Day 04 – Ciphers Using Modular Arithmetic

Last time

Theorem 1 (Quotient-Remainder Theorem). *Given an integer* A *and a positive integer* B. *Then there exist integers* q, r *obtained through long division* such that $A = B \cdot q + r$ *where* $0 \leq r < B$.

Here, q is quotient and r is remainder. We say $r = A \mod B$.

If a, b are two integers with the same remainder under modulo m, then we say a and b are congruent modulo m and write $a \equiv b \mod m$.
Definition 1 (Inverse in modular arithmetic). If \(A \cdot C = 1 \mod B \) then \(C \) is the modular inverse of \(A \) under mod \(B \). Denote \(C = A^{-1} \mod B \).

If \(A^{-1} \) exists then we say that \(A \) is invertible under modulo \(B \).

Use the multiplication table to find the inverses under mod 26.
Definition: Let d, n be integers. We say “d divides n” or “n is divisible by d” if there exist an integer r such that $n = d \cdot r$. We write $d | n$ to denote that d divides n. In this case, we also say that d is a divisor of n.

Suppose we have two non-zero integers m, n. Then the common divisor of m and n is a positive integer d such that $d | m$ and $d | n$.

The greatest common divisor (GCD) of two positive integers m and n is a common divisor d such that for every other common divisor d' of m and n, $d' | d$. We write $d = \gcd(m, n)$.

If $\gcd(m, n) = 1$ then m and n are said to be relatively prime or coprime.

Theorem 2. a is invertible under modulo n if and only if $\gcd(a, n) = 1$.
Affine cipher

A key is given by a pair of integers \((a, b)\) where

- \(a\) relatively prime to 26 and
- \(0 \leq b \leq 25\).

For each plaintext number \(x\) and ciphertext number \(y\),

- Encryption function \(y = E(x) = ax + b \mod p\)
- Decryption function \(x = D(y) = a^{-1}(y - b) \mod 26\)

Example. Encrypt the word S W O R D using the affine cipher mod 26 for \(a = 9\) and \(b = 15\).

<table>
<thead>
<tr>
<th>plaintext</th>
<th>S</th>
<th>W</th>
<th>O</th>
<th>R</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>18</td>
<td>22</td>
<td>14</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>(y = ax + b \mod 26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ciphertext</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example. Decrypt the ciphertext S Y L N H knowing it was encrypted using affine cipher mod 26 for \(a = 19\) and \(b = 13\).

<table>
<thead>
<tr>
<th>ciphertext</th>
<th>S</th>
<th>Y</th>
<th>L</th>
<th>N</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>18</td>
<td>24</td>
<td>11</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>(x = a^{-1}(y - b) \mod 26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plaintext</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modulo arithmetic on matrices

Definition. Let A, B be $m \times n$ matrices with integer entries. We say that A and B are congruent modulo m if

$$a_{i,j} \equiv b_{i,j} \mod m$$

for all entries $a_{i,j}, b_{i,j}$. We write $A \equiv B \mod m$.

Example. In modulo 5, consider $A = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.

- $A + 2B \mod 5 =$

- $AB \mod 5 =$

- $BA \mod 5 =$

Definition. Let m be a given modulus and let A be an $n \times n$ matrix with integer entries. A is said to be invertible modulo m if there exists an $n \times n$ matrix B such that

$$AB = I \mod m \quad \text{and} \quad BA = I \mod m.$$

We write “$A^{-1} = B \mod m$” to denote B is the inverse of A modulo m.
Definition. The **determinant** of A modulo m is $\det(A)$ reduced mod m.

Example. Find the determinant of $A = \begin{bmatrix} 3 & 4 \\ -9 & 8 \end{bmatrix}$ under mod 10.

Theorem 3. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer entries then the determinant of A under modulo m is given by

$$
\det(A) = ad - bc \mod m.
$$

A is invertible modulo m if and only if $\det(A)$ is relatively prime to m. In this case, the inverse is given by

$$
A^{-1} = \det(A)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \mod m
$$

Example. Find the inverse of $A = \begin{bmatrix} 1 & 4 \\ 8 & 11 \end{bmatrix}$ under mod 26.