Math 180B, Winter 2021

Homework 2, Due January 18

1. Use the formula $\mathbf{P}(A)=\mathbf{P}(A \mid B) \mathbf{P}(B)+\mathbf{P}\left(A \mid B^{c}\right) \mathbf{P}\left(B^{c}\right)$ to prove that if $\mathbf{P}(A \mid B)=$ $\mathbf{P}\left(A \mid B^{c}\right)$ then A and B are independent. Then prove the converse (that if A and B are independent then $\mathbf{P}(A \mid B)=\mathbf{P}\left(A \mid B^{c}\right)$). [Assume that $\mathbf{P}(B)>0$ and $\mathbf{P}\left(B^{c}\right)>0$.]
2. Let X_{1} and X_{2} be the numbers showing when two fair dice are thrown. Define new random variables $X=X_{1}-X_{2}$ and $Y=X_{1}+X_{2}$. Show that X and Y are uncorrelated but not independent. [Hint: To show lack of independence, it is enough to show that $\mathbf{P}[X=j, Y=k] \neq \mathbf{P}[X=j] \cdot \mathbf{P}[Y=k]$ for one pair (j, k); try the pair $(0,2)$.
3. You have N boxes (labeled $1,2, \ldots, N$), and you have k balls. You drop the balls, independently of each other, into the boxes. For each ball the probability that it will land in a particular box is $1 / N$. Let X_{1} be the number of balls in box 1 and X_{N} the number of balls in box N. Calculate $\operatorname{Corr}\left(X_{1}, X_{N}\right)$.
4. Suppose X and Y are standard normal random variables. Find an expression for $\mathbf{P}(X+2 Y \leq 3)$ in terms of the standard normal distribution function Φ in two cases:
(a) X and Y are independent;
(b) X and Y have the bivariate normal distribution with correlation $\rho=1 / 2$.
5. Let X_{1} and X_{2} be two independent standard normal random variables. Define two new random variables as follows: $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}+\beta X_{2}$. You are not given the constant β but it is known that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$. Find
(a) the density of Y_{2};
(b) $\operatorname{Cov}\left(X_{2}, Y_{2}\right)$,
6. Suppose that (W, Z) have a bivariate normal distribution, that $W \sim \mathcal{N}(0,1)$, and that the conditional distribution of Z, given that $W=w$, is $\mathcal{N}\left(a w+b, \tau^{2}\right)$.
(a) What is the marginal distribution of Z ?
(b) What is the conditional distribution of W, given that $Z=z$?

In addition:
Pages 64-65:. Exercises 2.3.1, 2.3.5; Problems 2.3.2, 2.3.4(a)
Pages 70-71:. Exercise 2.4.3

