Elements of Information Theory

Definition 1. The **entropy** of an event A is a measure of the uncertainty we feel about the occurrence of A.

The entropy of a random variable X is given by

$$H(X) = \sum_a P(X = a) \cdot \log_2 \left(\frac{1}{P(X = a)} \right)$$

Definition 2. The **entropy of two random variables** X and Y is

$$H(X, Y) = \sum_{a, b} P(X = a, Y = b) \cdot \log_2 \left(\frac{1}{P(X = a, Y = b)} \right)$$

Definition 3. The **conditional entropy of the random variable X given an event B** is

$$H(X|B) = \sum_a P(X = a|B) \cdot \log_2 \left(\frac{1}{P(X = a|B)} \right)$$

Definition 4. The **conditional entropy of the random variable X given a random variable Y** is

$$H(X|Y) = \sum_b P(Y = b) \cdot H(X|Y = b)$$
Example. Suppose that random variables X, Y, Z are obtained by spinning the wheel below, with X given by the innermost circle, Y given by the intermediate circle, and Z given by the outermost circle.

(a) Compute $H(X)$

(b) How many bits (of information) are required to store the results of 100,000 spins of Z?

(c) Calculate the uncertainty of Z given that $X = 0$.
(d) Calculate $H(Z|Y)$

Let X, Y be random variables. Then

$$H(Y|X) = H(Y) \iff X \text{ and } Y \text{ are independent}.$$
(e) Calculate $H(X|Y, Z)$

Let X, Y_1, Y_2, \ldots, Y_k be random variables then

$$H(X|Y_1, Y_2, \ldots, Y_k) = 0 \iff X = f(Y_1, \ldots, Y_k).$$
Suppose we learn the value of X and then we learn the value of Y. Then

$$H(X, Y) = H(X) + H(Y|X).$$
Important inequalities

1. For a random variable X which takes only k values we always have

$$H(X) \leq \log_2(k)$$

with equality if and only if X takes all its values with equal probability
2. For any two random variables X and Y we always have

$$H(X|Y) \leq H(X)$$

and equality holds if and only if X and Y are independent
3. For any two random variables X and Y we always have

$$H(X,Y) \leq H(X) + H(Y)$$

and equality holds if and only if X and Y are independent.