Math 280B, Winter 2005

Doob's Inequalities

Everything that follows takes place on a probability space (Ω, \mathcal{F}, P) equipped with a filtration $\{\mathcal{F}_n : n = 0, 1, 2, \ldots\}$, with $\mathcal{F}_n \subset \mathcal{F}$ for all n.

1. Submartingale maximal inequality. Let $\{X_n\}$ be a non-negative submartingale (for example, $X_n = |M_n|$ if $\{M_n\}$ is a martingale, or $X_n = S_n^+$ if $\{S_n\}$ is a submartingale), and define $X_n^* := \max_{0 \le k \le n} X_k$. Then

$$P[X_n^* \ge t] \le t^{-1} E[X_n; X_n^* \ge b] \le t^{-1} E[X_n], \quad \forall t > 0.$$

For the proof of this maximal inequality we require the following simple lemma, a hint of better things.

2. Lemma. If $\{Y_n\}$ is a submartingale and T is a stopping time bounded above by a positive integer N, then

$$Y_T \leq E[Y_N | \mathcal{F}_T].$$

Proof. If $A \in \mathcal{F}_T$, then

$$E[Y_N; A] = \sum_{n=0}^{N} E[Y_N; A \cap \{T = n\}] \ge \sum_{n=0}^{N} E[Y_n; A \cap \{T = n\}]$$
$$= \sum_{n=0}^{N} E[Y_T; A \cap \{T = n\}] = E[Y_T; A],$$

where the inequality follows from the submartingale property of Y because $A \cap \{T = n\} \in \mathcal{F}_n$. \square

3. Proof of the maximal inequality. Fix a positive integer n and define $T := \min\{k \geq 0 : X_k \geq b\} \land n$. Then T is a stopping time bounded above by n and

$$\{X_n^* \ge b\} = \{X_T \ge b\}.$$

Thus,

$$P[X_n^* \ge t] = P[X_T \ge t] \le E[X_T/t; X_T \ge t]$$

$$\le t^{-1}E[X_n; X_T \ge t] = t^{-1}E[X_n; X_n^* \ge t]$$

$$\le t^{-1}E[X_n],$$

the second inequality following from the Lemma. \Box

Doob's L^p maximal inequality is a corollary of the submartingale maximal inequality. The proof is based on the following calculation (extending one seen in Math 280A), which is a simple consequence of Tonelli's theorem.

4. Lemma. Let W and Z be non-negative random variables. Then for any r > 0,

$$E[W \cdot Z^r] = r \int_0^\infty t^{r-1} E[W; Z > t] dt.$$

5. L^p Maximal Inequality. If $\{X_n\}$ is a positive submartingale and $1 , then for <math>n = 0, 1, 2, \ldots$,

$$||X_n^*||_p \le C_p ||X_n||_p$$

where $X_n^* := \max_{0 \le k \le n} X_k$ and $C_p := p/(p-1)$.

Proof. Fix n. By Lemma 4 (twice) and the maximal inequality 1,

$$E[(X_n^*)^p] = p \int_0^\infty t^{p-1} P[X_n^* > t] dt$$

$$\leq p \int_0^\infty t^{p-2} P[X_n; X_n^* > t] dt$$

$$= \frac{p}{p-1} E[X_n(X_n^*)^{p-1}].$$

Thus, by Hölder's inequality,

(1)
$$||X_n^*||_p^p = E[(X_n^*)^p] \le \frac{p}{p-1} E[X_n(X_n^*)^{p-1}] \le C_p^p ||X_n||_p \cdot ||(X_n^*)^{p-1}||_q.$$

Here q = p/(p-1) is the conjugate exponent of p. In particular, (p-1)q = p, so $||(X_n^*)^{p-1}||_q = ||X_n^*||_p^{p/q}$. Therefore, (1) implies

$$||X_n^*||_p^{p-p/q} \le C_p ||X_n||_p,$$

which is the stated inequality because p - p/q = 1. \square

6. Submartingale upcrossing inequality. Let $\{X_n\}$ be a submartingale, and for real numbers a < b let $U_n = U_n(a, b)$ by the number of upcrossings of the interval (a, b) that X completes by time n. Then for $n = 1, 2, \ldots$,

$$E[U_n] \le \frac{E[(X_n - a)^+] - E[(X_0 - a)^+]}{b - a}.$$

Proof. [The proof is the additive analog of the proof of Dubins's inequality.] Define recursively, $T_1 = \min\{k \geq 0 : X_k \leq a\}, T_2 = \min\{k \geq T_1 : X_k \geq b\}, T_3 = \min\{k \geq T_2 : X_n \leq a\}, \text{ etc. Then}$

$$\{U_n \ge m\} = \{T_{2m} \le n\},\$$

and (just as in the discussion of Dubins's inequality)

$$H_k := \begin{cases} 1 & \text{if } T_{2m-1} < k \le T_{2m} \text{ for some } m \ge 1 \\ 0 & \text{otherwise} \end{cases}$$

defines a bounded predictable process. Notice that the process $Y_n := (X_n - a)^+$ is a non-negative submartingale, and that the number of upcrossings of (a, b) by X is precisely the same as the

number of upcrossings of (0, b - a) by Y. Also, $\{((1 - H) \cdot Y)_n\}$ is a submartingale because $0 \le H_k \le 1$. Because each upcrossing completed by time n contributes at least b - a to the total determining $(H \cdot Y)_n$, and the possible upcrossing-in-progress at time n contributes a non-negative amount, we have

$$(b-a)U_n \leq (H \cdot Y)_n$$
.

Thus,

$$(b-a)E[U_n] \le E[(H \cdot Y)_n] = E[Y_n - ((1-H) \cdot Y)_n]$$

$$\le E[Y_n] - E[((1-H) \cdot Y)_0]$$

$$= E[(X_n - a)^+] - E[(X_0 - a)^+].$$

7. Corollary. If $\{X_n\}$ is a submartingale with $\sup_n E[X_n^+] < \infty$, then $X_\infty := \lim_n X_n$ exists almost surely, and X_∞ is integrable.

Proof. Suppose that $M := \sup_n E[X_n^+] < \infty$. From the elementary inequality $(x - a)^+ \le x^+ + a^-$ we deduce that for any real a

$$E[(X_n - a)^+] \le M + a^-$$

for all n. Thus, by Fatou's lemma, the total number $U_{\infty}(a,b) := \uparrow \lim_{n} U_{n}(a,b)$ of upcrossings of (a,b) made by X has finite expectation:

$$E[U_{\infty}(a,b)] \le \liminf_{n} \frac{E[(X_n - a)^+]}{b - a} \le M + |a| < \infty.$$

In particular,

$$P[U_{\infty}(a,b) < \infty] = 1, \quad \forall a < b.$$

Therefore $X_{\infty} := \lim_n X_n$ exists almost surely. Moreover, $E[X_{\infty}^+] \leq M < \infty$ by Fatou. On the other hand, because $x^- = x^+ - x$, Fatou's lemma also yields

$$E[X_{\infty}^{-}] \le \liminf_{n} E[X_{n}^{-}] = \liminf_{n} E[X_{n}^{+} - X_{n}] \le \liminf_{n} E[X_{n}^{+} - X_{0}] \le M - E[X_{0}] < \infty,$$

where the second inequality follows from the submartingale property of X. It follows that $E|X_{\infty}| < \infty$; in particular, X_{∞} is finite almost surely. \square