Ex. 6.1.1. \(P_0(t) = e^{-t}. \) For the rest I use the recursion (formula (6.5) on page 280 of the text)

\[
P_n(t) = \lambda_{n-1} \int_0^t e^{-\lambda_n(t-s)} P_{n-1}(s) \, ds,
\]

for \(n = 1, 2, 3: \)

\[
P_1(t) = \int_0^t e^{-3(t-s)} P_0(s) \, ds = e^{-3t} \int_0^t e^{3s} e^{-s} \, ds
\]

\[
= \frac{1}{2} e^{-t} - \frac{1}{2} e^{-3t}.
\]

\[
P_2(t) = 3 \int_0^t e^{-2(t-s)} P_1(s) \, ds = \frac{3}{2} \int_0^t e^{-2(t-s)} (e^{-s} - e^{-3s}) \, ds
\]

\[
= \frac{3}{2} e^{-2t} \int_0^t (e^s - e^{-s}) \, ds = \frac{3}{2} e^{-2t} \left[(e^t - 1) - (1 - e^{-t}) \right]
\]

\[
= \frac{3}{2} (e^{-t} - 2e^{-2t} + e^{-3t}).
\]

\[
P_3(t) = 2 \int_0^t e^{-5(t-s)} P_2(s) \, ds = 3 e^{-5t} \int_0^t e^{5s} (e^{-s} - 2e^{-2s} + e^{-3s}) \, ds
\]

\[
= 3 e^{-5t} \int_0^t (e^{4s} - 2e^{3s} + e^{2s}) \, ds
\]

\[
= 3 e^{-5t} \left[\frac{1}{4} (e^{4t} - 1) - \frac{2}{3} (e^{3t} - 1) + \frac{1}{2} (e^{2t} - 1) \right]
\]

\[
= \frac{3}{4} e^{-t} - 2e^{-2t} + \frac{3}{2} e^{-3t} - \frac{1}{4} e^{-5t}.
\]

Ex. 6.1.2. (a) \(W_3 = S_0 + S_1 + S_2, \) so

\[
E[W_3] = E[S_0] + E[S_1] + E[S_2]
\]

\[
= \lambda_0^{-1} + \lambda_1^{-1} + \lambda_2^{-1}
\]

\[
= 1 + \frac{1}{3} + \frac{1}{2} = \frac{11}{6}.
\]

(b) Similarly, \(E[W_1] = 1 \) and \(E[W_2] = 4/3, \) so \(E[W_1 + W_2 + W_3] = 1 + 4/3 + 11/6 = 25/6. \)

(c) The variance of \(W_3 \) is the sum of the variances of \(S_0, S_1, \) and \(S_2. \) We know that the variance of an exponentially distributed random variable with parameter \(\lambda \) is \(1/\lambda^2. \) Therefore,

\[
\text{Var}[W_3] = 1 + \frac{1}{9} + \frac{1}{4} = \frac{49}{36}.
\]

Ex. 6.1.5. According to formula (6.10) (page 282 of the text), if \(X(0) = 1 \) then \(X(t) \) has the geometric distribution with parameter \(p = e^{-\beta t}. \) From known formulas for the mean and variance of a geometric random variable we deduce that

\[
E[X(t)] = e^{\beta t}
\]
and
\[\text{Var}[X(t)] = e^{2\beta t}(1 - e^{-\beta t}). \]

(Cf. the formulae for the moments of Z' on page 21 of the text.)

Pr. 6.1.3. If, at time t, there are $X(t)$ infected individuals, then at that time there are $N - X(t)$ susceptible individuals in the population. Since the individual infection rate (for each infected/susceptible pair) is α, the total infection rate, when $X(t) = k$, is $\alpha k(N - k)$. That is, $\lambda_k = \alpha k(N - k)$ for $k = 0, 1, 2, \ldots, N$.

Pr. 6.1.8. Evidently,
\[P_0(t + h) = P_0(t)(1 - \beta h) + P_1(t)\alpha h + o(h), \quad h \to 0. \]
Consequently,
\[\frac{P_0(t + h) - P_0(t)}{h} = -\beta P_0(t) + \alpha P_1(t) + \frac{o(h)}{h}, \]
whence
\[P_0'(t) = -\beta P_0(t) + \alpha P_1(t). \]
Similarly,
\[P_1'(t) = -\alpha P_1(t) + \beta P_0(t). \]
Because $P_1(t) = 1 - P_0(t)$, equation (6.1.8.1) can be rewritten as
\[P_0'(t) = -\beta P_0(t) + \alpha. \]

Thus,
\[P_0'(t) + (\beta + \alpha)P_0(t) = \alpha, \]
so
\[\frac{d}{dt} \left(e^{(\alpha + \beta)t} P_0(t) \right) = \alpha e^{(\alpha + \beta)t}. \]
Integrating we find that
\[e^{(\alpha + \beta)t} P_0(t) - 1 = \frac{\alpha}{\alpha + \beta}(e^{(\alpha + \beta)t} - 1), \]
because $P_0(0) = 1$. It follows that
\[P_0(t) = \frac{\alpha}{\alpha + \beta} + \frac{\beta}{\alpha + \beta} e^{-(\alpha + \beta)t}. \]
Because $P_1(t) = 1 - P_0(t)$, we also have
\[P_1(t) = -\frac{\beta}{\alpha + \beta} e^{-(\alpha + \beta)t}. \]

Pr. 6.1.9. Let $P_k(t) = \mathbb{P}[N(t) = k]$ for $k = 0, 1, 2, \ldots$ and $M(t) = \mathbb{E}[N(t)]$. Let us also write $\eta(t)$ for $\mathbb{P}[N(t) \text{ is even}]$. (This was called $P_0(t)$ in Problem 6.1.8.) We know that
\[P_{2k}'(t) = -\beta P_{2k}(t) + \alpha P_{2k-1}(t), \quad k = 1, 2, \ldots, \]
and
\[P'_{2k+1} = -\alpha P_{2k+1}(t) + \beta P_{2k}(t), \quad k = 0, 1, 2, \ldots. \]
Therefore,

\[M'(t) = \sum_{k=1}^{\infty} 2kP'_{2k}(t) + \sum_{k=0}^{\infty} (2k+1)P'_{2k+1}(t) \]

\[= -\beta \sum_{k=1}^{\infty} 2kP_{2k}(t) + \alpha \sum_{k=1}^{\infty} 2kP_{2k-1}(t) - \alpha \sum_{k=0}^{\infty} (2k+1)P_{2k+1}(t) + \beta \sum_{k=0}^{\infty} (2k+1)P_{2k}(t) \]

\[= \beta \eta(t) + \alpha (1 - \eta(t)) \]

\[= \alpha + (\beta - \alpha) \eta(t). \]

Using the formula for \(\eta(t) \) from problem 6.1.8, we see that

\[M'(t) = \alpha + (\beta - \alpha) \left(\frac{\alpha}{\alpha + \beta} + \frac{\beta}{\alpha + \beta} e^{-(\alpha + \beta)t} \right). \]

Since \(M(0) = 0 \), we must have

\[M(t) = \frac{2\alpha \beta}{\alpha + \beta} t + \frac{\beta(\beta - \alpha)}{(\alpha + \beta)^2} (1 - e^{-(\alpha + \beta)t}). \]

Ex. 6.2.1. Using the formulas on page 287 of the text (and a little patience), we find that

\[P_3(t) = e^{-5t} \]
\[P_2(t) = \frac{5}{3} [e^{-2t} - e^{-5t}] \]
\[P_1(t) = \frac{5}{3} [2e^{-2t} - 3e^{-3t} + e^{-5t}], \]

and of course \(P_0(t) = 1 - P_1(t) - P_2(t) - P_3(t) \), so that

\[P_5(t) = 1 - 5e^{-2t} + 5e^{-3t} - e^{-5t}. \]

As a check, note that \(P_3(0) = 1, P_2(0) = P_1(0) = P_0(0) = 0 \), and

\[P'_3(t) = -5P_3(t) \]
\[P'_2(t) = -2P_2(t) + 5P_3(t) \]
\[P'_1(t) = -3P_1(t) + 2P_2(t), \]

as expected.

Alternatively, you can use the formula \(P_3(t) = e^{-\mu_3t} \), and the recursion discussed in class:

\[P_k(t) = \mu_{k+1} \int_0^t e^{-\mu_k(t-s)} P_{k+1}(s) \, ds, \quad k = 2, 1, 0, \]

to compute (in succession) \(P_2(t) \), \(P_1(t) \), and \(P_0(t) \).

Ex. 6.2.2. (a) \(W_3 = S_3 + S_2 + S_1 \), so

\[\mathbb{E}[W_3] = \mathbb{E}[S_3] + \mathbb{E}[S_2] + \mathbb{E}[S_1] = \frac{1}{5} + \frac{1}{2} + \frac{1}{3} = \frac{31}{30}. \]

(b) Similarly, \(\mathbb{E}[W_2] = 5/6 \) and \(\mathbb{E}[W_1] = 1/3 \), so \(\mathbb{E}[W_1 + W_2 + W_3] = 11/5. \)
(c) $\text{Var}[W_3] = \text{Var}[S_3] + \text{Var}[S_2] + \text{Var}[S_1] = 1/25 + 1/4 + 1/9 = 361/900 = .4011\ldots$

Pr. 6.2.2. Since the death rates are all the same (namely θ), the sojourn times in the various states all have the same exponential distribution, and their sums have gamma distributions. More precisely, for $k = 1, 2, \ldots N$, the random variable $W_k = S_N + S_{N-1} + \cdots + S_{N-k+1}$ has the gamma distribution with parameters θ and k; that is, the density function of W_k is

$$f_{W_k}(t) = \frac{\theta^k t^{k-1} e^{-\theta t}}{(k-1)!}, \quad t > 0.$$

Therefore

$$\mathbb{P}[X(t) = n] = \mathbb{P}[W_{N-n} \leq t < W_{N-n+1}] = \mathbb{P}[W_{N-n} \leq t] - \mathbb{P}[W_{N-n+1} \leq t], \quad n = 1, 2, \ldots, N.$$

But we know from studying Poisson processes that

$$\mathbb{P}[W_k \leq t] = \sum_{j=k}^{\infty} e^{-\theta t} \left(\frac{\theta t}{j!}\right)^j.$$

Combining this with the last-displayed equation we find that

$$\mathbb{P}[X(t) = n] = e^{-\theta t} \left(\frac{(\theta t)^N}{(N-n)!}\right), \quad n = 1, 2, \ldots, N.$$

Similarly,

$$\mathbb{P}[X(t) = 0] = \mathbb{P}[W_N \leq t] = \sum_{j=0}^{\infty} e^{-\theta t} \left(\frac{\theta t}{j!}\right)^j.$$

Pr. 6.2.3. A glance at the picture on page 287 of the text should be enough to convince you that the area under the trajectory of the pure death process is

$$\sum_{k=1}^{N} k \cdot S_k.$$

Consequently, the desired expectation is

$$\sum_{k=1}^{N} \frac{k}{\mu_k}.$$