Math 180B, Winter 2019

Notes on covariance and the bivariate normal distribution

1. Covariance. If X and Y are random variables with finite variances, then their *covariance* is the quantity

(1.1)
$$\operatorname{Cov}(X,Y) := \mathbf{E}[(X - \mu_X)(Y - \mu_Y)],$$

where $\mu_X = \mathbf{E}[X]$ and $\mu_Y = \mathbf{E}[Y]$. The covariance is a measure of the extent to which X and Y are linearly related. Because $(X - \mu_X)(Y - \mu_Y) = XY - \nu_X Y - \mu_Y X + \mu_X \mu_Y$, the covariance can also be expressed as

(1.2)
$$\operatorname{Cov}(X,Y) = \mathbf{E}[XY] - \mathbf{E}[X] \cdot \mathbf{E}[Y] = \mathbf{E}[XY] - \mu_X \mu_Y.$$

Observe that if X and Y are independent, then $\mathbf{E}[XY] = \mu_X \mu_Y$. Therefore

$$(1.3) X \perp Y \Longrightarrow Cov(X,Y) = 0$$

The converse implication fails as a general statement, by an example discussed in class [X uniformly distributed on (-1, 1), $Y = X^2$]. But see Corollary 3 below.

2. Variance. Part of the importance of covariance is the way in which it completes the addition formula for the variance of a sum of random variables:

(2.1)
$$\operatorname{Var}[X+Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Cov}(X,Y).$$

More generally, because we evidently have

(2.2)
$$\operatorname{Cov}(\alpha X, \beta Y) = \alpha \beta \operatorname{Cov}(X, Y)$$

for real numbers α and β , it is also true that

(2.3)
$$\operatorname{Var}[\alpha X + \beta Y] = \alpha^2 \operatorname{Var}[X] + \beta^2 \operatorname{Var}[Y] + 2\alpha \beta \operatorname{Cov}(X, Y).$$

3. Correlation. The correlation of two random variables X and Y is their standardized covariance:

(3.1)

$$\rho = \rho(X, Y) = \operatorname{corr}(X, Y) := \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}}$$

$$= \mathbf{E}\left[\left(\frac{X - \mu_X}{\sigma_X}\right)\left(\frac{Y - \mu_Y}{\sigma_Y}\right)\right]$$

Here, for example, σ_X^2 is the variance of X.

4. Example. Suppose $Y = \alpha X + \beta$, where α and β are real constants. Then $\mu_Y = \alpha \mu_X + \beta$, $\operatorname{Var}[Y] = \alpha^2 \operatorname{Var}[X]$, and $\operatorname{Cov}(X, Y) = \alpha \operatorname{Var}[X]$. Consequently,

(4.1)
$$\operatorname{corr}(X,Y) = \begin{cases} 1, & \text{if } \alpha > 0; \\ 0, & \text{if } \alpha = 0; \\ -1, & \text{if } \alpha < 0 \end{cases}$$

when Y is a (non-random) straight-line function of X.

5. Theorem. [Cauchy-Schwarz Inequality]

(5.1)
$$\left|\operatorname{Cov}(X,Y)\right| \le \sigma_X \sigma_Y$$

and

(5.2)
$$\left|\operatorname{corr}(X,Y)\right| \le 1.$$

Assuming that $\sigma_X \sigma_Y > 0$, equality holds in either of (5.1) or (5.2) only if

$$\mathbf{P}[(X - \mu_X) / \sigma_X = \operatorname{sign}(\operatorname{corr}(X, Y)) \cdot (Y - \mu_Y) / \sigma_Y] = 1.$$

Proof. The inequalities (5.1) and (5.2) are equivalent, so it is enough to demonstrate (5.2), which (in view of the third equality in (3.1)) can be written as

(5.3)
$$\left|\operatorname{Cov}(\hat{X}, \hat{Y})\right| \le 1,$$

where $\hat{X} = (X - \mu_X) / \sigma_X$ and $\hat{Y} = (Y - \mu_Y) / \sigma_Y$. To see (5.3) we consider the function

$$g(t) := \mathbf{E}\left[(\hat{X} - t\hat{Y})^2\right], \qquad t \in \mathbf{R}.$$

Being the expectation of a square, $g(t) \ge 0$ for all real t. On the other hand, g is a quadratic:

$$g(t) = \mathbf{E}[\hat{X}^2] - 2t\mathbf{E}[\hat{X}\hat{Y}] + t^2\mathbf{E}[\hat{Y}^2] = 1 - 2t\text{Cov}(\hat{X}, \hat{Y}) + t^2.$$

The only way a quadratic function can take only non-negative values is if its discriminant is non-positive. Thus we must have

$$[-2Cov(\hat{X}, \hat{Y})]^2 - 4 \cdot 1 \cdot 1 \le 0.$$

That is, $4[\operatorname{Cov}(\hat{X}, \hat{Y})]^2 - 4 \leq 0$, or what is the same

(5.4)
$$[\operatorname{Cov}(\hat{X}, \hat{Y})]^2 \le 1,$$

which is equivalent to (5.3).

Suppose now that $\operatorname{corr}(X, Y) = 1$. In this case we have $g(t) = (1 - t)^2$, so g(1) = 0. But $g(1) = \mathbf{E}\left[(\hat{X} - \hat{Y})^2\right]$, and the only way this (the expectation of a non-negative random variable) can be 0 is if that random variable is itself 0 with probability 1. This shows that if $\operatorname{corr}(X, Y) = 1$ then $\mathbf{P}[\hat{X} = \hat{Y}] = 1$, as required by the final sentence of the Theorem. Similar considerations apply when $\operatorname{corr}(X, Y) = -1$. \Box

6. Bivariate Normal Distribution. A pair of random variables X and Y is said to have the *bivariate normal distribution* provided

(6.1)
$$\alpha X + \beta Y$$

has the univariate normal distribution for each pair (α, β) of real numbers. This state of affairs will be indicated by the notation

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}_2,$$

or by

(6.2)
$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}_2 \left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix} \right)$$

if I wish to indicate the means (μ_X, μ_Y) , the variances (σ_X^2, σ_Y^2) , and the covariance σ_{XY} of X and Y. Observe that if (6.2) holds then $X \sim \mathcal{N}_1$ (that is X has a univariate normal distribution—take $\alpha = 1$ and $\beta = 0$) and also $Y \sim \mathcal{N}_1$. In what follows I will write

(6.3)
$$\rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

for the correlation of X and Y. The column vector

$$\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$$

appearing in (6.2) is the mean vector for the pair $(X, Y)^t$, while the 2×2 matrix

$$\begin{pmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{pmatrix} = \begin{pmatrix} \sigma_X^2 & \sigma_X \sigma_Y \rho \\ \sigma_X \sigma_Y \rho & \sigma_Y^2 \end{pmatrix}$$

is its *variance-covariance matrix*. The *standard* bivariate normal distribution is the special case in which the means are both 0 and the variances are both 1.

7. Representation. The following construction of a standard bivariate normal pair, in terms of iid univariate normals, is useful for various calculations. Let X and Z be independent standard normal random variables. Then for real constants α and β , the random variables αX and βY are also independent, and so their sum $\alpha X + \beta Y$ is also normally distributed, as discussed in class. It follows from the discussion in **6.** that X and Z have a bivariate normal distribution. More precisely,

(7.1)
$$\begin{pmatrix} X \\ Z \end{pmatrix} \sim \mathcal{N}_2\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right),$$

the standard bivariate normal distribution.

Now fix $\rho \in [-1, 1]$, and consider the random variable Y defined by

(7.2)
$$Y = \rho X + \sqrt{1 - \rho^2} Z.$$

It is easy to check that $\mathbf{E}[Y] = 0$, $\operatorname{Var}[Y] = 1$, and $\operatorname{Cov}(X, Y) = \rho$. Also, if α and β are any two real numbers, then

$$\alpha X + \beta Y = (\alpha + \beta \rho) X + \beta \sqrt{1 - \rho^2} Z$$

is normally distributed, because X and Z have a bivariate normal distribution as remarked above. It follows that X and Y themselves have a bivariate normal distribution. More precisely,

(7.3)
$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}_2\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\right),$$

8. Corollary 1. With X and Y as in (7.3), the conditional distribution of Y, given that X takes the value x, is normal, with mean ρx and variance $1 - \rho^2$. In symbols

(8.1)
$$Y | X = x \sim \mathcal{N}_1(\rho x, 1 - \rho^2).$$

Proof. Look at (7.2): If I tell you that X equals x, this has no effect on the (independent) random variable Z, which still has the standard normal distribution. Thus, under the condition X = x, the random variable Y is Z scaled by a factor of $\sqrt{1-\rho^2}$ (which changes its variance to $1-\rho^2$) and then translated by ρx (which changes its mean to ρx).

Neither the scaling nor the translation alter the fact that the random variable is normally distributed. \square

9. Corollary 2. Suppose that

(9.1)
$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}_2 \left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \sigma_X \sigma_Y \rho \\ \sigma_X \sigma_Y \rho & \sigma_Y^2 \end{pmatrix} \right)$$

Then the conditional distribution of Y, given that X takes the value x is normal:

(9.2)
$$Y \mid X = x \sim \mathcal{N}(\mu_Y + \frac{\sigma_Y \rho}{\sigma_X}(x - \mu_X), (1 - \rho^2)\sigma_Y^2).$$

Proof. Just apply Corollary 1 to the standardized random variables $\hat{X} = (X - \mu_X)/\sigma_X$ and $\hat{Y} = (Y - \mu_Y)/\sigma_Y$. \Box

10. Corollary 3. Suppose that

$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}_2 \left(\begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \sigma_X \sigma_Y \rho \\ \sigma_X \sigma_Y \rho & \sigma_Y^2 \end{pmatrix} \right)$$

Then X and Y are independent if and only if $\rho = 0$.

Proof. We need only consider the "if" part of this assertion—the "only if" part holds for any two random variables, bivariate normal or not. If $\rho = 0$, then according to (9.2) the conditional density of Y given the value of X, namely $f_{Y|X}(y|x)$, does not depend on x, and so is a function of y alone, call it g(y). This means that the joint density f(x, y) of X and Y factors:

(10.1)
$$f(x,y) = f_X(x) \cdot f_{Y|X}(y|x) = f_X(x) \cdot g(y).$$

Now integrate out x:

(10.2)
$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx = \int_{-\infty}^{\infty} f_X(x) \cdot g(y) \, dx = g(y).$$

Using (10.2) in (10.1) we find that

$$f(x,y) = f_X(x) \cdot f_Y(y),$$

which proves to the asserted independence. \Box

11. References. The material discussed above can be found in sections 7.3 and 7.8 of *A First Course in Probability* by Sheldon Ross, and also in sections 6.4 and 6.4 of *PROBABILITY* by Jim Pitman. The latter text is available in pdf form for UCSD students at

http://link.springer.com/book/10.1007%2F978-1-4612-4374-8