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Models of Duopoly

Announcements

@ Midterm scores will be posted later today.

@ The average was 85%.

@ Keep in mind: there will be no definitions on the final (and people did
very well on the definitions)..

@ Homework 6 will be posted this afternoon.
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Entry Deterrence

Consider a monopoly, where the price demand relationship is given by

P(Q) =

0 otherwise

{17—0 0< Q<17

and where the cost of producing g1 units is g1 + 9.

What is the best choice of g7

(Remark. Note that the production cost has a startup cost here, unlike
our previous models.)
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Models of Duopoly

Entry Deterrence

@ In this case, the payoff function is

ui(q1) = q1(17 — q1) — (g1 +9)

@ The derivative is J
T~ _2g; + 16,
q1
so the maximum will be obtained at q; = 8.

@ So the payoff is u; =8-9 — 17 = b55.

421



Models of Duopoly

Entry Deterrence

o After this firm has decided to set g; = 8, another firm considers
entering the market.

They calculate that their payoff will be

(q2) = ¢2(17 =8 — g2) — (92 +9)

They optimize this,
du
—2 = -2¢,+8
a2

So the max occurs when g2 = 4, yielding a profit of ux(4) = 7.

But now the first firm's profits decrease. Firm | does not like this. If
they could go back in time, can they prevent this?
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Models of Duopoly

Entry Deterrence

@ Firm | is worried that a competitor will choose to produce g units.
The payoff for Firm Il in this case is

u2(q1,92) = q2(17 — g1 — q2) — (92 +9)

@ Firm | would like to choose g; in such a way that Firm Il has no
incentive to enter the market.

@ For a constant qj, let’s find Firm Il's response strategy go.
e Maximizing for go,

0

2 17— q - 2g0 - 1
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So qo =8—q1/2.
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Models of Duopoly

Entry Deterrence

@ The payoff function is

(g1, q2) = ¢2(17 — g1 — q2) — (92 +9)

e Firm II's strategy will be g» = 8 — q1/2, so

w(q1,q2) = (8—%)(17—ql—8+%)—(8_%+9)
= Cf—8q{1—+—55

o If we make this function 0, then Firm Il will not enter the market.
2
So & —8q1+55=0= (g1 — 10)(q1 —22) =0

If g1 = 10, then Firm I's profits are u; = 51 (compare this to their
initial profit of 55).
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Models of Duopoly

Entry Deterrence

How does the situation differ if both firms choose production
simultaneously (ie. Cournot)?

@ Payoffs in this case are:
ui(g1,92) = q(17—q1—q2) — (g1 +9)
(g, ) = q@(l7—-q—q)—(g2+9)

Setting derivatives to zero, we get
—2q1+16—-q=0=-2q+ 16— q1

So g1 = g2 = 16/3, yielding profits of 19% (compare this to 55 and
51).
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Cooperative Games

@ The general-sum games we have been discussing so far have been
non-cooperative.

@ As we have seen, a strategic equilibrium is self-enforcing: players have
no incentive to switch from it, and so are inclined to choose these
strategies without needing a binding agreement.

@ However, if we allow binding agreements, players can do better.

@ For example, the Prisoner’s dilemma:

cC D
C ((3.3) (0,4)
o9 1)

@ If possible, the two prisoners will make a binding agreement to both
Cooperate.
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Cooperative Games: Transferable Utility?

@ In the cooperative theory we allow players to make binding
agreements.
@ We will consider two cases:

(1) Transferable Utility (TU): players are allowed to make payments to
each other when the game ends (called side-payments).

(2) Nontransferable Utility (NTU): players are not allowed to make
side-payments. The only payoff that occurs is from the game itself.



Cooperative Games

Convex Sets

Def. A subset S of R? is a convex set if every straight line joining two
points in S is completely contained in S.

Convex Not Convex
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Cooperative Games

Convex Hull

o Def. The convex hull of a set T in R? is the smallest convex set S
that contains T.

@ Given a finite set of points, we can easily find the convex hull, adding
one point at a time.

e Finding the convex hull is an important problem in computational
geometry, and there are many algorithms (eg. the Graham Scan).



Cooperative Games

Convex Hull

Example. Find the convex hull of (0,0),(0,5),(2,3),(3,2),(5,5).

(0,5) (5,5)

° °

(2,3)
°
°
(3,2)

°

(0,0)
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Cooperative Games
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Cooperative Games

Convex Hull

Example. Find the convex hull of (0,0), (0,5),(2,3),(3,2),(5,5).
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Feasible Sets

@ Informally speaking, the feasible set of a game is the set of all
possible payoffs that might occur as a result of the game (including
side-payments, if allowed).

@ Def. Consider a bimatrix game with payoff matrices A, B, where
Player | has m pure strategies and Player |l has n pure strategies. The

NTU feasible set of this game is the convex hull of the mn points
(ajj, bjj), where 1 <i<mand 1<j<n.
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Cooperative Games

Feasible Sets

For the bimatrix game

(4,3) (0,0)
(2,2) (1,4)
find the NTU feasible set.

. Moy 24,2017 15/ 21



Feasible Sets

@ In a TU game, if (x,y) is a possible payoff in a game, then so is
(x — s,y + s) for any constant s € R. Here s is some sidepayment.

o Def. Consider a bimatrix game with payoff matrices A, B. The TU
feasible set of this game is the convex hull of the points
(aj +s,bjj—s), wherel1 <i<mand1l<,j<nandsisany real
number.

e Note that for any point (x,y) € R, the set of points (x — s,y + s) is
just the line with slope —1 that goes through (x, y).

@ In particular, the TU feasible set is just the NTU feasible set
translated along the line with slope —1.



Cooperative Games

Feasible Sets

For the bimatrix game

((4, 3) (0, 0))
(2,2) (1,4)
find the TU feasible set.
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Cooperative Games

Pareto Optimality

o Def. A payoff (x,y) in the feasible set of a game is Pareto optimal if
there is no other point in the feasible set (x’,y’) with x’ > x and
y'=y.

@ In the diagram of a feasible set, the points which are Pareto optimal
will be the upper right boundary.

@ When the players come to a binding agreement, they will always
choose a point that is Pareto optimal.



Solving TU Games

@ The first thing to notice about solving a TU game is that both players
will want to choose a point where the sum of the payoffs is
maximized.

o = max;max;(a; + bjj)

@ What remains is to decide how to split o between the two players.

@ Both players will choose a threat strategy that they will follow if
negotiations break down. Denote these by p and . The payoffs in
this case are:

(p"Aq,p” Bq) = (D1, Dy)

o Player | will accept no less than Dy, Player Il will accept no less than
D,. These correspond to the payoffs: (Di,0 — D) and (o — Da, D).



Solving TU Games

@ So Player | will accept no less than (Dy,0 — D;) and Player Il will
accept no less than (o — Dy, D>), where D; = p” Aq and D, = p’ Bq.
@ A natural compromise is the midpoint:

oc+Dy—Dy 0—D1+ D>
2 ’ 2

So Player | wants to maximize
Dy —Dy,=p"(A-B)q

and Player Il wants to minimize it.

This is equivalent to playing the zero sum game A — B.
e If § = Val(A — B), then the TU solution is given by

oc+06 c—9
)




Cooperative Games

Solving TU Games

Find the TU solution to the game

((0,0) (6,2) (—1,2))

(4,-1) (3,6) (5,5)

We know that the solution is given by
c+6 0—96
2 72 ’

o = max;max;(ajj + bjj)

where

and
d =Val(A-B)
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