Math 152: Applicable Mathematics and Computing

May 3, 2017

Announcements

- If you cannot see your Midterm result on TED, make sure you are choosing the 'All' option in the Grade Center.
- Homework 3 due today.

Invariance

Game (Matching Pennies)

Both players simultaneously choose either 'heads' or 'tails'. If the two choices are the same, then Player I wins 1. If they are different, Player II wins 1.

The payoff matrix for this game is:

$$
\left.\begin{array}{c}
H \\
H \\
T
\end{array} \begin{array}{cc}
H \\
+1 & -1 \\
-1 & +1
\end{array}\right)
$$

Notice that if we swap ' H ' and ' T ' in this matrix, the payoff matrix remains the same:

$$
\left.\begin{array}{c}
T \\
T \\
H
\end{array} \begin{array}{cc}
T \\
+1 & -1 \\
-1 & +1
\end{array}\right)
$$

Invariance

- Reordering the rows and columns of the payoff matrix does not change the rules of the game, but usually this will change the matrix itself.
- Def. A matrix game is invariant under some reordering of rows and columns if the payoff matrix is the same after we perform the reordering.
- For example, the Matching Pennies game was invariant under the reordering: ' $\mathrm{H}^{\prime} \rightarrow$ ' T ', ' T ' \rightarrow ' H '.
- And Rock-Paper-Scissors is invariant under the reordering: ' R ' \rightarrow ' P ', 'P' \rightarrow 'S', 'S' \rightarrow 'R'.

Invariance

Theorem

Let A be a matrix game that is invariant under some reordering.

- If x, y are two rows, where $x \rightarrow y$ under the reordering, then there is an optimal strategy for Player I with $\mathbf{p}(x)=\mathbf{p}(y)$.
- If x, y are two columns, where $x \rightarrow y$ under the reordering, then there is an optimal strategy for Player II with $\mathbf{q}(x)=\mathbf{q}(y)$.

For example, use this to solve Matching Pennies:

$$
\left.\begin{array}{c}
H \\
H \\
T
\end{array} \begin{array}{cc}
H \\
+1 & -1 \\
-1 & +1
\end{array}\right)
$$

Invariance Example

Question

Consider the following game:
$\left.\begin{array}{c}0 \\ 1 \\ 2\end{array} \begin{array}{ccc}0 & 1 & 2 \\ 0 & -1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right)$

Solve this game using Invariance.

Note About Invariance

Note: In the textbook, the section on Invariance (Part II, 3.6) relies heavily on group theory (in particular, group actions). Since MA100 is not a prerequisite, I will not assume any knowledge of this. For section 3.6, all that you need to know is what is contained in these slides.

Best Response

- For this section we will investigate what happens if a player knows what (mixed) strategy their opponent is going to use.
- First we establish some notation. Remember that X and Y are the sets of pure strategies for Player I and Player II respectively.
- Let X^{*} and Y^{*} be the set of all mixed strategies for Player I and Player II respectively.

Best Response

- Assume that Player I knows that Player II will use strategy $\mathbf{q} \in Y^{*}$. Then Player I should choose a strategy \mathbf{p} that maximizes their average winnings.
- Def. Given a (mixed) strategy \mathbf{q} for Player II, the best response strategy for Player I is the strategy \mathbf{p} that maximizes $\mathbf{p}^{T} A \mathbf{q}$.
- Def. Given a (mixed) strategy \mathbf{p} for Player I, the best response strategy for Player II is the strategy \mathbf{q} that minimizes $\mathbf{p}^{T} A \mathbf{q}$.

Question

Given Player II's strategy is $\mathbf{q}=\left[\begin{array}{lll}0.5 & 0.2 & 0.3\end{array}\right]^{T}$, find the best response strategy for Player I, for the game below.

$$
A=\left(\begin{array}{rrr}
0 & 1 & 2 \\
1 & -2 & 3 \\
2 & 3 & -4
\end{array}\right)
$$

Best Response: Upper Value

- As in the previous slide, assume that Player II must announce their strategy \mathbf{q} before Player I chooses their strategy.
- For a finite game, the best reponse strategy can always be taken to be a pure strategy: Player I will choose whichever row gives them the buggest average payoff (this is a pure strategy).
- Player II wants to choose \mathbf{q} so that Player I's best response payoff is as small as possible. Let \bar{V} be this minimum payoff. It is called the upper value of the game.

Best Response: Upper Value

- From the previous slide, \bar{V} is the least amount that Player II will lose, on average, if they must announce their strategy before Player I chooses theirs.
- Written mathematically, Player II must solve:

$$
\bar{V}=\min _{\mathbf{q} \in Y^{*}} \max _{1 \leq i \leq m} \sum_{j=1}^{n} a_{i j} q_{j}=\min _{\mathbf{q} \in Y^{*}} \max _{\mathbf{p} \in X^{*}} \mathbf{p}^{T} A \mathbf{q}
$$

- The strategy \mathbf{q} that attains this minimum is called the minimax strategy for Player II. It is the same as the optimal strategy we defined before.
- Since announcing their strategy first cannot be an advantage, we have $V \leq \bar{V}$.

Best Response: Lower Value

- Similarly, \underline{V} is the least amount that Player I will win, on average, if they must announce their strategy before Player II chooses theirs.
- Written mathematically, Player I must solve:

$$
\underline{V}=\max _{\mathbf{p} \in X^{*}} \min _{1 \leq j \leq n} \sum_{i=1}^{m} p_{i} a_{i j}=\max _{\mathbf{p} \in X^{*}} \min _{\mathbf{q} \in Y^{*}} \mathbf{p}^{T} A \mathbf{q}
$$

- \underline{V} is the lower value of the game, and the \mathbf{p} attaining the max will be the same as the optimal strategy we found before.
- Since announcing their strategy first cannot be an advantage, we have $\underline{V} \leq V \leq \bar{V}$.

