Day 07 – Compositions and Set Partitions

Definition 1. A sequence \(\alpha = (a_1, a_2, \ldots, a_k) \) such that \(a_i \geq 0 \) for all \(i \in [k] \), and \(a_1 + \ldots + a_k = n \) is called a **weak composition** of \(n \).

If \(a_1 + \ldots + a_k = n \) where \(a_i > 0 \) for all \(i \in [k] \) then \(\alpha = (a_1, a_2, \ldots, a_k) \) is called a **strong composition** of \(n \). In this class, “composition” means strong composition.

Here, \(k \) is the number of parts of \(\alpha \).

Example. Find all compositions of 4.

Theorem 1. For all positive integers \(n \) and \(k \), the number of **weak compositions** of \(n \) into \(k \) parts is

\[
\binom{n + k - 1}{k - 1} = \binom{n + k - 1}{n - 1}.
\]

Proof.
Theorem 2. For all positive integers \(n \) and \(k \), the number of compositions of \(n \) into \(k \) parts is \(\binom{n-1}{k-1} \).

Proof.
Definition 2. A partition of a set S is a collection of non-empty subsets/blocks such that every element in S belongs to exactly one of the subsets/blocks.

Definition 3.

- The number of set partitions of $[n]$ is given by $B(n)$, where $B(n)$ is the Bell number.
- The number of set partitions of $[n]$ with k blocks is $S(n,k)$ - the Stirling number of the second kind.
- There is no closed formula for $B(n)$ and $S(n,k)$

Theorem 3. For any $n \leq 1$, the Bell numbers and Stirling numbers of the second kind satisfy the following properties:

- $B(n) = \sum_{k=1}^{n} S(n,k)$
- $S(n,k) = 0$ if $k > n$ or $k \leq 0$
- $S(n,1) = S(n,n) = 1$
- $S(n, n-1) = \binom{n}{2}$
Theorem 4. For $1 \leq k \leq n$, the Stirling numbers of the second kind satisfy the recursion

$$S(n, k) = S(n - 1, k - 1) + k \cdot S(n - 1, k)$$

Proof.
Function counting

How many functions \(f : [n] \to [k] \) are there?

How many \textbf{injection} \(f : [n] \to [k] \) are there?
How many surjection $f : [n] \rightarrow [k]$ are there?