Math 152: Applicable Mathematics and Computing

May 24, 2017

▶ ▲ 클 ▶ 클 ∽ Q (May 24, 2017 1 / 21

・ロト ・ 日 ト ・ 田 ト ・

Announcements

- Midterm scores will be posted later today.
- The average was 85%.
- Keep in mind: there will be no definitions on the final (and people did very well on the definitions)..
- Homework 6 will be posted this afternoon.

< ロ > < 同 > < 三 > < 三

Game

Consider a monopoly, where the price demand relationship is given by

$$P(Q) = egin{cases} 17-Q & 0 \leq Q \leq 17 \ 0 & ext{otherwise} \end{cases}$$

and where the cost of producing q_1 units is $q_1 + 9$.

What is the best choice of q_1 ?

(**Remark**. Note that the production cost has a startup cost here, unlike our previous models.)

• In this case, the payoff function is

$$u_1(q_1) = q_1(17 - q_1) - (q_1 + 9)$$

The derivative is

$$\frac{du_1}{q_1} = -2q_1 + 16,$$

so the maximum will be obtained at $q_1 = 8$.

• So the payoff is $u_1 = 8 \cdot 9 - 17 = 55$.

< ロ > < 同 > < 三 > < 三

- After this firm has decided to set $q_1 = 8$, another firm considers entering the market.
- They calculate that their payoff will be

$$u_2(q_2) = q_2(17 - 8 - q_2) - (q_2 + 9)$$

They optimize this,

$$\frac{du_2}{q_2} = -2q_2 + 8$$

- So the max occurs when $q_2 = 4$, yielding a profit of $u_2(4) = 7$.
- But now the first firm's profits *decrease*. Firm I does not like this. If they could go back in time, can they prevent this?

イロト イポト イヨト イヨト

 Firm I is worried that a competitor will choose to produce q₂ units. The payoff for Firm II in this case is

$$u_2(q_1, q_2) = q_2(17 - q_1 - q_2) - (q_2 + 9)$$

- Firm I would like to choose q₁ in such a way that Firm II has no incentive to enter the market.
- For a constant q_1 , let's find Firm II's response strategy q_2 .
- Maximizing for q₂,

$$\frac{\partial u_2}{\partial q_2} = 17 - q_1 - 2q_2 - 1$$

So
$$q_2 = 8 - q_1/2$$
.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The payoff function is

$$u_2(q_1,q_2) = q_2(17 - q_1 - q_2) - (q_2 + 9)$$

• Firm II's strategy will be $q_2 = 8 - q_1/2$, so

$$u_2(q_1, q_2) = \left(8 - \frac{q_1}{2}\right) \left(17 - q_1 - 8 + \frac{q_1}{2}\right) - \left(8 - \frac{q_1}{2} + 9\right)$$
$$= \frac{q_1^2}{4} - 8q_1 + 55$$

- If we make this function 0, then Firm II will not enter the market.
- So $\frac{q_1^2}{4} 8q_1 + 55 = 0 \Rightarrow (q_1 10)(q_1 22) = 0$
- If q₁ = 10, then Firm I's profits are u₁ = 51 (compare this to their initial profit of 55).

- How does the situation differ if both firms choose production simultaneously (ie. Cournot)?
- Payoffs in this case are:

$$egin{array}{rll} u_1(q_1,q_2)&=&q_1(17-q_1-q_2)-(q_1+9)\ u_2(q_1,q_2)&=&q_2(17-q_1-q_2)-(q_2+9) \end{array}$$

Setting derivatives to zero, we get

$$-2q_1 + 16 - q_2 = 0 = -2q_2 + 16 - q_1$$

• So $q_1 = q_2 = 16/3$, yielding profits of $19\frac{4}{9}$ (compare this to 55 and 51).

イロト 不得 トイヨト イヨト 二日

Cooperative Games

- The general-sum games we have been discussing so far have been non-cooperative.
- As we have seen, a strategic equilibrium is self-enforcing: players have no incentive to switch from it, and so are inclined to choose these strategies without needing a binding agreement.
- However, if we allow binding agreements, players can do better.
- For example, the Prisoner's dilemma:

 $\begin{array}{ccc}
C & D \\
C & (3,3) & (0,4) \\
D & (4,0) & (1,1)
\end{array}$

• If possible, the two prisoners will make a binding agreement to both Cooperate.

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

Cooperative Games: Transferable Utility?

- In the cooperative theory we allow players to make binding agreements.
- We will consider two cases:
 - (1) Transferable Utility (TU): players are allowed to make payments to each other when the game ends (called side-payments).
 - (2) Nontransferable Utility (NTU): players are not allowed to make side-payments. The only payoff that occurs is from the game itself.

イロト イヨト イヨト

Convex Sets

Def. A subset S of \mathbb{R}^2 is a convex set if every straight line joining two points in S is completely contained in S.

- **Def.** The convex hull of a set *T* in ℝ² is the smallest convex set *S* that contains *T*.
- Given a finite set of points, we can easily find the convex hull, adding one point at a time.
- Finding the convex hull is an important problem in computational geometry, and there are many algorithms (eg. the Graham Scan).

< ロ > < 同 > < 三 > < 三

Example. Find the convex hull of (0,0), (0,5), (2,3), (3,2), (5,5).

May 24, 2017 13 / 21

Example. Find the convex hull of (0,0), (0,5), (2,3), (3,2), (5,5).

Example. Find the convex hull of (0,0), (0,5), (2,3), (3,2), (5,5).

Example. Find the convex hull of (0,0), (0,5), (2,3), (3,2), (5,5).

Example. Find the convex hull of (0,0), (0,5), (2,3), (3,2), (5,5).

Example. Find the convex hull of (0,0), (0,5), (2,3), (3,2), (5,5).

Example. Find the convex hull of (0,0), (0,5), (2,3), (3,2), (5,5).

- Informally speaking, the *feasible set* of a game is the set of all possible payoffs that might occur as a result of the game (including side-payments, if allowed).
- **Def.** Consider a bimatrix game with payoff matrices A, B, where Player I has m pure strategies and Player II has n pure strategies. The NTU feasible set of this game is the convex hull of the mn points (a_{ij}, b_{ij}) , where $1 \le i \le m$ and $1 \le j \le n$.

イロト 不得下 イヨト イヨト 二日

May 24, 2017

14 / 21

Question

For the bimatrix game

$$\begin{pmatrix} (4,3) & (0,0) \\ (2,2) & (1,4) \end{pmatrix}$$

find the NTU feasible set.

<ロ> (日) (日) (日) (日) (日)

- In a TU game, if (x, y) is a possible payoff in a game, then so is (x s, y + s) for any constant $s \in \mathbb{R}$. Here s is some sidepayment.
- Def. Consider a bimatrix game with payoff matrices A, B. The TU feasible set of this game is the convex hull of the points (a_{ij} + s, b_{ij} − s), where 1 ≤ i ≤ m and 1 ≤ j ≤ n and s is any real number.
- Note that for any point (x, y) ∈ ℝ², the set of points (x s, y + s) is just the line with slope -1 that goes through (x, y).
- In particular, the TU feasible set is just the NTU feasible set translated along the line with slope -1.

Question

For the bimatrix game

$$\begin{pmatrix} (4,3) & (0,0) \\ (2,2) & (1,4) \end{pmatrix}$$

find the TU feasible set.

<ロ> (日) (日) (日) (日) (日)

Pareto Optimality

- Def. A payoff (x, y) in the feasible set of a game is Pareto optimal if there is no other point in the feasible set (x', y') with x' ≥ x and y' ≥ y.
- In the diagram of a feasible set, the points which are Pareto optimal will be the upper right boundary.
- When the players come to a binding agreement, they will always choose a point that is Pareto optimal.

イロト 不得下 イヨト イヨト 二日

Solving TU Games

 The first thing to notice about solving a TU game is that both players will want to choose a point where the sum of the payoffs is maximized.

$$\sigma = \max_i \max_j (a_{ij} + b_{ij})$$

- What remains is to decide how to split σ between the two players.
- Both players will choose a threat strategy that they will follow if negotiations break down. Denote these by **p** and **q**. The payoffs in this case are:

$$(\mathbf{p}^T A \mathbf{q}, \mathbf{p}^T B \mathbf{q}) = (D_1, D_2)$$

Player I will accept no less than D₁, Player II will accept no less than D₂. These correspond to the payoffs: (D₁, σ - D₁) and (σ - D₂, D₂).

Solving TU Games

- So Player I will accept no less than $(D_1, \sigma D_1)$ and Player II will accept no less than $(\sigma D_2, D_2)$, where $D_1 = \mathbf{p}^T A \mathbf{q}$ and $D_2 = \mathbf{p}^T B \mathbf{q}$.
- A natural compromise is the midpoint:

$$\left(\frac{\sigma+D_1-D_2}{2},\frac{\sigma-D_1+D_2}{2}\right)$$

So Player I wants to maximize

$$D_1 - D_2 = \mathbf{p}^T (A - B) \mathbf{q}$$

and Player II wants to minimize it.

- This is equivalent to playing the zero sum game A B.
- If $\delta = Val(A B)$, then the TU solution is given by

$$\left(\frac{\sigma+\delta}{2},\frac{\sigma-\delta}{2}\right)$$

May 24, 2017 20 / 21

イロト イポト イヨト イヨト 二日

Solving TU Games

Question

Find the TU solution to the game

$$\begin{pmatrix} (0,0) & (6,2) & (-1,2) \\ (4,-1) & (3,6) & (5,5) \end{pmatrix}$$

We know that the solution is given by

$$\left(rac{\sigma+\delta}{2},rac{\sigma-\delta}{2}
ight),$$

where

$$\sigma = \max_i \max_j (a_{ij} + b_{ij})$$

and

$$\delta = \mathsf{Val}(A - B)$$

<ロ> (日) (日) (日) (日) (日)