Math 285A, Spring 2006

Minimum Principle for Markov Chains

Let $X=\left(X_{n}\right)_{n \geq 0}$ be a Markov Chain with state space S (finite or countably infinite) and transition matrix P. Let B be a subset of S, and consider a function $f: S \rightarrow[0, \infty)$ that is "superharmonic on B^{c} " in the sense that

$$
\begin{equation*}
f(i) \geq P f(i)=\sum_{j \in S} p(i, j) f(j), \quad \forall i \in B^{c} \tag{1}
\end{equation*}
$$

Let $\tau:=\min \left\{n \geq 0: X_{n} \in B\right\}$ be the hitting time of B, and let us define a new Markov Chain Y by setting

$$
Y_{n}:=X_{n \wedge \tau}= \begin{cases}X_{n}, & n<\tau \tag{2}\\ X_{\tau}, & \tau \leq n\end{cases}
$$

Let us compute the transition probabilities $\widetilde{p}(i, j)$ for Y. It is clear that if $i \in B$ and $Y_{n}=i$, then $X_{n \wedge \tau}=i \in B$, so $n \geq \tau$; from this it follows that $Y_{n+1}=X_{(n+1) \wedge \tau}=X_{\tau}=i$. That is, each state of B is a trap for Y. Consequently,

$$
\widetilde{p}(i, j)=\mathbf{P}\left[Y_{n+1}=j \mid Y_{n}=j\right]=\left\{\begin{array}{ll}
1, & j=i, \tag{3}\\
0, & j \neq i,
\end{array} \quad i \in B, j \in S\right.
$$

If $i \in B^{c}$, then

$$
\begin{align*}
\mathbf{P}\left[Y_{n+1}=j \mid Y_{n}=i\right] & =\frac{\mathbf{P}\left[X_{(n+1) \wedge \tau}=j, X_{n}=i, n<\tau\right]}{\mathbf{P}\left[X_{n}=i, n<\tau\right]} \\
& =\frac{\mathbf{P}\left[X_{(n+1)}=j, X_{n}=i, n<\tau\right]}{\mathbf{P}\left[X_{n}=i, n<\tau\right]} \tag{4}\\
& =\mathbf{P}\left[X_{(n+1)}=j \mid X_{n}=i, n<\tau\right] \\
& =p(i, j) .
\end{align*}
$$

(The final equality above holds by the Markov property, because $\{n<\tau\}=\left\{X_{0} \in\right.$ $\left.B^{c}, X_{1} \in B^{c}, \ldots, X_{n} \in B^{c}\right\}$.) That is, the matrix \widetilde{P} for Y is obtained by replacing the rows of P indexed by B by a matrix of the form $[I \mid 0]$, in which I is an identity matrix whose dimension is the cardinality of B. (I assume the states of S have been partitioned so that those of B are written first and those of B^{c} second.) It follows from this and (1) that

$$
\begin{equation*}
f(i) \geq \widetilde{P} f(i), \quad \forall i \in S \tag{5}
\end{equation*}
$$

Applying \widetilde{P} to both sides of (5) repeatedly, we find that

$$
\begin{equation*}
f(i) \geq \widetilde{P}^{n} f(i), \quad \forall i \in S, n=1,2,3, \ldots \tag{6}
\end{equation*}
$$

That is,

$$
\begin{equation*}
f(i) \geq \mathbf{E}\left[f\left(Y_{n}\right) \mid Y_{0}=i\right]=\mathbf{E}\left[f\left(X_{n \wedge \tau}\right) \mid X_{0}=i\right], \quad \forall i \in S, n=1,2,3, \ldots \tag{7}
\end{equation*}
$$

Moving everything in (7) to the right side, we have, equivalently,

$$
\begin{equation*}
0 \geq \mathbf{E}\left[\left[f\left(X_{n \wedge \tau}\right)-f(i)\right] \mid X_{0}=i\right], \quad \forall i \in S, n=1,2,3, \ldots \tag{8}
\end{equation*}
$$

Suppose now that i is a state at which f attains its minimum value, and that $i \in B^{c}$. Then $f\left(X_{n \wedge \tau}\right)-f(i) \geq 0$, so (8) implies that

$$
\begin{equation*}
\mathbf{P}\left[f\left(X_{n \wedge \tau}\right)=f(i) \mid X_{0}=i\right]=1, \quad \forall i \in S, n=1,2,3, \ldots \tag{9}
\end{equation*}
$$

We have now, in effect, proved the following result.
Theorem. Let $f: S \rightarrow[0, \infty)$ satisfy (1) for some set $B \subset S$. Suppose the following "irreducibility" conditions hold:

$$
\begin{gather*}
\mathbf{P}\left[X_{n}=j, n<\tau \mid X_{0}=i\right]>0 \text { for some } n \geq 1, \quad \forall i \in B^{c}, j \in B^{c}, \tag{10}\\
\mathbf{P}\left[X_{\tau}=j, \tau<\infty \mid X_{0}=i\right]>0, \quad \forall i \in B^{c}, j \in B \tag{11}
\end{gather*}
$$

If f attains its minimum value at some point of B^{c}, then f is constant on S.
Proof. Assume, as before, that i is a point of B^{c} at which f attains its minimum value. By (10), if $j \in B^{c}$,

$$
\begin{equation*}
\mathbf{P}\left[X_{n}=j, n<\tau \mid X_{0}=\right]>0 \tag{12}
\end{equation*}
$$

and then (9) forces $f(j)=f(i)$. Likewise, if $j \in B$ then (11) implies that $\mathbf{P}\left[X_{\tau}=j, \tau \leq\right.$ $n]>0$ for large enough n, and then (9) again implies that $f(j)=f(i)$. Thus $f(j)=f(i)$ for all $j \in S$.

The case in which B is empty is especially simple.
Corollary 1. Suppose that X is irreducible, and let $f: S \rightarrow[0, \infty)$ be superharmonic on all of S. If f attains its minimum value at some point of S, then f is constant on S.

The following proposition is a useful consequence of the idea behind the theorem.

Proposition. Let $f: S \rightarrow[0, \infty)$ satisfy (1) for some set $B \subset S$. Suppose that

$$
\begin{equation*}
\mathbf{P}[\tau<\infty]>0, \quad \forall i \in B^{c} \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\inf \{f(i): i \in B\}=\inf \{f(i): i \in S\} . \tag{14}
\end{equation*}
$$

Proof. Clearly $\inf \{f(i): i \in B\} \geq \inf \{f(i): i \in S\}$. If this is a strict equality, then there exists $i \in B^{c}$ such that $f(i)<f(j)$ for all $j \in B$. In view of the hypothesis (13) (which implies that $\mathbf{P}\left[X_{\tau}=j, \tau \leq n \mid X_{0}=i\right]>0$ for some $n \geq 1$ and some $j \in B$), we thereby obtain a contradiction of (9).

The following corollary of the proposition was used in class to show that for the simple symmetric random walk on $\{0,1,2, \ldots, N\}$, the probability of hitting N before 0 (when the walk is started at $i \in\{1,2, \ldots, N-1\})$ is i / N.

Corollary 2. Let $f: S \rightarrow[0, \infty)$ and $g: S \rightarrow[0, \infty)$ be "harmonic" on B^{c} :

$$
\begin{equation*}
P f(i)=f(i), P g(i)=g(i), \quad \forall i \in B^{c}, \tag{15}
\end{equation*}
$$

and suppose that $\mathbf{P}\left[\tau<\infty \mid X_{0}=i\right]>0$ for all $i \in B^{c}$. If $f(j)=g(j)$ for all $j \in B$, then $f(j)=g(j)$ for all $j \in S$.

