Math 194, Winter 2020

Homework 7 - Due Tuesday, February 25, 2020

1. Consider the multi-step binary model with $T=2, S_{0}=\$ 100, u=2, d=1 / 2$, and $r=1 / 5$. In this problem we shall use the real-world probability \mathbf{P} for which "up" and "down" branches each have probability $p=1 / 2$. Let adapted sequences of random variables $Y=\left\{Y_{0}, Y_{1}, Y_{2}\right\}$ and $U=\left\{U_{0}, U_{1}, U_{2}\right\}$ be defined by

$$
Y_{0}=30, Y_{1}^{d}=24, Y_{1}^{u}=34, Y_{2}^{d d}=Y_{2}^{u u}=50, Y_{2}^{d u}=Y_{2}^{u d}=10
$$

and

$$
U_{0}=32, U_{1}^{d}=30, U_{1}^{u}=34, U_{2}^{d d}=U_{2}^{u u}=50, U_{2}^{d u}=U_{2}^{u d}=10
$$

(a) Verify that $\left\{U_{0}, U_{1}, U_{2}\right\}$ is a supermartingale.
(b) Evidently $U_{t} \geq Y_{t}$ for $t=0,1,2$. Show that if $W=\left\{W_{0}, W_{1}, W_{2}\right\}$ is another supermartingale with $W_{t} \geq Y_{t}$ for each $t=0,1,2$, then $W_{t} \geq U_{t}$ for $t=0,1,2$.
(c) The recipe $\tau=\min \left\{t: U_{t}=Y_{t}\right\}$ defines a stopping time. Compute $\tau(d d), \tau(d u)$, $\tau(u d)$, and $\tau(u u)$.
(d) Compute $\mathbf{E}\left[Y_{\tau}\right]$, where τ is as in part (c).
2. For this problem use the model data from Exercise 6, Section 2.4 (page 29 of the text). An American asset-or-nothing (call) option is the American contingent claim (ACC) based on the payoffs

$$
Y_{t}= \begin{cases}F, & \text { if } S_{t} \geq K \\ 0, & \text { if } S_{t}<K\end{cases}
$$

and can be exercised at any time t in $\{0,1,2\}$. Let us take $K=\$ 90$ and $F=\$ 120$. Fill in the tree diagram for the necessary wealth process $U=\left\{U_{0}, U_{1}, U_{2}\right\}$, thereby computing the no-arbitrage price U_{0} for this ACC.
3. Exercise 2, Section 3.7 (pages 52-53 of the text).

