
Math 280B, Winter 2005

Conditioning and the Bivariate Normal Distribution

In what follows, X and Y are random variables defined on a probability space
(Ω,B, P ), and G is a sub-σ-field of B.

1. Regular Conditional Distributions. The conditional probability P [X ∈ B|G] is
defined to be the conditional expectation E[1{X∈B}|G] = E[1B(X)|G], for B ∈ BR. The
function B �→ P [X ∈ B|G] is “almost” a probability measure, in that P [X ∈ R|G] =
1 almost surely and P [X ∈ ∪∞n=1Bn |G] =

∑∞
n=1 P [X ∈ Bn|G] almost surely for each

sequence {Bn} of pairwise disjoint elements of BR. The ambiguity present in these “almost
surely” statements can be resolved because X is real-valued. (Similar considerations apply
to a random variable with values in a measurable space that is measurably isomorphic to
(R,BR).) This resolution permits a converse linkage between conditional probabilities and
conditional expectations. The situation is summarized in the following result.

Theorem. There is a function (ω, B) �→ Q(ω, B) from Ω × BR to [0, 1] such that (i)

ω �→ Q(ω, B) is G-measurable for each B ∈ BR, (ii) B �→ Q(ω, B) is a probability measure

on (R,BR) for each ω ∈ Ω, and (iii) for each B ∈ BR,

(1.1) P [X ∈ B|G](ω) = Q(ω, B) for P -a.e. ω ∈ Ω.

Moreover, if ϕ : R→ R is Borel measurable and E|ϕ(X)| <∞, then

(1.2) E[ϕ(X)|G](ω) =
∫
R

ϕ(x)Q(ω, dx) for P -a.e. ω ∈ Ω.

The function Q(ω, B) is called a regular conditional distribution for X given G.

When G is of the form σ(Y ) there is a function (y, B) �→ Fy(B) from R × BR to
[0, 1] such that (i) y �→ Fy(B) is BR-measurable for each B ∈ BR, (ii) B �→ Fy(B) is
a probability measure on (R,BR) for each ω ∈ Ω, and (iii) Q(ω, B) := FY (ω)(B) is a
regular conditional distribution for X given σ(Y ). It is natural to interpret Fy(B) as the
conditional probability P [X ∈ B|Y = y]. A parallel interpretation of (1.2) is

(1.3) E[ϕ(X)|Y = y] =
∫
R

ϕ(x) Fy(dx).

2. Basic Definition. A pair (X, Y ) of random variables, defined on some probability
space (Ω,F , P ), is said to have a bivariate normal distribution (or to be jointly normally
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distributed) provided the linear combination sX + tY is normally distributed for each pair
(s, t) ∈ R2.

3. Notation. Let X and Y have a bivariate normal distribution. Taking s = 0 and
then t = 0 in the Basic Definition, we see that the marginal distributions of X and Y are
necessarily normal distributions. In particular, X and Y have moments of all orders. We
use the following notation:

µ := E[X], σ2 := Var(X), ν := E[Y ], τ2 := Var(Y ),

and write
ρ = ρ(X, Y ) := Corr(X, Y ) = Cov(X, Y )/στ

for the correlation of X and Y . Here Cov(X, Y ) := E[(X −µ)(Y − ν)] is the covariance of
X and Y .

4. Characteristic Function. In what follows (X, Y ) will be a random vector with a
bivariate normal distribution, and we shall use the notation of 3. To avoid trivial cases we
assume that σ > 0 and τ > 0. The (joint) characteristic function of X and Y is defined by

φX,Y (s, t) := E[exp(i(sX + tY ))], s, t ∈ R.

In view of the Basic Definition, sX + tY ∼ N (sµ + tν, s2σ2 + 2stστρ + t2τ2), so

φX,Y (s, t) = exp
[
i(sµ + tν)− 1

2
(s2σ2 + 2stστρ + t2τ2)

]
, s, t ∈ R.

5. Independence. Our goal is to compute explicitly the conditional distribution of X

given Y in the bivariate normal case. We begin with a warm-up exercise: Compute the
conditional expectation E[X|Y ]. Our calculation is based on the following observation:
By the Basic Definition, for any c ∈ R, the pair (X − cY, Y ) has a bivariate normal
distribution. The covariance

Cov(X − cY, Y ) = Cov(X, Y )− cCov(Y, Y ) = στρ− cτ2

vanishes if and only if c = c∗ := σρ/τ . The random variables X − c∗Y and Y are then
independent(!):

φX−c∗Y,Y (s, t) = exp
[
i(sµ− sc∗ν + tν)− 1

2
(s2(σ2 − 2c∗στρ + [c∗]2τ2) + t2τ2))

]

= exp
[
is(µ− sc∗ν)− 1

2
s2(σ2 − 2c∗στρ + [c∗]2τ2)

]
exp

[
itν − 1

2
t2τ2

]

= φX−c∗Y (s)φY (t).
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6. Conditional Expectation. In particular,

E[X|Y ] = E[X − c∗Y |Y ] + E[c∗Y |Y ] = E[X − c∗Y ] + c∗E[Y |Y ] = µ− c∗ν + c∗Y,

where the second equality above follows from the independence of X − c∗Y and Y . We
have shown that

E[X|Y ] = µ +
σρ

τ
(Y − ν), a.s.

7. Conditional Distribution, II. I now claim that the conditional distribution Fy of X

given Y = y (in the sense of 1 above) is the normal distribution with mean µ + c∗(y − ν)
and variance (1−ρ2)σ2. To see this let us use Φy(s) = exp(is(µ+c∗(y−ν))− 1

2s2(1−ρ2)σ2)
to denote the associated characteristic function. Then, using the independence of X− c∗Y

and Y for the third equality below:

E[exp(isX)|Y ] = E[exp(is(X − c∗Y ) exp(isc∗Y )|Y ] = E[exp(is(X − c∗Y )|Y ] exp(isc∗Y )

= E[exp(is(X − c∗Y )] exp(isc∗Y )

= exp
[
is(µ + c∗(Y − ν))− 1

2
s2(σ2 − 2c∗στρ + [c∗]2τ2)

]

= exp
[
is(µ + c∗(Y − ν))− 1

2
s2(σ2 − 2

σρ

τ
στρ +

(σρ

τ

)2

τ2)
]

= exp
[
is(µ + c∗(Y − ν))− 1

2
s2(σ2 − σ2ρ2)

]

= ΦY (s)

It follows that for each s ∈ R,

E[exp(isX)|Y ](ω) = ΦY (ω)(s) =
∫
R

eisxFY (ω)(dx) for a.e. ω ∈ Ω.

This confirms that {Fy : y ∈ R} serves as a regular conditional distribution for X given
Y .
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