Polar Coordinates

Math 280B, Winter 2005

We write

$$
B^{d}(r):=\left\{x \in \mathbf{R}^{d}:|x|<r\right\}
$$

for the (open) ball of radius $r>0$ (centered at the origin) in \mathbf{R}^{d}, and

$$
S^{d-1}(r):=\left\{x \in \mathbf{R}^{d}:|x|=r\right\}
$$

for its boundary, the sphere on radius r in \mathbf{R}^{d}. Let λ_{d} denote Lebesgue measure on the Borel subsets $\mathcal{B}\left(\mathbf{R}^{d}\right)$ of d-dimensional Euclidean space \mathbf{R}^{d}, and let σ_{d-1} denote the surface measure on the unit sphere $S^{d-1}=S^{d-1}(1)$. We write Ω_{d} for the volume of the unit ball $B^{d}=B^{d}(1)$ in \mathbf{R}^{d} and ω_{d} for $\sigma_{d-1}\left(S^{d-1}\right)$.
(1) Polar Coordinates Formula. If $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is Borel measurable and Lebesgue integrable (or non-negative), then

$$
\begin{equation*}
\int_{\mathbf{R}^{d}} f(x) \lambda_{d}(d x)=\int_{0}^{\infty} \int_{S^{d-1}} f(r u) \sigma_{d-1}(d u) r^{d-1} d r . \tag{2}
\end{equation*}
$$

Corollary.

$$
\begin{equation*}
d \cdot \Omega_{d}=\omega_{d-1} . \tag{3}
\end{equation*}
$$

Proof. Take $f=1_{B^{d}}$ in (2). Then $f(r u)=1_{[0,1]}(r)$ for all $u \in S^{d-1}$, and so

$$
\Omega_{d}=\int_{0}^{1} r^{d-1} d r \cdot \omega_{d-1}=d^{-1} \cdot \omega_{d-1}
$$

\square
More generally,

$$
\lambda_{d}\left[B^{d}(r)\right]=\Omega_{d} \cdot r^{d}
$$

and

$$
\sigma_{d}\left[S^{d-1}(r)\right]=\omega_{d-1} \cdot r^{d-1}
$$

In particular,

$$
\frac{d}{d r} \lambda_{d}\left[B^{d}(r)\right]=\sigma_{d-1}\left[S^{d-1}(r)\right], \quad r>0
$$

Next, take $f(x)=\exp \left(-|x|^{2} / 2\right)$ in (2). As is well known, the left side of (2) is then equal to $(2 \pi)^{d / 2}$. Meanwhile the right side is

$$
\omega_{d-1} \cdot \int_{0}^{\infty} e^{-r^{2} / 2} r^{d-1} d r=2^{d / 2-1} \omega_{d-1} \cdot \int_{0}^{\infty} e^{-t} t^{d / 2-1} d t=2^{d / 2-1} \omega_{d-1} \Gamma(d / 2)
$$

But

$$
2^{d / 2-1} \omega_{d-1} \Gamma(d / 2)=2^{d / 2} \Omega_{d} \Gamma(d / 2+1)
$$

So

$$
\begin{equation*}
\Omega_{d}=\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{d-1}=\frac{2 \pi^{d / 2}}{\Gamma(d / 2)} \tag{5}
\end{equation*}
$$

This formula gives

$$
\omega_{1}=2 \pi, \quad \omega_{2}=4 \pi, \quad \omega_{3}=2 \pi^{2}
$$

as expected.
By Stirling's formula,

$$
\Gamma(t+1) \sim \sqrt{2 \pi t}\left(\frac{t}{e}\right)^{t}, \quad t \rightarrow \infty
$$

so

$$
\Omega_{d} \sim \frac{1}{\sqrt{\pi d}}\left(\frac{2 \pi e}{d}\right)^{d / 2}, \quad d \rightarrow \infty
$$

For example, $\Omega_{10} \approx 2.59$, which is a tiny fraction (approximately 0.25%) of the volume of the smallest cube in \mathbf{R}^{10} containing B^{10}.

