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Lévy’s Theorem

Let (Ω,F ,P) be a complete probability space endowed with a right-continuous* filtra-
tion (Ft)t≥0 such that F0 contains all the P-null sets in F and ∨tFt = F . Let M = (Mt)t≥0

be a real-valued stochastic process adapted to (Ft) with continuous sample paths. We as-
sume that M0 = 0.

Theorem. Suppose that both M and (M2
t − t)t≥0 are local martingales. Then M is a

Brownian motion with respect to (Ft). More precisely, if 0 < s < t, then Mt −Ms is

independent of Fs and is normally distributed with mean 0 and variance t− s.

Proof. The key observation (due to H. Kunita & S. Watanabe) is that the development of
the Itô integral (and Itô’s formula) for Brownian motion (Wt) rests solely on the fact that
Wt and W 2

t − t are (local) martingales. It follows that if f ∈ C2(R) then

(1) f(Mt) = f(0) +
∫ t

0

f ′(Ms) dMs +
1
2

∫ t

0

f ′′(Ms) ds,

where the stochastic integral Mf
t :=

∫ t

0
f ′(Ms) dMs is a local martingale. In particular, if

f ′ is bounded then Mf
t is a martingale, in which case upon taking expectations in (1) we

obtain

(2) E[f(Mt)] = f(0) +
1
2

∫ t

0

E[f ′′(Ms)] ds.

Let us take f in (2) to be of the form f(x) = exp(iθx), where θ ∈ R and i =
√
−1. Writing

g(t) := E[exp(iθMt)] we obtain

g(t) = 1− θ2

2

∫ t

0

g(s) ds

because f ′′(x) = −θ2f(x). Consequently, g satisfies the initial value problem

g′(t) = −θ2

2
g(t) g(0) = 1,

which has the unique solution g(t) = exp(−tθ2/2). Thus

E[exp(iθMt)] = exp(−tθ2/2), θ ∈ R,

* i.e., Ft = Ft+ for all t ≥ 0.
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which means that Mt ∼ N (0, t).
Now fix s > 0 and A ∈ Fs with P(A) > 0. Define P∗(B) := P(B ∩ A)/P(A) =

P(B|A), F∗t := Ft+s, and M∗t := Mt+s − Ms for t ≥ 0. Then with respect to the
filtration (F∗t ) over the probability space (Ω,F ,P∗), the stochastic process (M∗t )t≥0 is a
continuous local martingale with M∗0 = 0 such that [M∗t ]2 − t is also a local martingale.
The considerations of the preceding paragraph apply to this process, and we deduce that

(3) E∗[exp(iθM∗t )] = exp(−tθ2/2).

Writing the “starred” objects explicitly, (3) becomes

(4) E[exp(iθ(Mt+s −Mt));A] = exp(−tθ2/2)P(A).

Varying A ∈ Fs in (4) we find that

E[exp(iθ(Mt+s −Mt))|Fs] = exp(−tθ2/2),

which shows that Mt+s −Ms is independent of Fs and has the N (0, t) distribution.

Example 1. Let (Ω,F ,Ft,P) be a filtered probability space, and let W = (Wt)t≥0 be an
(Ft) Brownian motion. Let H = (Ht)t≥0 be a measurable (Ft) adapted process taking on
only the two values ±1. Then H ∈ L2 so the stochastic integral

Mt :=
∫ t

0

Hs dWs, t ≥ 0,

is a square-integrable martingale. Moreover, 〈M〉t =
∫ t

0
H2

s ds =
∫ t

0
1 ds = t, so M2

t − t is
also a local martingale. It follows from Lévy’s theorem that M is also an (Ft) Brownian
motion.

Example 2. As in the previous example, let (Ω,F ,Ft,P) be a filtered probability space,
and let W = (Wt)t≥0 be an (Ft) Brownian motion. Now let H = (Ht)t≥0 be an arbitrary
element of L2

loc. As before we define the local martingale

Mt :=
∫ t

0

Hs dWs, t ≥ 0,

which has quadratic variation process

〈M〉t =
∫ t

0

H2
s ds, t ≥ 0.
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Observe that 〈M〉t is continuous and non-decreasing. Let us assume that, almost surely,

(5) lim
t→∞
〈M〉t =∞.

Define
T (s) := inf{t : 〈M〉t > s}, s ≥ 0.

Then (5) implies that T (s) is finite (a.s.) for each s ≥ 0, and it is not hard to check
that each T (s) is a stopping time. We use these stopping times to “time change” M into
Brownian motion. Precisely, define

Cs := MT (s), s ≥ 0,

and
Gs := FT (s), s ≥ 0.

Then the stochastic process C = (Cs)s≥0 is adapted to the filtration (Gs)s≥0. The optional
stopping theorem implies that C is a local martingale (with respect to (Gs)). Moreover,
the quadratic variation interpretation of 〈C〉 and 〈M〉 implies that

〈C〉s = 〈M〉T (s) = s, ∀s ≥ 0,

almost surely. That is, C2
s − s is also a (Gs) local martingale. Lévy’s theorem now tells us

that C = (Cs) is a (Gs) Brownian motion. The moral: A continuous local martingale is
just Brownian motion with its “clock” running too fast (or too slow).

3


