A1. Let b and c be fixed real numbers and let the ten points $\left(j, y_{j}\right), j=1,2, \ldots, 10$, lie on the parabola $y=x^{2}+b x+c$. For $j=1,2, \ldots, 9$, let I_{j} be the point of intersection of the tangents to the given parabola at $\left(j, y_{j}\right)$ and $\left(j+1, y_{j+1}\right)$. Determine the polynomial function $y=g(x)$ of least degree whose graph passes through all nine points I_{j}.

A2. Let r and s be positive integers. Derive a formula for the number of ordered quadruples (a, b, c, d) of positive integers such that

$$
3^{r} \cdot 7^{s}=1 \mathrm{~cm}[a, b, c]=1 \mathrm{~cm}[a, b, d]=1 \mathrm{~cm}[a, c, d]=1 \mathrm{~cm}[b, c, d] .
$$

The answer should be a function of r and s. (Note that $1 \mathrm{~cm}[x, y, z]$ denotes the least common multiple of x, y, z.)

A3. Evaluate

$$
\int_{0}^{\pi / 2} \frac{d x}{1+(\tan x)^{\sqrt{2}}}
$$

A4.

(a) Prove that there exist integers a, b, c, not all zero and each of absolute value less than one million, such that

$$
|a+b \sqrt{2}+c \sqrt{3}|<10^{-11}
$$

(b) Let a, b, c be integers, not all zero and each of absolute value less than one million. Prove that

$$
|a+b \sqrt{2}+c \sqrt{3}|>10^{-21}
$$

A5. Let $P(t)$ be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous equations

$$
0=\int_{0}^{x} P(t) \sin t d t=\int_{0}^{x} P(t) \cos t d t
$$

has only finitely many real solutions x.
A6. Let C be the class of all real valued continuously differentiable functions f on the interval $0 \leq x \leq 1$ with $f(0)=0$ and $f(1)=1$. Determine the largest real number u such that

$$
u \leq \int_{0}^{1}\left|f^{\prime}(x)-f(x)\right| d x
$$

for all f in C.

B1. For which real numbers c is $\left(e^{x}+e^{-x}\right) / 2 \leq e^{c x^{2}}$ for all real x.
B2. Let S be the solid in three-dimensional space consisting of all points (x, y, z) satisfying the following system of six simultaneous conditions:

$$
\begin{gathered}
x \geq 0, \quad y \geq 0, \quad z \geq 0, \\
x+y+z \leq 11, \\
2 x+4 y+3 z \leq 36, \\
2 x+3 z \leq 24 .
\end{gathered}
$$

(a) Determine the number of vertices v of S.
(b) Determine the number of edges e of S.
(c) Sketch in the $b c$-plane the set of points (b, c) such that $(2,5,4)$ is one of the points (x, y, z) at which the linear function $b x+c y+z$ assumes its maximum value on S.

B3. For which real numbers a does the sequence defined by the initial condition $u_{0}=a$ and the recursion $u_{n+1}=2 u_{n}-n^{2}$ have $u_{n}>0$ for all $n \geq 0$?
(Express the answer in the simplest form.)
B4. Let $A_{1}, A_{2}, \ldots, A_{1066}$ be subsets of a finite set X such that $\left|A_{i}\right|>\frac{1}{2}|X|$ for $1 \leq i \leq$ 1066. Prove that there exist ten elements x_{1}, \ldots, x_{10} of X such that every A_{i} contains at least one of x_{1}, \ldots, x_{10}.
(Here $|S|$ means the number of elements in the set S.)
B5. For each $t \geq 0$, let S_{t} be the set of all nonnegative, increasing, convex, continuous, real-valued functions $f(x)$ defined on the closed interval $[0,1]$ for which

$$
f(1)-2 f(2 / 3)+f(1 / 3) \geq t[f(2 / 3)-2 f(1 / 3)+f(0)]
$$

Develop necessary and sufficient conditions on t for S_{t} to be closed under multiplication. (This closure means that, if the functions $f(x)$ and $g(x)$ are in S_{t}, so is their product $f(x) g(x)$. A function $f(x)$ is convex if and only if $f(s u+(1-s) v) \leq s f(u)+(1-s) f(v)$ whenever $0 \leq s \leq 1$.)

B6. An infinite array of rational numbers $G(d, n)$ is defined for integers d and n with $1 \leq d \leq n$ as follows:

$$
G(1, n)=\frac{1}{n}, \quad G(d, n)=\frac{d}{n} \sum_{i=d}^{n} G(d-1, i-1) \text { for } d>1
$$

For $1<d \leq p$ and p prime, prove that $G(d, p)$ is expressible as a quotient s / t of integers s and t with t not an integral multiple of p.
(For example, $G(3,5)=7 / 4$ with the denominator 4 not a multiple of 5 .)

