Day 17 - Generating Functions for Integer Partitions

Partition Identities

Recall:

- A sequence of positive integers $a_1 \geq a_2 \geq \ldots \geq a_m > 0$ is called an (integer) partition of a provided that $a_1 + a_2 + \ldots + a_m = a$. Denote $p_k(n)$.
- The partition function $p(n)$ is the total number of integer partitions for n.
- $p_k(n)$ is the number of partitions of n into k parts.

Partition may be represented by Farey diagram.

- We write $|\lambda| = n$ to denote that there are n boxes in the Farey diagram of λ.
- We write $\ell(\lambda) = k$ to denote that there are k parts in λ.

| λ | $\ell(\lambda)$ | $|\lambda|$ |
|----------|----------------|----------|
| $(5, 2, 2, 1)$ | 4 | 10 |
| $\lambda_1 = 5$ | $\lambda_2 = 2$ | $\lambda_3 = 2$ | $\lambda_4 = 1$ |

There are 10 cells in Farey diagram of λ.

For λ: $\# g$ parts of $\lambda = \# g$ rows in Farey diagram for λ.

Question: Given integers $2 \leq k \leq n$. How many partitions λ of n whose parts lengths are no longer than k (i.e., $\lambda_i \leq k$) are there?

Answer: Let $p_k(n)$ denote the number of partitions of n whose parts lengths are no longer than k.

Consider:

$$p_k(n) = \sum p_k(n) = \sum \left(\text{# of } \lambda \text{ with } \lambda_1 \leq k \right) \cdot \lambda^1_1 \lambda^2_2 \lambda^3_3 \ldots$$

Then:

$$p_k(n) = \prod \left(1 \cdot \frac{1}{1-x^i} \right) \cdot \left(\frac{1}{1-x^k} \right) \cdot \ldots$$

$$p_k(n) = \sum_{\lambda: \lambda_i \leq k} \lambda_1 \lambda_2 \lambda_3 \ldots$$

A typical λ that is counted by the sum above must have the form $\lambda = (k^m, (k-1)^m, \ldots, 1^m)$ (A has m parts of length i).

$$\sum \lambda_1 \lambda_2 \lambda_3 \ldots = (1 + x + x^2 + \ldots) \cdot (1 + x^2 + x^4 + \ldots) \cdots (1 + x^k + x^{2k} + \ldots)$$

$$= \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdot \frac{1}{1-x^3} \cdots \frac{1}{1-x^k}$$

$|\lambda| = \# g$ cells
\[
\sum_{n=0}^{\infty} \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdot \frac{1}{1-x^3} \cdots \frac{1}{1-x^k}
\]

w/o the restriction that part length \(\leq k \).

\[
\sum_{n} x^{12} = \prod_{k=1}^{n} \frac{1}{1-x^k} : \text{Euler's identity.}
\]

\[p_k(n) = \text{number of partitions of } n \text{ w/ exactly } k \text{ parts.}\]

\[
\sum_{n=0}^{\infty} p_k(n) x^n = \sum_{\lambda : \ell(\lambda) = k} x^{\lambda_1}.
\]

We also know:

\[
P_k(x) = \sum_{\pi} \pi(x)^p = x^k \sum_{\pi} \pi(x)^p = \prod_{m=1}^{k} \frac{x^m}{1-x^m}.
\]

Take a pattern \(\lambda : \ell(\lambda) = k \).

\[|^{\lambda_1 = 5} \]

To construct a \(\mu \) w/ \(\ell(\mu) = k \).

- Start w/ a pattern \(\mu \) whose part lengths is at most \(k \).
- Attach a row of \(k \) cells on top of \(\mu \).
- Conjugate the result.

\[
\sum_{\lambda : \ell(\lambda) = k} x^{\lambda_1} = \prod_{m=1}^{k} \sum_{\mu : \ell(\mu) < k} x^{\mu_1} = \frac{x^k}{(1-x)(1-x^2) \cdots (1-x^k)}.
\]

Expand this, look at the coeff \(a \cdot x^k = p_k(n) \).
Let \(p_d(n) \) be the number of partitions of \(n \) into \(d \) parts of odd length. Let \(n_{od}(n) \) be the number of partitions of \(n \) into \(d \) parts with distinct lengths.

What are \(D(x) = \sum_{n \geq 0} p_d(n) x^n \) and \(D(x) = \sum_{n \geq 0} n_{od}(n) x^n \)?

\[
D(x) = \sum_{n \geq 0} p_d(n) x^n = \sum_{n \geq 0} x^{[\lambda]} = \sum_{n \geq 0} x^{[\lambda]}
\]

\[
= (1 + x) \cdot (1 + x^2) \cdot (1 + x^3) \cdot \ldots = \prod_{i=1}^{\infty} \frac{1}{1-x^i}
\]

\[
O(x) = \sum_{n \geq 0} n_{od}(n) x^n = \sum_{n \geq 0} x^{[\lambda]} = \sum_{n \geq 0} x^{[\lambda]}
\]

\[
= \frac{1}{1-x} \cdot \frac{1}{1-x^3} \cdot \frac{1}{1-x^5} \cdot \ldots = \prod_{i=1}^{\infty} \frac{1}{1-x^{2i-1}}
\]
\[D(x) = \prod_{i=1}^{\infty} \left(1 + x^i\right) \quad \text{and} \quad \mathcal{O}(x) = \prod_{i=1}^{\infty} \frac{1}{1 - x^{2i-1}} \]

So

\[\prod_{i=1}^{\infty} \frac{1 - x^i}{1 - x^{2i-1}} = \prod_{i=1}^{\infty} \frac{1}{1 - x^i} \]

So

\[\sum_{n \geq 0} p_{\text{dist}}(n) x^n = D(x) = \mathcal{O}(x) = \sum_{n \geq 0} p_{\text{odd}}(n) x^n \]

\[p_{\text{dist}}(n) = p_{\text{odd}}(n) \quad \text{for all } n \geq 0 \]
Example. Consider the sequence given by \(a_0 = 0 \) and
\[
 a_{n+1} = (n+1)a_n + 2(n+1)!
\]
for \(n \geq 0 \). Find the explicit formula for \(a_n \).