Math 280B, Winter 2005

Conditioning and the Bivariate Normal Distribution

In what follows, X and Y are random variables defined on a probability space (Ω, \mathcal{B}, P) , and \mathcal{G} is a sub- σ -field of \mathcal{B} .

1. Regular Conditional Distributions. The conditional probability $P[X \in B|\mathcal{G}]$ is defined to be the conditional expectation $E[1_{\{X \in B\}}|\mathcal{G}] = E[1_B(X)|\mathcal{G}]$, for $B \in \mathcal{B}_{\mathbf{R}}$. The function $B \mapsto P[X \in B|\mathcal{G}]$ is "almost" a probability measure, in that $P[X \in \mathbf{R}|\mathcal{G}] = 1$ almost surely and $P[X \in \bigcup_{n=1}^{\infty} B_n |\mathcal{G}] = \sum_{n=1}^{\infty} P[X \in B_n |\mathcal{G}]$ almost surely for each sequence $\{B_n\}$ of pairwise disjoint elements of $\mathcal{B}_{\mathbf{R}}$. The ambiguity present in these "almost surely" statements can be resolved because X is real-valued. (Similar considerations apply to a random variable with values in a measurable space that is measurably isomorphic to $(\mathbf{R}, \mathcal{B}_{\mathbf{R}})$.) This resolution permits a converse linkage between conditional probabilities and conditional expectations. The situation is summarized in the following result.

Theorem. There is a function $(\omega, B) \mapsto Q(\omega, B)$ from $\Omega \times \mathcal{B}_{\mathbf{R}}$ to [0, 1] such that (i) $\omega \mapsto Q(\omega, B)$ is \mathcal{G} -measurable for each $B \in \mathcal{B}_{\mathbf{R}}$, (ii) $B \mapsto Q(\omega, B)$ is a probability measure on $(\mathbf{R}, \mathcal{B}_{\mathbf{R}})$ for each $\omega \in \Omega$, and (iii) for each $B \in \mathcal{B}_{\mathbf{R}}$,

(1.1)
$$P[X \in B|\mathcal{G}](\omega) = Q(\omega, B) \text{ for } P\text{-a.e. } \omega \in \Omega.$$

Moreover, if $\varphi : \mathbf{R} \to \mathbf{R}$ is Borel measurable and $E[\varphi(X)] < \infty$, then

(1.2)
$$E[\varphi(X)|\mathcal{G}](\omega) = \int_{\mathbf{R}} \varphi(x) \, Q(\omega, dx) \quad \text{for P-a.e. $\omega \in \Omega$.}$$

The function $Q(\omega, B)$ is called a regular conditional distribution for X given \mathcal{G} .

When \mathcal{G} is of the form $\sigma(Y)$ there is a function $(y,B) \mapsto F_y(B)$ from $\mathbf{R} \times \mathcal{B}_{\mathbf{R}}$ to [0,1] such that (i) $y \mapsto F_y(B)$ is $\mathcal{B}_{\mathbf{R}}$ -measurable for each $B \in \mathcal{B}_{\mathbf{R}}$, (ii) $B \mapsto F_y(B)$ is a probability measure on $(\mathbf{R}, \mathcal{B}_{\mathbf{R}})$ for each $\omega \in \Omega$, and (iii) $Q(\omega, B) := F_{Y(\omega)}(B)$ is a regular conditional distribution for X given $\sigma(Y)$. It is natural to interpret $F_y(B)$ as the conditional probability $P[X \in B | Y = y]$. A parallel interpretation of (1.2) is

(1.3)
$$E[\varphi(X)|Y=y] = \int_{\mathbf{R}} \varphi(x) F_y(dx).$$

2. Basic Definition. A pair (X,Y) of random variables, defined on some probability space (Ω, \mathcal{F}, P) , is said to have a *bivariate normal* distribution (or to be jointly normally

distributed) provided the linear combination sX + tY is normally distributed for each pair $(s,t) \in \mathbf{R}^2$.

3. Notation. Let X and Y have a bivariate normal distribution. Taking s=0 and then t=0 in the Basic Definition, we see that the marginal distributions of X and Y are necessarily normal distributions. In particular, X and Y have moments of all orders. We use the following notation:

$$\mu := E[X], \sigma^2 := Var(X), \quad \nu := E[Y], \tau^2 := Var(Y),$$

and write

$$\rho = \rho(X, Y) := \operatorname{Corr}(X, Y) = \operatorname{Cov}(X, Y) / \sigma \tau$$

for the correlation of X and Y. Here $Cov(X,Y) := E[(X-\mu)(Y-\nu)]$ is the covariance of X and Y.

4. Characteristic Function. In what follows (X, Y) will be a random vector with a bivariate normal distribution, and we shall use the notation of **3**. To avoid trivial cases we assume that $\sigma > 0$ and $\tau > 0$. The (joint) characteristic function of X and Y is defined by

$$\phi_{X,Y}(s,t) := E[\exp(i(sX + tY))], \quad s, t \in \mathbf{R}.$$

In view of the Basic Definition, $sX + tY \sim \mathcal{N}(s\mu + t\nu, s^2\sigma^2 + 2st\sigma\tau\rho + t^2\tau^2)$, so

$$\phi_{X,Y}(s,t) = \exp\left[i(s\mu + t\nu) - \frac{1}{2}(s^2\sigma^2 + 2st\sigma\tau\rho + t^2\tau^2)\right], \quad s, t \in \mathbf{R}.$$

5. Independence. Our goal is to compute explicitly the conditional distribution of X given Y in the bivariate normal case. We begin with a warm-up exercise: Compute the conditional expectation E[X|Y]. Our calculation is based on the following observation: By the Basic Definition, for any $c \in \mathbf{R}$, the pair (X - cY, Y) has a bivariate normal distribution. The covariance

$$Cov(X - cY, Y) = Cov(X, Y) - c Cov(Y, Y) = \sigma \tau \rho - c\tau^{2}$$

vanishes if and only if $c = c^* := \sigma \rho / \tau$. The random variables $X - c^*Y$ and Y are then independent(!):

$$\phi_{X-c^*Y,Y}(s,t) = \exp\left[i(s\mu - sc^*\nu + t\nu) - \frac{1}{2}(s^2(\sigma^2 - 2c^*\sigma\tau\rho + [c^*]^2\tau^2) + t^2\tau^2)\right]$$

$$= \exp\left[is(\mu - sc^*\nu) - \frac{1}{2}s^2(\sigma^2 - 2c^*\sigma\tau\rho + [c^*]^2\tau^2)\right] \exp\left[it\nu - \frac{1}{2}t^2\tau^2\right]$$

$$= \phi_{X-c^*Y}(s)\phi_Y(t).$$

6. Conditional Expectation. In particular,

$$E[X|Y] = E[X - c^*Y|Y] + E[c^*Y|Y] = E[X - c^*Y] + c^*E[Y|Y] = \mu - c^*\nu + c^*Y,$$

where the second equality above follows from the independence of $X - c^*Y$ and Y. We have shown that

$$E[X|Y] = \mu + \frac{\sigma \rho}{\tau} (Y - \nu),$$
 a.s.

7. Conditional Distribution, II. I now claim that the conditional distribution F_y of X given Y = y (in the sense of 1 above) is the normal distribution with mean $\mu + c^*(y - \nu)$ and variance $(1-\rho^2)\sigma^2$. To see this let us use $\Phi_y(s) = \exp(is(\mu+c^*(y-\nu))-\frac{1}{2}s^2(1-\rho^2)\sigma^2)$ to denote the associated characteristic function. Then, using the independence of $X - c^*Y$ and Y for the third equality below:

$$\begin{split} E[\exp(isX)|Y] &= E[\exp(is(X-c^*Y)\exp(isc^*Y)|Y] = E[\exp(is(X-c^*Y)|Y]\exp(isc^*Y) \\ &= E[\exp(is(X-c^*Y))\exp(isc^*Y) \\ &= \exp\left[is(\mu+c^*(Y-\nu)) - \frac{1}{2}s^2(\sigma^2 - 2c^*\sigma\tau\rho + [c^*]^2\tau^2)\right] \\ &= \exp\left[is(\mu+c^*(Y-\nu)) - \frac{1}{2}s^2(\sigma^2 - 2\frac{\sigma\rho}{\tau}\sigma\tau\rho + \left(\frac{\sigma\rho}{\tau}\right)^2\tau^2)\right] \\ &= \exp\left[is(\mu+c^*(Y-\nu)) - \frac{1}{2}s^2(\sigma^2 - \sigma^2\rho^2)\right] \\ &= \Phi_Y(s) \end{split}$$

It follows that for each $s \in \mathbf{R}$,

$$E[\exp(isX)|Y](\omega) = \Phi_{Y(\omega)}(s) = \int_{\mathbf{R}} e^{isx} F_{Y(\omega)}(dx) \text{ for a.e. } \omega \in \Omega.$$

This confirms that $\{F_y : y \in \mathbf{R}\}$ serves as a regular conditional distribution for X given Y.