Math 294, Winter 2004

Lévy’s Theorem

Let (92, F,P) be a complete probability space endowed with a right-continuous™ filtra-
tion (F;)i>0 such that Fy contains all the P-null sets in F and V,F; = F. Let M = (M;)¢>0
be a real-valued stochastic process adapted to (F;) with continuous sample paths. We as-
sume that My = 0.

Theorem. Suppose that both M and (M? — t);>o are local martingales. Then M is a
Brownian motion with respect to (F;). More precisely, if 0 < s < t, then M; — My is

independent of F, and is normally distributed with mean 0 and variance t — s.

Proof. The key observation (due to H. Kunita & S. Watanabe) is that the development of
the It6 integral (and It6’s formula) for Brownian motion (W;) rests solely on the fact that
W; and W2 — t are (local) martingales. It follows that if f € C?(R) then

(1) Fo) = 10+ [ ronyar+ g [ fron)s

where the stochastic integral M := f(f f'(Mys) dMsy is a local martingale. In particular, if
f’ is bounded then Mtf is a martingale, in which case upon taking expectations in (1) we

obtain

1

2 BLA(M)] = 50+ 5 | BU(M)ds

Let us take f in (2) to be of the form f(z) = exp(ifz), where § € R and i = /—1. Writing
g(t) := Elexp(i6M;)] we obtain

0> [*
9t) =1—= [ g(s)ds
0
because f’(x) = —02 f(x). Consequently, g satisfies the initial value problem
92
J0)= -0 g0)=1,

which has the unique solution g(t) = exp(—t0?/2). Thus

Elexp (i M;)] = exp(—t0?/2), 0 eR,

* i.e.,ft:ft+ foralltZO



which means that M; ~ N(0,1).

Now fix s > 0 and A € Fy with P(4) > 0. Define P*(B) := P(BN A)/P(A) =
P(B|A), Ff = Fiys, and M} := My s — Mg for t > 0. Then with respect to the
filtration (F;") over the probability space (2, F,P*), the stochastic process (M;):>¢ is a
continuous local martingale with M; = 0 such that [M;]? — t is also a local martingale.

The considerations of the preceding paragraph apply to this process, and we deduce that
(3) E*[exp(i0M})] = exp(—t6?/2).
Writing the “starred” objects explicitly, (3) becomes
(4) Elexp(i0(M; s — My)); A] = exp(—t6% /2)P(A).
Varying A € F; in (4) we find that
E[exp(i0(M; s — M;))|Fs) = exp(—t6°/2),

which shows that My, s — My is independent of Fs and has the N(0,¢) distribution. [

Example 1. Let (2, F, F;, P) be a filtered probability space, and let W = (W;);>¢ be an
(F:) Brownian motion. Let H = (H;)¢>0 be a measurable (F;) adapted process taking on
only the two values +1. Then H € £? so the stochastic integral

t
M, ::/ H,dWs, t>0,
0

is a square-integrable martingale. Moreover, (M); = fot H2ds = fot lds =t, so M? —tis
also a local martingale. It follows from Lévy’s theorem that M is also an (F;) Brownian

motion.

Example 2. As in the previous example, let (2, F, F;, P) be a filtered probability space,
and let W = (W;)>0 be an (F;) Brownian motion. Now let H = (H¢):>0 be an arbitrary

element of £Z . As before we define the local martingale

t
M, = / H, dWs, t>0,
0

which has quadratic variation process

t
(M}t:/ HZds, t>0.
0
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Observe that (M); is continuous and non-decreasing. Let us assume that, almost surely,

(5) lim (M) = co.

t—o0

Define
T(s) :=inf{t: (M); > s}, s> 0.

Then (5) implies that T'(s) is finite (a.s.) for each s > 0, and it is not hard to check
that each T'(s) is a stopping time. We use these stopping times to “time change” M into

Brownian motion. Precisely, define

Cs = MT(s)a s >0,
and

gs = fT(s)v s> 0.

Then the stochastic process C' = (Cs)s>0 is adapted to the filtration (Gs)s>0. The optional
stopping theorem implies that C' is a local martingale (with respect to (Gs)). Moreover,

the quadratic variation interpretation of (C) and (M) implies that
<C>S = <M>T(s) =S, Vs Z 0,

almost surely. That is, C2 — s is also a (G,) local martingale. Lévy’s theorem now tells us
that C' = (C) is a (Gs) Brownian motion. The moral: A continuous local martingale is

just Brownian motion with its “clock” running too fast (or too slow).



