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Minimum Principle for Markov Chains

Let X = (Xn)n≥0 be a Markov Chain with state space S (finite or countably infinite)

and transition matrix P . Let B be a subset of S, and consider a function f : S → [0,∞)

that is “superharmonic on Bc” in the sense that

(1) f(i) ≥ Pf(i) =
∑

j∈S

p(i, j)f(j), ∀i ∈ Bc.

Let τ := min{n ≥ 0 : Xn ∈ B} be the hitting time of B, and let us define a new Markov

Chain Y by setting

(2) Yn := Xn∧τ =

{
Xn, n < τ ,
Xτ , τ ≤ n.

Let us compute the transition probabilities p̃(i, j) for Y . It is clear that if i ∈ B and

Yn = i, then Xn∧τ = i ∈ B, so n ≥ τ ; from this it follows that Yn+1 = X(n+1)∧τ = Xτ = i.

That is, each state of B is a trap for Y . Consequently,

(3) p̃(i, j) = P[Yn+1 = j|Yn = j] =

{
1, j = i,
0, j 6= i,

i ∈ B, j ∈ S.

If i ∈ Bc, then

(4)

P[Yn+1 = j|Yn = i] =
P[X(n+1)∧τ = j, Xn = i, n < τ ]

P[Xn = i, n < τ ]

=
P[X(n+1) = j, Xn = i, n < τ ]

P[Xn = i, n < τ ]

= P[X(n+1) = j|Xn = i, n < τ ]

= p(i, j).

(The final equality above holds by the Markov property, because {n < τ} = {X0 ∈

Bc, X1 ∈ Bc, . . . , Xn ∈ Bc}.) That is, the matrix P̃ for Y is obtained by replacing the

rows of P indexed by B by a matrix of the form [I|0], in which I is an identity matrix

whose dimension is the cardinality of B. (I assume the states of S have been partitioned

so that those of B are written first and those of Bc second.) It follows from this and (1)

that

(5) f(i) ≥ P̃ f(i), ∀i ∈ S.
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Applying P̃ to both sides of (5) repeatedly, we find that

(6) f(i) ≥ P̃nf(i), ∀i ∈ S, n = 1, 2, 3, . . . .

That is,

(7) f(i) ≥ E[f(Yn)|Y0 = i] = E[f(Xn∧τ)|X0 = i], ∀i ∈ S, n = 1, 2, 3, . . . .

Moving everything in (7) to the right side, we have, equivalently,

(8) 0 ≥ E [[f(Xn∧τ) − f(i)]|X0 = i] , ∀i ∈ S, n = 1, 2, 3, . . . .

Suppose now that i is a state at which f attains its minimum value, and that i ∈ Bc.

Then f(Xn∧τ ) − f(i) ≥ 0, so (8) implies that

(9) P [f(Xn∧τ) = f(i)|X0 = i] = 1, ∀i ∈ S, n = 1, 2, 3, . . . .

We have now, in effect, proved the following result.

Theorem. Let f : S → [0,∞) satisfy (1) for some set B ⊂ S. Suppose the following

“irreducibility” conditions hold:

(10) P[Xn = j, n < τ |X0 = i] > 0 for some n ≥ 1, ∀i ∈ Bc, j ∈ Bc,

(11) P[Xτ = j, τ < ∞|X0 = i] > 0, ∀i ∈ Bc, j ∈ B.

If f attains its minimum value at some point of Bc, then f is constant on S.

Proof. Assume, as before, that i is a point of Bc at which f attains its minimum value.

By (10), if j ∈ Bc,

(12) P[Xn = j, n < τ |X0 =] > 0

and then (9) forces f(j) = f(i). Likewise, if j ∈ B then (11) implies that P[Xτ = j, τ ≤

n] > 0 for large enough n, and then (9) again implies that f(j) = f(i). Thus f(j) = f(i)

for all j ∈ S.

The case in which B is empty is especially simple.

Corollary 1. Suppose that X is irreducible, and let f : S → [0,∞) be superharmonic on

all of S. If f attains its minimum value at some point of S, then f is constant on S.

The following proposition is a useful consequence of the idea behind the theorem.
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Proposition. Let f : S → [0,∞) satisfy (1) for some set B ⊂ S. Suppose that

(13) P[τ < ∞] > 0, ∀i ∈ Bc

Then

(14) inf{f(i) : i ∈ B} = inf{f(i) : i ∈ S}.

Proof. Clearly inf{f(i) : i ∈ B} ≥ inf{f(i) : i ∈ S}. If this is a strict equality, then there

exists i ∈ Bc such that f(i) < f(j) for all j ∈ B. In view of the hypothesis (13) (which

implies that P[Xτ = j, τ ≤ n|X0 = i] > 0 for some n ≥ 1 and some j ∈ B), we thereby

obtain a contradiction of (9).

The following corollary of the proposition was used in class to show that for the simple

symmetric random walk on {0, 1, 2, . . . , N}, the probability of hitting N before 0 (when

the walk is started at i ∈ {1, 2, . . . , N − 1}) is i/N .

Corollary 2. Let f : S → [0,∞) and g : S → [0,∞) be “harmonic” on Bc:

(15) Pf(i) = f(i), P g(i) = g(i), ∀i ∈ Bc,

and suppose that P[τ < ∞|X0 = i] > 0 for all i ∈ Bc. If f(j) = g(j) for all j ∈ B, then

f(j) = g(j) for all j ∈ S.
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