Math 285, Winter 2023

Homework 5, Due February 16

1. Exercise 4.9 (pp. 99-100).
2. Here is a summary of the Viterbi algorithm:
(1) (Initialize): $\delta_{0}(j)=p(j) h_{j}\left(b_{0}\right)$ for $j \in S$.
(2) (Recursion): $\delta_{k+1}(j)=\left[\max _{i \in S} \delta_{k}(i) P(i, j)\right] h_{j}\left(b_{k+1}\right)$, for $j \in S$ and $\psi_{k+1}(j)=\operatorname{argmax}_{i \in S} \delta_{k}(i) P(i, j)$ for $k=0,1,2, \ldots n-1$.
(3) (Termination): $P^{*}(b)\left[=P^{*}\left(b_{0}, \ldots b_{n}\right)\right]=\max _{j \in S} \delta_{n}(j)$ and $j_{n}^{*}=\operatorname{argmax}_{j \in S} \delta_{n}(j)$.
(4) (Back substitution): $j_{k}^{*}=\psi_{k+1}\left(j_{k+1}^{*}\right)$ for $k=n-1, n-2, \ldots, 2,1,0$.

Show, by backward induction on k, that $p\left(j_{k}^{*}, j_{k+1}^{*}\right)>0$ for $k=0,1,2, \ldots, n-1$.
3. This problems implements the Viterbi algorithm for the "crooked casino" HMM. The underlying Markov chain has state space $S=\{F, L\}$ and transition matrix

$$
\mathbf{P}=\left[\begin{array}{cc}
.95 & .05 \\
.1 & .9
\end{array}\right]
$$

When the Markov chain is in state F, a fair die is thrown-all six faces are equally likely; when the Markov chain is in state L a loaded die is thrown-face 6 has probability .5 and all other faces have probability .1. In short, the "emission probabilities" are given by the matrix

$$
\mathbf{H}=\left[\begin{array}{cccccc}
1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
1 / 10 & 1 / 10 & 1 / 10 & 1 / 10 & 1 / 10 & 1 / 2
\end{array}\right] .
$$

We assume that at the start the fair die is being used; that is, $p(F)=1$ and $p(L)=0$.
Here are 100 random rolls in the crooked casino. Use the Viterbi algorithm to predict the state sequence; that is, which of the two dice was used on each roll.

31511624644664424531132163116415213362514454363165
66265666666511664531326512456366646316366631623264
On the second page are the dice that are tossed on each roll. Don't look until you have done the exercise!

Here are the dice that are rolled, each listed just below the roll itself.
31511624644664424531132163116415213362514454363165
fFFFFFFFFF FFFFFFFFFF FFFFFFFFFF FFFFFFFFFF FFFFFLLLLL
66265666666511664531326512456366646316366631623264
LLLLLLLLLL LLLLLLFFFF FFFFFFFFLL LLLLLLLLLL LLLLFFFLLL

