
Math 280B, Winter 2005
Doob’s Inequalities

Everything that follows takes place on a probability space (Ω,F , P ) equipped with a filtration
{Fn : n = 0, 1, 2, . . .}, with Fn ⊂ F for all n.

1. Submartingale maximal inequality. Let {Xn} be a non-negative submartingale (for ex-

ample, Xn = |Mn| if {Mn} is a martingale, or Xn = S+
n if {Sn} is a submartingale), and define

X∗n := max0≤k≤n Xk. Then

P [X∗n ≥ t] ≤ t−1E[Xn;X∗n ≥ b] ≤ t−1E[Xn], ∀t > 0.

For the proof of this maximal inequality we require the following simple lemma, a hint of
better things.

2. Lemma. If {Yn} is a submartingale and T is a stopping time bounded above by a positive

integer N , then

YT ≤ E[YN |FT ].

Proof. If A ∈ FT , then

E[YN ;A] =
N∑

n=0

E[YN ;A ∩ {T = n}] ≥
N∑

n=0

E[Yn;A ∩ {T = n}]

=
N∑

n=0

E[YT ;A ∩ {T = n}] = E[YT ;A],

where the inequality follows from the submartingale property of Y because A ∩ {T = n} ∈ Fn.

3. Proof of the maximal inequality. Fix a positive integer n and define T := min{k ≥ 0 :
Xk ≥ b} ∧ n. Then T is a stopping time bounded above by n and

{X∗n ≥ b} = {XT ≥ b}.

Thus,
P [X∗n ≥ t] = P [XT ≥ t] ≤ E[XT /t;XT ≥ t]

≤ t−1E[Xn;XT ≥ t] = t−1E[Xn; X∗n ≥ t]

≤ t−1E[Xn],

the second inequality following from the Lemma.

Doob’s Lp maximal inequality is a corollary of the submartingale maximal inequality. The
proof is based on the following calculation (extending one seen in Math 280A), which is a simple
consequence of Tonelli’s theorem.
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4. Lemma. Let W and Z be non-negative random variables. Then for any r > 0,

E[W · Zr] = r

∫ ∞
0

tr−1E[W ;Z > t] dt.

5. Lp Maximal Inequality. If {Xn} is a positive submartingale and 1 < p < ∞, then for

n = 0, 1, 2, . . .,

‖X∗n‖p ≤ Cp‖Xn‖p,

where X∗n := max0≤k≤n Xk and Cp := p/(p− 1).

Proof. Fix n. By Lemma 4 (twice) and the maximal inequality 1,

E[(X∗n)p] = p

∫ ∞
0

tp−1P [X∗n > t] dt

≤ p

∫ ∞
0

tp−2P [Xn; X∗n > t] dt

=
p

p− 1
E[Xn(X∗n)p−1].

Thus, by Hölder’s inequality,

(1) ‖X∗n‖pp = E[(X∗n)p] ≤ p

p− 1
E[Xn(X∗n)p−1] ≤ Cp

p‖Xn‖p · ‖(X∗n)p−1‖q.

Here q = p/(p − 1) is the conjugate exponent of p. In particular, (p − 1)q = p, so ‖(X∗n)p−1‖q =
‖X∗n‖

p/q
p . Therefore, (1) implies

‖X∗n‖p−p/q
p ≤ Cp‖Xn‖p,

which is the stated inequality because p− p/q = 1.

6. Submartingale upcrossing inequality. Let {Xn} be a submartingale, and for real numbers

a < b let Un = Un(a, b) by the number of upcrossings of the interval (a, b) that X completes by

time n. Then for n = 1, 2, . . .,

E[Un] ≤ E[(Xn − a)+]− E[(X0 − a)+]
b− a

.

Proof. [The proof is the additive analog of the proof of Dubins’s inequality.] Define recursively,
T1 = min{k ≥ 0 : Xk ≤ a}, T2 = min{k ≥ T1 : Xk ≥ b}, T3 = min{k ≥ T2 : Xn ≤ a}, etc. Then

{Un ≥ m} = {T2m ≤ n},

and (just as in the discussion of Dubins’s inequality)

Hk :=
{ 1 if T2m−1 < k ≤ T2m for some m ≥ 1

0 otherwise

defines a bounded predictable process. Notice that the process Yn := (Xn − a)+ is a non-negative
submartingale, and that the number of upcrossings of (a, b) by X is precisely the same as the
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number of upcrossings of (0, b − a) by Y . Also, {((1 − H) · Y )n} is a submartingale because
0 ≤ Hk ≤ 1. Because each upcrossing completed by time n contributes at least b− a to the total
determining (H ·Y )n, and the possible upcrossing-in-progress at time n contributes a non-negative
amount, we have

(b− a)Un ≤ (H · Y )n.

Thus,
(b− a)E[Un] ≤ E[(H · Y )n] = E[Yn − ((1−H) · Y )n]

≤ E[Yn]− E[((1−H) · Y )0]

= E[(Xn − a)+]− E[(X0 − a)+].

7. Corollary. If {Xn} is a submartingale with supn E[X+
n ] < ∞, then X∞ := limn Xn exists

almost surely, and X∞ is integrable.

Proof. Suppose that M := supn E[X+
n ] <∞. From the elementary inequality (x− a)+ ≤ x+ + a−

we deduce that for any real a

E[(Xn − a)+] ≤M + a−

for all n. Thus, by Fatou’s lemma, the total number U∞(a, b) :=↑ limn Un(a, b) of upcrossings of
(a, b) made by X has finite expectation:

E[U∞(a, b)] ≤ lim inf
n

E[(Xn − a)+]
b− a

≤M + |a| <∞.

In particular,
P [U∞(a, b) <∞] = 1, ∀a < b.

Therefore X∞ := limn Xn exists almost surely. Moreover, E[X+
∞] ≤ M < ∞ by Fatou. On the

other hand, because x− = x+ − x, Fatou’s lemma also yields

E[X−∞] ≤ lim inf
n

E[X−n ] = lim inf
n

E[X+
n −Xn] ≤ lim inf

n
E[X+

n −X0] ≤M − E[X0] <∞,

where the second inequality follows from the submartingale property of X. It follows that E|X∞| <
∞; in particular, X∞ is finite almost surely.
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