Math 280B, Winter 2005

Conditioning and the Bivariate Normal Distribution

In what follows, X and Y are random variables defined on a probability space (Ω, \mathcal{B}, P), and \mathcal{G} is a sub- σ-field of \mathcal{B}.

1. Regular Conditional Distributions. The conditional probability $P[X \in B \mid \mathcal{G}]$ is defined to be the conditional expectation $E\left[1_{\{X \in B\}} \mid \mathcal{G}\right]=E\left[1_{B}(X) \mid \mathcal{G}\right]$, for $B \in \mathcal{B}_{\mathbf{R}}$. The function $B \mapsto P[X \in B \mid \mathcal{G}]$ is "almost" a probability measure, in that $P[X \in \mathbf{R} \mid \mathcal{G}]=$ 1 almost surely and $P\left[X \in \cup_{n=1}^{\infty} B_{n} \mid \mathcal{G}\right]=\sum_{n=1}^{\infty} P\left[X \in B_{n} \mid \mathcal{G}\right]$ almost surely for each sequence $\left\{B_{n}\right\}$ of pairwise disjoint elements of $\mathcal{B}_{\mathbf{R}}$. The ambiguity present in these "almost surely" statements can be resolved because X is real-valued. (Similar considerations apply to a random variable with values in a measurable space that is measurably isomorphic to $\left.\left(\mathbf{R}, \mathcal{B}_{\mathbf{R}}\right).\right)$ This resolution permits a converse linkage between conditional probabilities and conditional expectations. The situation is summarized in the following result.

Theorem. There is a function $(\omega, B) \mapsto Q(\omega, B)$ from $\Omega \times \mathcal{B}_{\mathbf{R}}$ to [0,1] such that (i) $\omega \mapsto Q(\omega, B)$ is \mathcal{G}-measurable for each $B \in \mathcal{B}_{\mathbf{R}}$, (ii) $B \mapsto Q(\omega, B)$ is a probability measure on $\left(\mathbf{R}, \mathcal{B}_{\mathbf{R}}\right)$ for each $\omega \in \Omega$, and (iii) for each $B \in \mathcal{B}_{\mathbf{R}}$,

$$
\begin{equation*}
P[X \in B \mid \mathcal{G}](\omega)=Q(\omega, B) \quad \text { for } P \text {-a.e. } \omega \in \Omega \tag{1.1}
\end{equation*}
$$

Moreover, if $\varphi: \mathbf{R} \rightarrow \mathbf{R}$ is Borel measurable and $E|\varphi(X)|<\infty$, then

$$
\begin{equation*}
E[\varphi(X) \mid \mathcal{G}](\omega)=\int_{\mathbf{R}} \varphi(x) Q(\omega, d x) \quad \text { for } P \text {-a.e. } \omega \in \Omega \tag{1.2}
\end{equation*}
$$

The function $Q(\omega, B)$ is called a regular conditional distribution for X given \mathcal{G}.
When \mathcal{G} is of the form $\sigma(Y)$ there is a function $(y, B) \mapsto F_{y}(B)$ from $\mathbf{R} \times \mathcal{B}_{\mathbf{R}}$ to $[0,1]$ such that (i) $y \mapsto F_{y}(B)$ is $\mathcal{B}_{\mathbf{R}}$-measurable for each $B \in \mathcal{B}_{\mathbf{R}}$, (ii) $B \mapsto F_{y}(B)$ is a probability measure on $\left(\mathbf{R}, \mathcal{B}_{\mathbf{R}}\right)$ for each $\omega \in \Omega$, and (iii) $Q(\omega, B):=F_{Y(\omega)}(B)$ is a regular conditional distribution for X given $\sigma(Y)$. It is natural to interpret $F_{y}(B)$ as the conditional probability $P[X \in B \mid Y=y]$. A parallel interpretation of (1.2) is

$$
\begin{equation*}
E[\varphi(X) \mid Y=y]=\int_{\mathbf{R}} \varphi(x) F_{y}(d x) \tag{1.3}
\end{equation*}
$$

2. Basic Definition. A pair (X, Y) of random variables, defined on some probability space (Ω, \mathcal{F}, P), is said to have a bivariate normal distribution (or to be jointly normally
distributed) provided the linear combination $s X+t Y$ is normally distributed for each pair $(s, t) \in \mathbf{R}^{2}$.
3. Notation. Let X and Y have a bivariate normal distribution. Taking $s=0$ and then $t=0$ in the Basic Definition, we see that the marginal distributions of X and Y are necessarily normal distributions. In particular, X and Y have moments of all orders. We use the following notation:

$$
\mu:=E[X], \sigma^{2}:=\operatorname{Var}(X), \quad \nu:=E[Y], \tau^{2}:=\operatorname{Var}(Y)
$$

and write

$$
\rho=\rho(X, Y):=\operatorname{Corr}(X, Y)=\operatorname{Cov}(X, Y) / \sigma \tau
$$

for the correlation of X and Y. Here $\operatorname{Cov}(X, Y):=E[(X-\mu)(Y-\nu)]$ is the covariance of X and Y.
4. Characteristic Function. In what follows (X, Y) will be a random vector with a bivariate normal distribution, and we shall use the notation of 3. To avoid trivial cases we assume that $\sigma>0$ and $\tau>0$. The (joint) characteristic function of X and Y is defined by

$$
\phi_{X, Y}(s, t):=E[\exp (i(s X+t Y))], \quad s, t \in \mathbf{R}
$$

In view of the Basic Definition, $s X+t Y \sim \mathcal{N}\left(s \mu+t \nu, s^{2} \sigma^{2}+2 s t \sigma \tau \rho+t^{2} \tau^{2}\right)$, so

$$
\phi_{X, Y}(s, t)=\exp \left[i(s \mu+t \nu)-\frac{1}{2}\left(s^{2} \sigma^{2}+2 s t \sigma \tau \rho+t^{2} \tau^{2}\right)\right], \quad s, t \in \mathbf{R}
$$

5. Independence. Our goal is to compute explicitly the conditional distribution of X given Y in the bivariate normal case. We begin with a warm-up exercise: Compute the conditional expectation $E[X \mid Y]$. Our calculation is based on the following observation: By the Basic Definition, for any $c \in \mathbf{R}$, the pair $(X-c Y, Y)$ has a bivariate normal distribution. The covariance

$$
\operatorname{Cov}(X-c Y, Y)=\operatorname{Cov}(X, Y)-c \operatorname{Cov}(Y, Y)=\sigma \tau \rho-c \tau^{2}
$$

vanishes if and only if $c=c^{*}:=\sigma \rho / \tau$. The random variables $X-c^{*} Y$ and Y are then independent(!):

$$
\begin{aligned}
\phi_{X-c^{*} Y, Y}(s, t) & \left.=\exp \left[i\left(s \mu-s c^{*} \nu+t \nu\right)-\frac{1}{2}\left(s^{2}\left(\sigma^{2}-2 c^{*} \sigma \tau \rho+\left[c^{*}\right]^{2} \tau^{2}\right)+t^{2} \tau^{2}\right)\right)\right] \\
& =\exp \left[i s\left(\mu-s c^{*} \nu\right)-\frac{1}{2} s^{2}\left(\sigma^{2}-2 c^{*} \sigma \tau \rho+\left[c^{*}\right]^{2} \tau^{2}\right)\right] \exp \left[i t \nu-\frac{1}{2} t^{2} \tau^{2}\right] \\
& =\phi_{X-c^{*} Y}(s) \phi_{Y}(t)
\end{aligned}
$$

6. Conditional Expectation. In particular,

$$
E[X \mid Y]=E\left[X-c^{*} Y \mid Y\right]+E\left[c^{*} Y \mid Y\right]=E\left[X-c^{*} Y\right]+c^{*} E[Y \mid Y]=\mu-c^{*} \nu+c^{*} Y,
$$

where the second equality above follows from the independence of $X-c^{*} Y$ and Y. We have shown that

$$
E[X \mid Y]=\mu+\frac{\sigma \rho}{\tau}(Y-\nu), \quad \text { a.s. }
$$

7. Conditional Distribution, II. I now claim that the conditional distribution F_{y} of X given $Y=y$ (in the sense of $\mathbf{1}$ above) is the normal distribution with mean $\mu+c^{*}(y-\nu)$ and variance $\left(1-\rho^{2}\right) \sigma^{2}$. To see this let us use $\Phi_{y}(s)=\exp \left(i s\left(\mu+c^{*}(y-\nu)\right)-\frac{1}{2} s^{2}\left(1-\rho^{2}\right) \sigma^{2}\right)$ to denote the associated characteristic function. Then, using the independence of $X-c^{*} Y$ and Y for the third equality below:

$$
\begin{aligned}
E[\exp (i s X) \mid Y] & =E\left[\exp \left(i s\left(X-c^{*} Y\right) \exp \left(i s c^{*} Y\right) \mid Y\right]=E\left[\exp \left(i s\left(X-c^{*} Y\right) \mid Y\right] \exp \left(i s c^{*} Y\right)\right.\right. \\
& =E\left[\exp \left(i s\left(X-c^{*} Y\right)\right] \exp \left(i s c^{*} Y\right)\right. \\
& =\exp \left[i s\left(\mu+c^{*}(Y-\nu)\right)-\frac{1}{2} s^{2}\left(\sigma^{2}-2 c^{*} \sigma \tau \rho+\left[c^{*}\right]^{2} \tau^{2}\right)\right] \\
& =\exp \left[i s\left(\mu+c^{*}(Y-\nu)\right)-\frac{1}{2} s^{2}\left(\sigma^{2}-2 \frac{\sigma \rho}{\tau} \sigma \tau \rho+\left(\frac{\sigma \rho}{\tau}\right)^{2} \tau^{2}\right)\right] \\
& =\exp \left[i s\left(\mu+c^{*}(Y-\nu)\right)-\frac{1}{2} s^{2}\left(\sigma^{2}-\sigma^{2} \rho^{2}\right)\right] \\
& =\Phi_{Y}(s)
\end{aligned}
$$

It follows that for each $s \in \mathbf{R}$,

$$
E[\exp (i s X) \mid Y](\omega)=\Phi_{Y(\omega)}(s)=\int_{\mathbf{R}} e^{i s x} F_{Y(\omega)}(d x) \text { for a.e. } \omega \in \Omega
$$

This confirms that $\left\{F_{y}: y \in \mathbf{R}\right\}$ serves as a regular conditional distribution for X given Y.

