1. [20 points]. The random variable \(Y \) is uniformly distributed on the interval \((0, 1)\) and the conditional distribution of the random variable \(X \), given that \(Y = y \), is uniform on the interval \((0, y)\).

(a) Find \(E[X] \). [Hint: Law of the Forgetful Statistician.]

(b) Find the joint density \(f(x, y) \) of \(X \) and \(Y \).

(c) Find the marginal density \(f_X(x) \) of \(X \).

Solution. (a) Because of the given conditional distribution of \(X \), we have \(E[X|Y = y] = y/2 \) for each \(y \in (0, 1) \). Therefore \(E[X|Y] = Y/2 \). Thus, by the Law of the Forgetful Statistician

\[E[X] = E[E[X|Y]] = E[Y/2] = \frac{1}{2} E[Y] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}. \]

(b) We are given that

\[f_{X|Y}(x|y) = \begin{cases} 1/y, & 0 < x < y < 1, \\ 0, & \text{otherwise} \end{cases} \]

and

\[f_Y(y) = \begin{cases} 1, & 0 < y < 1, \\ 0, & \text{otherwise} \end{cases} \]

Therefore

\[f(x, y) = f_{X|Y}(x|y) \cdot f_Y(y) = f_{X|Y}(x|y) = \begin{cases} 1/y, & 0 < x < y < 1, \\ 0, & \text{otherwise}. \end{cases} \]

(c) Integrating we obtain

\[f_X(x) = \int_{-\infty}^{\infty} f(x, y), dy = \int_{x}^{1} \frac{1}{y} dy = \log y \bigg|_{x}^{1} = -\log x = \log(1/x), \quad 0 < x < 1. \]

[This formula can be used to give a more difficult derivation of the result found in part (a):

\[E[X] = \int_{0}^{1} xf_X(x) dx = \int_{0}^{1} x \log(1/x) \\
= \frac{x^2}{2} \log(1/x) \bigg|_{0}^{1} - \int_{0}^{1} \frac{x^2}{2} \cdot -\frac{1}{x} dx \\
= 0 - 0 + \int_{0}^{1} \frac{x}{2} dx = \frac{1}{4}. \]

2. [20 points]. The random variables \(X \) and \(Y \) have a bivariate normal distribution with \(E[X] = E[Y] = 0 \), \(\text{Var}(X) = \text{Var}(Y) = 1 \), and correlation \(\rho = 1/2 \). Define new random variables \(Z \) and \(W \) by \(Z = X + Y \) and \(W = X - Y \).

(a) Find \(\text{Var}[Z] \) and \(\text{Var}[W] \).

(b) Find \(\text{Cov}[Z, W] \).
(c) Find $E[Z|W = w]$. [Hint: Z and W have a bivariate normal distribution. (Why?) Use this and the result of part (b).]

Solution. (a)

$$\text{Var}[Z] = \text{Var}[X] + \text{Var}[Y] + 2 \text{Cov}[X,Y] = 1 + 1 + 2 \cdot \frac{1}{2} = 3.$$
Likewise

$$\text{Var}[W] = \text{Var}[X] + \text{Var}[Y] - 2 \text{Cov}[X,Y] = 1 + 1 - 2 \cdot \frac{1}{2} = 1.$$

(b) Because both X and Y have mean 0, so do Z and W. Therefore

$$= E[X^2 - Y^2] = E[X^2] - E[Y^2]$$

$$= \text{Var}[X] - \text{Var}[Y] = 1 - 1 = 0.$$

(c) As hinted, Z and W have a bivariate normal distribution. This is because

$$\begin{bmatrix} Z \\ W \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix},$$

so that $\begin{bmatrix} Z \\ W \end{bmatrix}$ is a linear transformation of $\begin{bmatrix} X \\ Y \end{bmatrix}$. By part (b), Z and W are uncorrelated, hence independent! Therefore $E[Z|W = w] = E[Z] = 0.$

3. [20 points]. The Markov chain $\{X_n, n = 0, 1, 2, \ldots\}$ has state space $\{0, 1, 2\}$, transition matrix

$$P = \begin{bmatrix} 0 & .6 & .4 \\ .5 & .2 & .3 \\ .5 & 0 & .5 \end{bmatrix},$$

and initial distribution $p_i = P[X_0 = i]$ given by

$$[p_0 \ p_1 \ p_2] = [1/5 \ 2/5 \ 2/5].$$

(a) Find $P[X_1 = 2]$.

(b) Find $P[X_2 = 1|X_0 = 2]$.

(c) Find $P[X_{21} = 1, X_{22} = 2|X_{19} = 2]$.

Solution. (a)

$$P[X_1 = 2] = \sum_{i=0}^{2} P[X_0 = i]P[X_1 = 2|X_0 = i]$$

$$= \sum_{i=0}^{2} p_i \cdot P_{i,2}$$

$$= .2 \cdot .4 + .4 \cdot .3 + .4 \cdot .5$$

$$= .4$$
(b) By matrix multiplication,

\[P^2 = \begin{bmatrix} .50 & .12 & .38 \\ .25 & .34 & .41 \\ .25 & .30 & .45 \end{bmatrix}. \]

In particular,

\[P[X_2 = 1|X_0 = 2] = P^{(2)}_{2,1} = [P^2]_{2,1} = .3. \]

[Of course, you don’t need to compute \(P^2 \) completely; all you really need is the entry in row 2 and column 1.]

(c) Using the Markov property for the first equality below, we compute:

\[
P[X_{21} = 1, X_{22} = 2|X_{19} = 2] = P[X_{21} = 1|X_{19} = 2] \cdot P[X_{22} = 2|X_{21} = 1]
= P^{(2)}_{2,1} \cdot P_{1,2}
= .3 \cdot .3 = .9.
\]

4. [20 points]. A Markov chain \(\{X_n : n = 0, 1, 2, \ldots \} \) has state space \(\{0, 1, 2\} \) and transition matrix

\[
P = \begin{bmatrix} 0 & 1/3 & 2/3 \\ 1/3 & 1/3 & 1/3 \\ 2/3 & 1/3 & 0 \end{bmatrix}.
\]

(a) Find the stationary distribution \(\pi = (\pi_0, \pi_1, \pi_2) \) for this chain.

(b) Use the result of part (a) to find the mean return time \(E(T_1|X_0 = 1) \), where \(T_1 \) is the first time \(n \geq 1 \) such that \(X_n = 1 \).

Solution. (a) Because \(P \) is doubly stochastic (cf. Problem 5), the uniform distribution

\[
\pi = [1/3 \ 1/3 \ 1/3]
\]

satisfies \(\pi P = \pi \). This \(\pi \) is the unique stationary distribution because \(P \) is clearly irreducible (even regular: all entries of \(P^2 \) are strictly positive).

(b) By a general result discussed in class, the mean return time \(m_{1,1} = E[T_1|X_0 = 1] \) is reciprocal to \(\pi_1 \). Therefore, by part (a), \(m_{1,1} = 3. \)

5. [20 points]. Let \(P \) be the transition matrix of a Markov chain with 10 states. Assume that \(P \) is regular and doubly stochastic.

(a) Explain the meaning of the terms “regular” and “doubly stochastic.”

(b) Explain why the \(n \)-step transition probabilities satisfy

\[
\lim_{n \to \infty} P^{(n)}_{ij} = 1/10, \quad \text{for all } i, j.
\]

Solution. Assume the state space is \(\{0, 1, \ldots, 9\} \).

(a) A transition matrix \(P \) is regular provided there is a positive integer \(n \) such that \(P^{(n)}_{ij} > 0 \) for all states \(i \) and \(j \); that is, the \(n \)-th power \(P^n \) has only strictly positive entries. A stochastic matrix \(P \) is doubly stochastic provided the column sums of \(P \) are all 1 (and not just the row sums).
Because P is regular it admits a unique stationary distribution, and then because P is doubly stochastic the uniform distribution on $\{0,1,\ldots,9\}$, call it π, satisfies $\pi P = \pi$. Thus the uniform distribution $\pi_i = 1/10$ for $i = 0,1,\ldots,9$ is the stationary distribution. Because P is regular, the basic limit theorem holds, and the limits of the transition probabilities coincide with the stationary distribution; that is,

$$\lim_{n\to\infty} P^{(n)}_{i,j} = \pi_j = 1/10, \quad \forall i,j.$$

6. [20 points]. The transition matrix for a Markov chain on the state space $\{0,1,2,3\}$ is

$$P = \begin{bmatrix}
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0 \\
0 & 1/2 & 0 & 1/2 \\
1/2 & 0 & 1/2 & 0
\end{bmatrix}.$$

(Think of a bug performing a random walk on a necklace with 4 beads.) Assuming that the chain starts in state 0, what is the probability that it gets to state 2 before state 3? [Hint: Alter the Markov chain to make states 2 and 3 absorbing, and then find the probability of being absorbed in state 2 if the chain starts in state 0.]

Solution. Let us alter P to make 2 and 3 absorbing states. The resulting transition matrix is

$$Q = \begin{bmatrix}
0 & 1/2 \\
1/2 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix} = R.$$

We partition the state space as $\{0,1\}$ and $\{2,3\}$ and the transition matrix likewise, and then use the matrix method to compute absorption probabilities. The associated matrices are

$$Q = \begin{bmatrix}
0 & 1/2 \\
1/2 & 0
\end{bmatrix} = R.$$

We have

$$I - Q = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix},$$

which has determinant $3/4$. Therefore

$$(I - Q)^{-1} = \frac{1}{4/3} \begin{bmatrix}
1 & 1/2 \\
1/2 & 1
\end{bmatrix} = \begin{bmatrix}
4/3 & 2/3 \\
2/3 & 4/3
\end{bmatrix}.$$

Writing $T = \min\{n : X_n \in \{2,3\}\}$ for the absorption time, the absorption probabilities $v_{ij} = P[X_T = j|X_0 = i]$ for $i = 0,1$ and $j = 2,3$ are the entries of the matrix

$$V = (I - Q)^{-1} R = \begin{bmatrix}
4/3 & 2/3 \\
2/3 & 4/3
\end{bmatrix} \begin{bmatrix}
0 & 1/2 \\
1/2 & 0
\end{bmatrix} = \begin{bmatrix}
1/3 & 2/3 \\
2/3 & 1/3
\end{bmatrix}.$$

In particular,

$$P[T_2 < T_3|X_0 = 0] = P[X_T = 2|X_0 = 0] = v_{02} = 1/3.$$
7. [20 points]. Customers arrive at a service counter in accordance with a Poisson process of rate 7 (customers per hour). Assume that each customer requires exactly 2 hour of service, and that the number of servers is unlimited. Fix $t > 2$.

(a) Find the probability that there are no customers being served at time t.

(b) Find the expected number of customers being served at time t.

Solution. (a) There are no customers being served at time t if and only if no customers arrived in the time interval $[t - 2, t]$. But the number of customers that arrive in $[t - 2, t]$ has the Poisson distribution with parameter $7 \cdot 2 = 14$. The probability that this count is 0 is therefore $e^{-14} = 8.32 \times 10^{-7}$.

(b) As noted already in part (a), the number of customers being served at time t is $N[t - 2, t]$, the number of arrivals in $[t - 2, t]$, and this random variable has the Poisson distribution with parameter 14. The expected number of customers in service at time t is therefore 14.

8. [20 points]. Let $\{X(t) : t \geq 0\}$ be a Poisson process of rate $\lambda > 0$, and let $0 < s < t$ be two times. Compute the following:

(a) $P[X(s) = 3, X(t) = 5]$.

(b) $E[X(t)|X(s) = 3]$.

(c) $\text{Corr}(X(s), X(t))$.

Solution. (a) Because $X(s)$ and $X(t) - X(s)$ are independent,

$$P[X(s) = 3, X(t) = 5] = P[X(s) = 3, X(t) - X(s) = 2]$$

$$= P[X(s) = 3] \cdot P[X(t) - X(s) = 2]$$

$$= e^{-\lambda s} \left(\frac{\lambda s}{3!} \right)^3 \cdot e^{-\lambda (t-s)} \left(\frac{\lambda (t-s)}{2!} \right)^2$$

$$= e^{-\lambda t} \frac{\lambda^5 s^3 (t-s)^2}{12}.$$

(b) As for part (a), $X(s)$ and $X(t) - X(s)$ are independent, and so

$$E[X(t) - X(s)|X(s) = 3] = E[X(t) - X(s)] = \lambda (t-s).$$

Therefore,

$$E[X(t)|X(s) = 3] = E[X(s)|X(s) = 3] + E[X(t) - X(s)|X(s) = 3] = 3 + \lambda (t-s).$$

(c) This correlation was computed in class, and shown there to be equal to λs. This can be verified by using the independence noted in (a) and (b): Because $X(s)$ and $X(t) - X(s)$ are independent, their covariance is 0. Therefore

$$\text{Cov}[X(s), X(t)] = \text{Cov}[X(s), X(s)] + \text{Cov}[X(s), X(t) - X(t)]$$

$$= \text{Var}[X(s)] + 0 = \lambda s.$$

The third equality follows because $X(s)$ has the Poisson distribution with parameter λs.

5
9. [20 points]. Let \(W_1, W_2, \ldots \) be the arrival times in a Poisson process of rate \(\lambda > 0 \), and let \(X(t) = N(0,t] \) be the number of arrivals in the interval \((0,t]\).

(a) Find the conditional mean \(E[W_1|X(t) = 2] \).

(b) Find the conditional mean \(E[W_3|X(t) = 5] \).

(c) Compute
\[
E \left[\sum_{k=1}^{X(t)} W_k^2 \right].
\]

(By convention, \(\sum_{k=1}^{0} W_k^2 = 0 \).)

Solution. (a) From class discussion we know that the conditional distribution of \(W_1 \), given that \(X(t) = 2 \), is the order statistic \(U(1) \) from a sample of size 2 from the uniform distribution on \((0,t]\). Because the spacings \(U(1), U(2) - U(1), \ldots, U(n) - U(n-1), t - U(n) \) (of which there are \(n + 1 \) in a sample of size \(n \)) all have the same distribution and add up to \(t \), their individual mean values must be \(t/(n+1) \). In particular (when \(n = 2 \)), \(E[U(1)] = t/3 \). Therefore,
\[
E[W_1|X(t) = 2] = t/3.
\]

(b) Using the spacings fact cited in part (a),
\[
E[W_3|X(t) = 5] = E[U(3)],
\]
where \(U(3) \) is the third order statistic from a uniform sample of size 5, so that
\[
E[W_3|X(t) = 5] = E[U(3) - U(2)] + E[U(2) - U(1)] + E[U(1)] = 3 \cdot \frac{t}{6} = t/2.
\]

(c) We use the Law of Total Probability. First, by the Poisson – Uniform Order Statistics theorem and the symmetry of the summation process,
\[
E \left[\sum_{k=1}^{X(t)} W_k^2 \right] = E \left[\sum_{k=1}^{n} U_{(k)}^2 \right] = E \left[\sum_{k=1}^{n} U_k^2 \right] = n \cdot E[U_1^2].
\]
Also, because \(U_1 \) has the uniform distribution on \((0,t]\), \(E[U_1^2] = t^{-1} \int_0^t u^2 \, du = t^2/3 \). Finally,
\[
E \left[\sum_{k=1}^{X(t)} W_k^2 \right] = E \left[\sum_{k=1}^{X(t)} W_k^2 | X(t) = n \right] \cdot P[X(t) = n]
\]
\[
= \sum_{n=1}^{\infty} \frac{nt^2}{3} \cdot \lambda \cdot \frac{\lambda t^3}{3}.
\]