

(9)
$$\mathbf{P}[f(X_{n \wedge \tau}) = f(i)|X_0 = i] = 1, \quad \forall i \in S, n = 1, 2, 3, \dots$$

We have now, in effect, proved the following result.

Theorem. Let $f: S \to [0, \infty)$ satisfy (1) for some set $B \subset S$. Suppose the following "irreducibility" conditions hold:

(10)
$$\mathbf{P}[X_n = j, n < \tau | X_0 = i] > 0 \text{ for some } n \ge 1, \qquad \forall i \in B^c, j \in B^c,$$

(11)
$$\mathbf{P}[X_{\tau} = j, \tau < \infty | X_0 = i] > 0, \quad \forall i \in B^c, j \in B.$$

If f attains its minimum value at some point of B^c , then f is constant on S.

Proof. Assume, as before, that i is a point of B^c at which f attains its minimum value. By (10), if $j \in B^c$,

(12)
$$\mathbf{P}[X_n = j, n < \tau | X_0 =] > 0$$

and then (9) forces f(j) = f(i). Likewise, if $j \in B$ then (11) implies that $\mathbf{P}[X_{\tau} = j, \tau \le n] > 0$ for large enough n, and then (9) again implies that f(j) = f(i). Thus f(j) = f(i) for all $j \in S$. \square

The case in which B is empty is especially simple.

Corollary 1. Suppose that X is irreducible, and let $f: S \to [0, \infty)$ be superharmonic on all of S. If f attains its minimum value at some point of S, then f is constant on S.

The following proposition is a useful consequence of the idea behind the theorem.

Proposition. Let $f: S \to [0, \infty)$ satisfy (1) for some set $B \subset S$. Suppose that

(13)
$$\mathbf{P}[\tau < \infty] > 0, \qquad \forall i \in B^c$$

Then

(14)
$$\inf\{f(i) : i \in B\} = \inf\{f(i) : i \in S\}.$$

Proof. Clearly $\inf\{f(i): i \in B\} \ge \inf\{f(i): i \in S\}$. If this is a strict equality, then there exists $i \in B^c$ such that f(i) < f(j) for all $j \in B$. In view of the hypothesis (13) (which implies that $\mathbf{P}[X_{\tau} = j, \tau \le n | X_0 = i] > 0$ for some $n \ge 1$ and some $j \in B$), we thereby obtain a contradiction of (9). \square

The following corollary of the proposition was used in class to show that for the simple symmetric random walk on $\{0, 1, 2, ..., N\}$, the probability of hitting N before 0 (when the walk is started at $i \in \{1, 2, ..., N-1\}$) is i/N.

Corollary 2. Let $f: S \to [0, \infty)$ and $g: S \to [0, \infty)$ be "harmonic" on B^c :

(15)
$$Pf(i) = f(i), Pg(i) = g(i), \quad \forall i \in B^c,$$

and suppose that $\mathbf{P}[\tau < \infty | X_0 = i] > 0$ for all $i \in B^c$. If f(j) = g(j) for all $j \in B$, then f(j) = g(j) for all $j \in S$.