FORTY-EIGHTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION rday. December 5, 1987

Saturday, December 5, 1987

Examination A

A-1. Curves A, B, C, and D, are defined in the plane as follows:

$$A = \left\{ (x, y) : x^2 - y^2 = \frac{x}{x^2 + y^2} \right\},\$$

$$B = \left\{ (x, y) : 2xy + \frac{y}{x^2 + y^2} = 3 \right\},\$$

$$C = \left\{ (x, y) : x^3 - 3xy^2 + 3y = 1 \right\},\$$

$$D = \left\{ (x, y) : 3x^2y - 3x - y^3 = 0 \right\}.$$

Prove that $A \cap B = C \cap D$.

A-2. The sequence of digits

$$1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 1\ 0\ 1\ 1\ 1\ 3\ 1\ 4\ 1\ 5\ 1\ 6\ 1\ 7\ 1\ 8\ 1\ 9\ 2\ 0\ 2\ 1\ \ldots$$

is obtained by writing the positive integers in order. If the 10^n th digit in this sequence occurs in the part of the sequence in which the *m*-digit numbers are placed, define f(n) to be *m*. For example f(2) = 2 because the 100th digit enters the sequence in the placement of the two-digit integer 55. Find, with proof, f(1987).

A-3. For all real x, the real-valued function y = f(x) satisfies

$$y'' - 2y' + y = 2e^x.$$

(a) If f(x) > 0 for all real x, must f'(x) > 0 for all real x? Explain.

(b) If f'(x) > 0 for all real x, must f(x) > 0 for all real x? Explain.

A-4. Let P be a polynomial, with real coefficients, in three variables and F be a function of two variables such that

$$P(ux, uy, uz) = u^{2}F(y - x, z - x) \quad \text{for all real } x, y, z, u,$$

and such that P(1,0,0) = 4, P(0,1,0) = 5, and P(0,0,1) = 6. Also let A, B, C be complex numbers with P(A, B, C) = 0 and |B - A| = 10. Find |C - A|.

A-5. Let

$$\mathbf{G}(x,y) = \left(\frac{-y}{x^2 + 4y^2}, \frac{x}{x^2 + 4y^2}, 0\right).$$

Prove or disprove that there is a vector-valued function

$$\mathbf{F}(x, y, z) = (M(x, y, z), N(x, y, z), P(x, y, z))$$

with the following properties:

- (i) M, N, P have continuous partial derivatives for all $(x, y, z) \neq (0, 0, 0)$;
- (ii) curl $\mathbf{F} = \mathbf{0}$ for all $(x, y, z) \neq (0, 0, 0)$;
- (iii) F(x, y, 0) = G(x, y).

A-6. For each positive integer n, let a(n) be the number of zeros in the base 3 representation of n. For which positive real numbers x does the series

$$\sum_{n=1}^{\infty} \frac{x^{a(n)}}{n^3}$$

converge?

FORTY-EIGHTH ANNUAL WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

Saturday, December 5, 1987

Examination B

B-1. Evaluate:

$$\int_{2}^{4} \frac{\sqrt{\ln(9-x)} \, dx}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}}.$$

B-2. Let r, s, and t be integers with $0 \le r, 0 \le s$, and $r + s \le t$. Prove that

$$\frac{\binom{s}{0}}{\binom{t}{r}} + \frac{\binom{s}{1}}{\binom{t}{r+1}} + \frac{\binom{s}{2}}{\binom{t}{r+2}} + \dots + \frac{\binom{s}{s}}{\binom{t}{r+s}} = \frac{t+1}{(t+1-s)\binom{t-s}{r}}$$

B-3. Let F be a field in which $1+1 \neq 0$. Show that the set of solutions to the equation $x^2 + y^2 = 1$ with x and y in F is given by (x, y) = (1, 0) and

$$(x,y) = \left(\frac{r^2 - 1}{r^2 + 1}, \frac{2r}{r^2 + 1}\right),$$

where r runs through the elements of F such that $r^2 \neq -1$.

B-4. Let $(x_1, y_1) = (0.8, 0.6)$ and let $x_{n+1} = x_n \cos y_n - y_n \sin y_n$ and $y_{n+1} = x_n \sin y_n + y_n \cos y_n$ for $n = 1, 2, 3, \ldots$ For each of $\lim_{n \to \infty} x_n$ and $\lim_{n \to \infty} y_n$, prove that the limit exists and find it or prove that the limit does not exist.

B-5. Let O_n be the *n*-dimensional zero vector $(0,0,\ldots,0)$. Let M be a $2n \times n$ matrix of complex numbers such that whenever $(z_1, z_2, \ldots, z_n)M = O_n$, with complex z_i , not all zero, then at least one of the z_i is not real. Prove that for arbitrary real numbers r_1, r_2, \ldots, r_{2n} , there are complex numbers w_1, w_2, \ldots, w_n such that

$$\operatorname{Re}\left[M(w_1,\ldots,w_n)^t\right] = (r_1,\ldots,r_{2n})^t.$$

(Note: If C is a matrix of complex numbers, $\operatorname{Re}(C)$ is the matrix whose entries are the real parts of the entries of C.)

B-6. Let F be the field of p^2 elements where p is an odd prime. Suppose S is a set of $(p^2 - 1)/2$ distinct nonzero elements of F with the property that for each $a \neq 0$ in F, exactly one of a and -a is in S. Let N be the number of elements in the intersection $S \cap \{2a : a \in S\}$. Prove that N is even.