Math 152: Applicable Mathematics and Computing

May 1, 2017

Announcements

- Josh's office hours today are 12.30-1.30 and 2.30-3.30.
- Homework 2 results posted on TED.
- If anyone cannot view their homework or midterm scores on TED, let me know.
- Midterm scores posted: score based on max of $0.25(Q 1+Q 2+Q 3+Q 4)$ and $0.3(Q 1+Q 2+Q 3)+0.1(Q 4)$.

$90-100$	21
$80-89$	40
$70-79$	58
$60-69$	38
$50-59$	17
$0-49$	8

Recap: Principle of Indifference

Last time we saw the Principle of Indifference. If \mathbf{p} is an optimal strategy for Player I, and \mathbf{q} is an optimal strategy for Player II, then the Principle of Indifference says:

- If $p_{i}>0$ for some i, then if Player II uses strategy \mathbf{q} and Player I selects row i, then the expected winnings for Player I are exactly V.
- If $q_{j}>0$ for some j, then if Player I uses strategy \mathbf{p} and Player II selects column j, then the expected winnings for Player I are exactly V.

Consequence: If \mathbf{p} is strictly bigger than 0 in every entry, then \mathbf{q} is an equalizing strategy for Player II. If \mathbf{q} is strictly bigger than 0 in every entry, then \mathbf{p} is an equalizing strategy for Player I.

Nonsingular Game Matrices

Theorem (Nonsingular Game Matrices)

Assume A is a nonsingular square matrix and $\mathbf{1}^{T} A^{-1} \mathbf{1} \neq 0$. Then the game with matrix A has value $V=\left(\mathbf{1}^{T} A^{-1} \mathbf{1}\right)^{-1}$ and optimal strategies $\mathbf{p}^{T}=V \mathbf{1}^{T} A^{-1}$ and $\mathbf{q}=V A^{-1} \mathbf{1}$, provided that $\mathbf{p} \geq 0$ and $\mathbf{q} \geq 0$.
(The vector $\mathbf{1}$ is the vector with every entry equal to 1 .)

Nonsingular Game Matrices: Proof

Proof.
Let \mathbf{p}, \mathbf{q} be optimal strategies for Player I and II respectively. Assume that every entry of \mathbf{p} is strictly positive.
As observed earlier, this means that \mathbf{q} is an equalizing strategy. So

$$
A \mathbf{q}=V \mathbf{1}
$$

So $\mathbf{q}=V A^{-1} \mathbf{1}$. We know that $\mathbf{1}^{T} \mathbf{q}=1$, so

$$
1=V \mathbf{1}^{T} A^{-1} \mathbf{1} \Rightarrow V=\left(\mathbf{1}^{T} A^{-1} \mathbf{1}\right)^{-1}
$$

Repeating this for \mathbf{p} gives $\mathbf{p}^{T}=V \mathbf{1}^{T} A^{-1}$.
If both $\mathbf{p} \geq 0$ and $\mathbf{q} \geq 0$, then we have a pair of optimal strategies. If not, these are not valid strategies and so our assumption at the beginning was wrong.

Nonsingular Game Matrices: Example 1

Theorem (Nonsingular Game Matrices)

Assume A is a nonsingular square matrix and $\mathbf{1}^{T} A^{-1} \mathbf{1} \neq 0$. Then the game with matrix A has value $V=\left(\mathbf{1}^{T} A^{-1} \mathbf{1}\right)^{-1}$ and optimal strategies $\mathbf{p}^{T}=V \mathbf{1}^{T} A^{-1}$ and $\mathbf{q}=V A^{-1} \mathbf{1}$, provided that $\mathbf{p} \geq 0$ and $\mathbf{q} \geq 0$.

Example. Solve the game

$$
A=\left(\begin{array}{rrr}
1 & 2 & -1 \\
2 & -1 & 4 \\
-1 & 4 & -3
\end{array}\right)
$$

Note that

$$
A^{-1}=\frac{1}{16}\left(\begin{array}{rrr}
13 & -2 & -7 \\
-2 & 4 & 6 \\
-7 & 6 & 5
\end{array}\right)
$$

Nonsingular Game Matrices: Example 2

Theorem (Nonsingular Game Matrices)

Assume A is a nonsingular square matrix and $\mathbf{1}^{T} A^{-1} \mathbf{1} \neq 0$. Then the game with matrix A has value $V=\left(\mathbf{1}^{T} A^{-1} \mathbf{1}\right)^{-1}$ and optimal strategies $\mathbf{p}^{T}=V \mathbf{1}^{T} A^{-1}$ and $\mathbf{q}=V A^{-1} \mathbf{1}$, provided that $\mathbf{p} \geq 0$ and $\mathbf{q} \geq 0$.

Example. Solve the game

$$
B=\left(\begin{array}{rrr}
8 & 16 & -8 \\
16 & 17 & 2 \\
-8 & 2 & -4
\end{array}\right)
$$

Note that

$$
B^{-1}=\frac{1}{48}\left(\begin{array}{rrr}
3 & -2 & -7 \\
-2 & 4 & 6 \\
-7 & 6 & 5
\end{array}\right)
$$

Diagonal Matrices

Recall that a diagonal matrix is a square matrix where all entries not on the main diagonal are 0 . We can use the previous theorem to solve any diagonal matrix with positive diagonal entries.

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

Triangular Matrices

A triangular matrix is a square matrix where all entries except the entries below the main diagonal are 0 . Using the Principle of Indifference, we can often solve games like this (this does not always work though!).

Question

Using the Principle of Indifference, solve the game

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 3 & -4 \\
0 & 1 & -2 & 3 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Symmetric Games

Def. A matrix A is skew-symmetric if $A^{T}=-A$.
Def. A finite game is symmetric if the underlying payoff matrix is square and skew-symmetric.

Theorem

A finite symmetric game has value zero, and any optimal strategy for one player is also optimal for the other player.

Game (Rock Paper Scissors)

Consider rock-paper-scissors where the winner receives payoff 1 , and in the case of a draw the payoff is 0 .

