
Math 180B, Winter 2021

Notes on covariance and the bivariate normal distribution

1. Covariance. If X and Y are random variables with finite variances, then their

covariance is the quantity

(1.1) Cov(X,Y ) := E[(X − µX)(Y − µY )],

where µX = E[X] and µY = E[Y ]. The covariance is a measure of the extent to which X

and Y are linearly related. Because (X −µX)(Y −µY ) = XY − νXY −µYX +µXµY , the

covariance can also be expressed as

(1.2) Cov(X,Y ) = E[XY ]−E[X] ·E[Y ] = E[XY ]− µXµY .

Observe that if X and Y are independent, then E[XY ] = µXµY . Therefore

(1.3) X ⊥⊥Y =⇒ Cov(X,Y ) = 0.

The converse implication fails as a general statement, by an example discussed in class [X

uniformly distributed on (−1, 1), Y = X2]. But see Corollary 3 below.

2. Variance. Part of the importance of covariance is the way in which it completes the

addition formula for the variance of a sum of random variables:

(2.1) Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X,Y ).

More generally, because we evidently have

(2.2) Cov(αX, βY ) = αβCov(X,Y )

for real numbers α and β, it is also true that

(2.3) Var[αX + βY ] = α2Var[X] + β2Var[Y ] + 2αβCov(X,Y ).

3. Correlation. The correlation of two random variables X and Y is their standardized

covariance:

(3.1)

ρ = ρ(X,Y ) = corr(X,Y ) : =
Cov(X,Y )√
Var[X]Var[Y ]

= E

[(
X − µX

σX

)(
Y − µY

σY

)]
.



Here, for example, σ2
X is the variance of X.

4. Example. Suppose Y = αX + β, where α and β are real constants. Then µY =

αµX + β, Var[Y ] = α2Var[X], and Cov(X,Y ) = αVar[X]. Consequently,

(4.1) corr(X,Y ) =

{
1, if α > 0;
0, if α = 0;
−1, if α < 0

when Y is a (non-random) straight-line function of X.

5. Theorem. [Cauchy-Schwarz Inequality]

(5.1)
∣∣∣Cov(X,Y )

∣∣∣ ≤ σXσY
and

(5.2)
∣∣∣corr(X,Y )

∣∣∣ ≤ 1.

Assuming that σXσY > 0, equality holds in either of (5.1) or (5.2) only if

P[(X − µX)/σX = sign(corr(X,Y )) · (Y − µY )/σY ] = 1.

Proof. The inequalities (5.1) and (5.2) are equivalent, so it is enough to demonstrate (5.2),

which (in view of the third equality in (3.1)) can be written as

(5.3)
∣∣∣Cov(X̂, Ŷ )

∣∣∣ ≤ 1,

where X̂ = (X − µX)/σX and Ŷ = (Y − µY )/σY . To see (5.3) we consider the function

g(t) := E
[
(X̂ − tŶ )2

]
, t ∈ R.

Being the expectation of a square, g(t) ≥ 0 for all real t. On the other hand, g is a

quadratic:

g(t) = E[X̂2]− 2tE[X̂Ŷ ] + t2E[Ŷ 2] = 1− 2tCov(X̂, Ŷ ) + t2.

The only way a quadratic function can take only non-negative values is if its discriminant

is non-positive. Thus we must have

[−2Cov(X̂, Ŷ )]2 − 4 · 1 · 1 ≤ 0.



That is, 4[Cov(X̂, Ŷ )]2 − 4 ≤ 0, or what is the same

(5.4) [Cov(X̂, Ŷ )]2 ≤ 1,

which is equivalent to (5.3).

Suppose now that corr(X,Y ) = 1. In this case we have g(t) = (1 − t)2, so g(1) = 0.

But g(1) = E
[
(X̂ − Ŷ )2

]
, and the only way this (the expectation of a non-negative random

variable) can be 0 is if that random variable is itself 0 with probability 1. This shows that

if corr(X,Y ) = 1 then P[X̂ = Ŷ ] = 1, as required by the final sentence of the Theorem.

Similar considerations apply when corr(X,Y ) = −1.

6. Bivariate Normal Distribution. A pair of random variables X and Y is said to

have the bivariate normal distribution provided

(6.1) αX + βY

has the univariate normal distribution for each pair (α, β) of real numbers. This state of

affairs will be indicated by the notation(
X
Y

)
∼ N2,

or by

(6.2)

(
X
Y

)
∼ N2

((
µX

µY

)
,

(
σ2
X σXY

σXY σ2
Y

))
if I wish to indicate the means (µX , µY ), the variances (σ2

X , σ
2
Y ), and the covariance σXY

of X and Y . Observe that if (6.2) holds then X ∼ N1 (that is X has a univariate normal

distribution—take α = 1 and β = 0) and also Y ∼ N1. In what follows I will write

(6.3) ρ =
σXY

σXσY

for the correlation of X and Y . The column vector(
µX

µY

)
appearing in (6.2) is the mean vector for the pair (X,Y )t, while the 2× 2 matrix(

σ2
X σXY

σXY σ2
Y

)
=

(
σ2
X σXσY ρ

σXσY ρ σ2
Y

)



is its variance-covariance matrix. The standard bivariate normal distribution is the special

case in which the means are both 0 and the variances are both 1.

7. Representation. The following construction of a standard bivariate normal pair,

in terms of iid univariate normals, is useful for various calculations. Let X and Z be

independent standard normal random variables. Then for real constants α and β, the

random variables αX and βY are also independent, and so their sum αX + βY is also

normally distributed, as discussed in class. It follows from the discussion in 6. that X and

Z have a bivariate normal distribution. More precisely,

(7.1)

(
X
Z

)
∼ N2

((
0
0

)
,

(
1 0
0 1

))
,

the standard bivariate normal distribution.

Now fix ρ ∈ [−1, 1], and consider the random variable Y defined by

(7.2) Y = ρX +
√

1− ρ2Z.

It is easy to check that E[Y ] = 0, Var[Y ] = 1, and Cov(X,Y ) = ρ. Also, if α and β are

any two real numbers, then

αX + βY = (α+ βρ)X + β
√

1− ρ2Z

is normally distributed, because X and Z have a bivariate normal distribution as remarked

above. It follows that X and Y themselves have a bivariate normal distribution. More

precisely,

(7.3)

(
X
Y

)
∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
,

8. Corollary 1. With X and Y as in (7.3), the conditional distribution of Y , given that

X takes the value x, is normal, with mean ρx and variance 1− ρ2. In symbols

(8.1) Y |X = x ∼ N1(ρx, 1− ρ2).

Proof. Look at (7.2): If I tell you that X equals x, this has no effect on the (independent)

random variable Z, which still has the standard normal distribution. Thus, under the

condition X = x, the random variable Y is Z scaled by a factor of
√

1− ρ2 (which

changes its variance to 1− ρ2) and then translated by ρx (which changes its mean to ρx).



Neither the scaling nor the translation alter the fact that the random variable is normally

distributed.

9. Corollary 2. Suppose that

(9.1)

(
X
Y

)
∼ N2

((
µX

µY

)
,

(
σ2
X σXσY ρ

σXσY ρ σ2
Y

))
.

Then the conditional distribution of Y , given that X takes the value x is normal:

(9.2) Y |X = x ∼ N (µY +
σY ρ

σX
(x− µX), (1− ρ2)σ2

Y ).

Proof. Just apply Corollary 1 to the standardized random variables X̂ = (X − µX)/σX

and Ŷ = (Y − µY )/σY .

10. Corollary 3. Suppose that(
X
Y

)
∼ N2

((
µX

µY

)
,

(
σ2
X σXσY ρ

σXσY ρ σ2
Y

))
.

Then X and Y are independent if and only if ρ = 0.

Proof. We need only consider the “if” part of this assertion—the “only if” part holds for

any two random variables, bivariate normal or not. If ρ = 0, then according to (9.2) the

conditional density of Y given the value of X, namely fY |X(y|x), does not depend on x,

and so is a function of y alone, call it g(y). This means that the joint density f(x, y) of X

and Y factors:

(10.1) f(x, y) = fX(x) · fY |X(y|x) = fX(x) · g(y).

Now integrate out x:

(10.2) fY (y) =

∫ ∞
−∞

f(x, y) dx =

∫ ∞
−∞

fX(x) · g(y) dx = g(y).

Using (10.2) in (10.1) we find that

f(x, y) = fX(x) · fY (y),

which proves to the asserted independence.

11. References. The material discussed above can be found in sections 7.3 and 7.8

of A First Course in Probability by Sheldon Ross, and also in sections 6.4 and 6.4 of

PROBABILITY by Jim Pitman. The latter text is available in pdf form for UCSD students

at

http://link.springer.com/book/10.1007%2F978-1-4612-4374-8


