Math 152: Applicable Mathematics and Computing

April 6, 2017

Announcements

- First homework is posted on the website, due on Wednesday the 12th at 4PM in APM basement dropboxes.
- Office hours: An-Vy Hoang on Mondays and Wednesdays from 11AM-1PM in APM 6436. Josh Tobin on Mondays at 9AM and 1PM-3PM, and Wednesdays 1PM-2PM. Other office hours to be announced.

P- and N-positions: Example

Question (Subtraction game)

Consider the subtraction game where on each turn a player may remove 1 , 3 or 4 coins, and the last player to remove a coin wins. Determine which player will win if there are 15 coins.

What if there are 1000 coins?

Introducing Nim

Game (Nim)

In the game of Nim, there are is collection of piles of chips on a table. On each player's turn, they can remove any number of chips from one of the piles. Each player must remove at least one chip on their turn. The last player to remove a chip is the winner.

This is the most important impartial game we will study. In fact, we will see that surprisingly every impartial game is really Nim in disguise.

Nim: Preliminary Questions

We want to decide which positions are N -positions and which are P-positions). It's not obvious for this game!

- We will represent positions in this game as a list of the sizes of each pile: e.g. $(1,4,2)$ represents three piles, with 1,4 and 2 chips.
- What are the terminal positions? A position where each pile is empty. E.g. $(0,0,0)$ in the game where there were three piles.
- If there is just one pile, which positions are N/P-positions? (0) is a P-position, and all other positions are N -positions, since the next player can simply remove all the coins in the pile and win.
- Who wins from the position $(1,1)$? It is a P -position: the first player (\mathbf{N}) must remove one coin, then the second player (\mathbf{P}) takes the last coin and wins.

Nim: Two Piles

Conjecture: the P-positions are the positions (x, x). Let's prove this.
Let \mathcal{P} be the set of positions (x, x), and \mathcal{N} be all other positions. Need to show:
(1) Terminal positions are in \mathcal{P}.
(2) From every position in \mathcal{N}, there is a move to a position in \mathcal{P}.
(3) From every position in \mathcal{P}, every move is goes to a position in \mathcal{N}.

Nim: Two Piles

(Remember: $\mathcal{P}=\{(x, x)\}, \mathcal{N}=\{(x, y): x \neq y\})$
(1) Terminal positions are in \mathcal{P} : The terminal position is $(0,0)$, which is in \mathcal{P}.
(2) From any position in \mathcal{N}, there is a move to a position in \mathcal{P} : Take $(x, y) \in \mathcal{N}$, so $x \neq y$. We can move to one of (x, x) or (y, y), depending on whether $x<y$ or $y>x$. These are in \mathcal{P}.
(3) From any position in \mathcal{P}, every move is goes to a position in \mathcal{N} : Take $(x, x) \in \mathcal{P}$. Every move changes the size of exactly one pile, so results in a position (x, y), with $x \neq y$. This is in \mathcal{N}.

Writing numbers in base-2

- Before solving Nim for more than two piles, we need to know how to write numbers in base-2 (i.e. in "binary").
- Every non-negative integer can be written uniquely as the sum of unique powers of 2 : eg. $19=2^{4}+2^{1}+2^{0}$.
- We can write this as: $19=1 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}$
- For simplicity, we will just record the 1 's and 0 's: $19=(10011)_{2}$.
- If you have never seen this before, it is a good idea to get comfortable with it, since we will be doing this frequently.

Nim-sum: definition

Def. The nim-sum of two numbers in base- 2 is defined by

$$
\left(x_{m} x_{m-1} \cdots x_{0}\right) \oplus\left(y_{m} y_{m-1} \cdots y_{0}\right)=\left(z_{m} z_{m-1} \cdots z_{0}\right)
$$

where $z_{i}=1$ if $x_{i}+y_{i}=1$, and $z_{i}=0$ if $x_{i}+y_{i}=0$ or $x_{i}+y_{i}=2$.
For example:

- $(10110)_{2} \oplus(11101)_{2}=(1011)_{2}$
- $(1110)_{2} \oplus(10)_{2}=(1100)_{2}$

Nim-sum: properties

Here are some useful properties of the nim-sum operation:

- $x \oplus y=y \oplus x$ (commutativity)
- $(x \oplus y) \oplus z=x \oplus(y \oplus z)$ (associativity)
- $x \oplus x=0$ (self-cancelling)
- $x \oplus 0=0 \oplus x=x$ (identity)
- $x \oplus y=x \oplus z \Rightarrow y=z$ (cancellation)

Nim and nim-sim

The connection between nim and nim-sum is given by the following theorem:

Theorem (Bouton, 1902)

A position $\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ in a game of N im is a P-position if and only if

$$
x_{1} \oplus x_{2} \oplus \cdots \oplus x_{k}=0
$$

