Definition 1. A stack is a last-in first-out linear sorting device that allows two operations push and pop.

procedure StackSort (σ = σ₁σ₂⋯σₙ: a permutation of length n)

1. Initialize an empty stack
2. for i := 1 to n
3. if stack is non-empty and σᵢ > first entry on stack then
4. pop the first entry on the stack to the output
5. else push σᵢ into the stack
6. while stack is non-empty pop the stack entries to the output

Example 1. Stack sort 3 2 1 4 5
Example 2. Stack sort 4 1 3 5 2

If \(s(p) \) = the identity permutation then we say \(p \) is \textbf{stack-sortable}.

Some observations: Let \(p \) be a permutation in one-line notation and let \(a < b \) be two entries of \(p \).

- If \(a \) precedes \(b \) in \(p \) then \(a \) also precedes \(b \) in \(s(p) \)

- If \(b \) precedes \(a \) in \(p \) and there is no element \(c \) located between \(a \) and \(b \) in \(p \) such that \(c > b > a \) then \(a \) precedes \(b \) in \(s(p) \)

- If \(b \) precedes \(a \) in \(p \) and there is an element \(c \) located between \(a \) and \(b \) in \(p \) such that \(c > b > a \) then \(b \) precedes \(a \) in \(s(p) \)
Definition 2. Given a sequence \(\tau = \tau_1 \cdots \tau_n \) of distinct positive integers, we define the reduction of \(\tau \), \(\text{red}(\tau) \), to be the permutation of \(S_n \) that results by replacing the \(i \)-th smallest element of \(\tau \) by \(i \) for each \(i \).

For example \(\text{red}(5 \ 3 \ 9 \ 6 \ 2) = 3 \ 2 \ 5 \ 4 \ 1 \).

Definition 3. Let \(\tau = \tau_1 \cdots \tau_j \in S_j \) and \(\sigma = \sigma_1 \cdots \sigma_n \in S_n \). Then

1. \(\tau \) occurs in \(\sigma \) if there exists \(1 \leq i_1 < \cdots < i_j \leq n \) such that
 \[
 \text{red}(\sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_j}) = \tau.
 \]

2. \(\sigma \) avoids \(\tau \) is there is no occurrence of \(\tau \) in \(\sigma \). In this case, we let \(S_n(\tau) \) denote the set of permutations of \(S_n \) which avoid \(\tau \).

Definition 4. For a permutation \(\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \), its permutation matrix is obtained by placing a mark in column \(i \) and row \(\sigma_i \) on an \(n \times n \) array, for each \(1 \leq i \leq n \).

Theorem 1. A permutation \(p \) is stack-sortable if and only if it avoids the pattern 231.
Q: How many stack-sortable permutations of length n are there?
Theorem 2.

The number of stacksortable permutations of length \(n = S_n(231) = c_n, \)
where
\[
c_n = \frac{1}{n+1} \binom{2n}{n}
\]
is the \(n \)-Catalan number.

Q: What about \(S_n(132) \)?
Q: What about \(S_n(132, 231) \)?

Definition 5. A permutation \(p \) is called two-stack sortable if \(s(s(p)) = \) the identity permutation.

Theorem 3. A permutation \(p \) is two-stack sortable if and only if it does not contain a 2341-pattern, and it does not contain a 3241-pattern except as a part of a 35241-pattern.

The number of two-stack sortable permutations of length \(n \) is

\[
\frac{2}{(n+1)(2n+1)} \binom{3n}{n}.
\]