Math 152: Applicable Mathematics and Computing

May 24, 2017

Announcements

- Midterm scores will be posted later today.
- The average was 85%.
- Keep in mind: there will be no definitions on the final (and people did very well on the definitions)..
- Homework 6 will be posted this afternoon.

Entry Deterrence

Game

Consider a monopoly, where the price demand relationship is given by

$$
P(Q)= \begin{cases}17-Q & 0 \leq Q \leq 17 \\ 0 & \text { otherwise }\end{cases}
$$

and where the cost of producing q_{1} units is $q_{1}+9$.

What is the best choice of q_{1} ?
(Remark. Note that the production cost has a startup cost here, unlike our previous models.)

Entry Deterrence

- In this case, the payoff function is

$$
u_{1}\left(q_{1}\right)=q_{1}\left(17-q_{1}\right)-\left(q_{1}+9\right)
$$

- The derivative is

$$
\frac{d u_{1}}{q_{1}}=-2 q_{1}+16
$$

so the maximum will be obtained at $q_{1}=8$.

- So the payoff is $u_{1}=8 \cdot 9-17=55$.

Entry Deterrence

- After this firm has decided to set $q_{1}=8$, another firm considers entering the market.
- They calculate that their payoff will be

$$
u_{2}\left(q_{2}\right)=q_{2}\left(17-8-q_{2}\right)-\left(q_{2}+9\right)
$$

- They optimize this,

$$
\frac{d u_{2}}{q_{2}}=-2 q_{2}+8
$$

- So the max occurs when $q_{2}=4$, yielding a profit of $u_{2}(4)=7$.
- But now the first firm's profits decrease. Firm I does not like this. If they could go back in time, can they prevent this?

Entry Deterrence

- Firm I is worried that a competitor will choose to produce q_{2} units. The payoff for Firm II in this case is

$$
u_{2}\left(q_{1}, q_{2}\right)=q_{2}\left(17-q_{1}-q_{2}\right)-\left(q_{2}+9\right)
$$

- Firm I would like to choose q_{1} in such a way that Firm II has no incentive to enter the market.
- For a constant q_{1}, let's find Firm II's response strategy q_{2}.
- Maximizing for q_{2},

$$
\frac{\partial u_{2}}{\partial q_{2}}=17-q_{1}-2 q_{2}-1
$$

So $q_{2}=8-q_{1} / 2$.

Entry Deterrence

- The payoff function is

$$
u_{2}\left(q_{1}, q_{2}\right)=q_{2}\left(17-q_{1}-q_{2}\right)-\left(q_{2}+9\right)
$$

- Firm II's strategy will be $q_{2}=8-q_{1} / 2$, so

$$
\begin{aligned}
u_{2}\left(q_{1}, q_{2}\right) & =\left(8-\frac{q_{1}}{2}\right)\left(17-q_{1}-8+\frac{q_{1}}{2}\right)-\left(8-\frac{q_{1}}{2}+9\right) \\
& =\frac{q_{1}^{2}}{4}-8 q_{1}+55
\end{aligned}
$$

- If we make this function 0 , then Firm II will not enter the market.
- So $\frac{q_{1}^{2}}{4}-8 q_{1}+55=0 \Rightarrow\left(q_{1}-10\right)\left(q_{1}-22\right)=0$
- If $q_{1}=10$, then Firm l's profits are $u_{1}=51$ (compare this to their initial profit of 55).

Entry Deterrence

- How does the situation differ if both firms choose production simultaneously (ie. Cournot)?
- Payoffs in this case are:

$$
\begin{aligned}
& u_{1}\left(q_{1}, q_{2}\right)=q_{1}\left(17-q_{1}-q_{2}\right)-\left(q_{1}+9\right) \\
& u_{2}\left(q_{1}, q_{2}\right)=q_{2}\left(17-q_{1}-q_{2}\right)-\left(q_{2}+9\right)
\end{aligned}
$$

- Setting derivatives to zero, we get

$$
-2 q_{1}+16-q_{2}=0=-2 q_{2}+16-q_{1}
$$

- So $q_{1}=q_{2}=16 / 3$, yielding profits of $19 \frac{4}{9}$ (compare this to 55 and 51).

Cooperative Games

- The general-sum games we have been discussing so far have been non-cooperative.
- As we have seen, a strategic equilibrium is self-enforcing: players have no incentive to switch from it, and so are inclined to choose these strategies without needing a binding agreement.
- However, if we allow binding agreements, players can do better.
- For example, the Prisoner's dilemma:

$$
\begin{gathered}
c \\
C \\
C\left(\begin{array}{cc}
C & D \\
(4,0) & (0,4) \\
(1,1)
\end{array}\right)
\end{gathered}
$$

- If possible, the two prisoners will make a binding agreement to both Cooperate.

Cooperative Games: Transferable Utility?

- In the cooperative theory we allow players to make binding agreements.
- We will consider two cases:
(1) Transferable Utility (TU): players are allowed to make payments to each other when the game ends (called side-payments).
(2) Nontransferable Utility (NTU): players are not allowed to make side-payments. The only payoff that occurs is from the game itself.

Convex Sets

Def. A subset S of \mathbb{R}^{2} is a convex set if every straight line joining two points in S is completely contained in S.

Convex

Not Convex

Convex Hull

- Def. The convex hull of a set T in \mathbb{R}^{2} is the smallest convex set S that contains T.
- Given a finite set of points, we can easily find the convex hull, adding one point at a time.
- Finding the convex hull is an important problem in computational geometry, and there are many algorithms (eg. the Graham Scan).

Convex Hull

Example. Find the convex hull of $(0,0),(0,5),(2,3),(3,2),(5,5)$.
$(0,5)$
$(5,5)$
$(2,3)$
$(3,2)$

Convex Hull

Example. Find the convex hull of $(0,0),(0,5),(2,3),(3,2),(5,5)$.

$(5,5)$
$(3,2)$

Convex Hull

Example. Find the convex hull of $(0,0),(0,5),(2,3),(3,2),(5,5)$.

Convex Hull

Example. Find the convex hull of $(0,0),(0,5),(2,3),(3,2),(5,5)$.

Convex Hull

Example. Find the convex hull of $(0,0),(0,5),(2,3),(3,2),(5,5)$.

Convex Hull

Example. Find the convex hull of $(0,0),(0,5),(2,3),(3,2),(5,5)$.

Convex Hull

Example. Find the convex hull of $(0,0),(0,5),(2,3),(3,2),(5,5)$.

Feasible Sets

- Informally speaking, the feasible set of a game is the set of all possible payoffs that might occur as a result of the game (including side-payments, if allowed).
- Def. Consider a bimatrix game with payoff matrices A, B, where Player I has m pure strategies and Player II has n pure strategies. The NTU feasible set of this game is the convex hull of the $m n$ points ($a_{i j}, b_{i j}$), where $1 \leq i \leq m$ and $1 \leq j \leq n$.

Feasible Sets

Question

For the bimatrix game

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

find the NTU feasible set.

Feasible Sets

- In a TU game, if (x, y) is a possible payoff in a game, then so is $(x-s, y+s)$ for any constant $s \in \mathbb{R}$. Here s is some sidepayment.
- Def. Consider a bimatrix game with payoff matrices A, B. The TU feasible set of this game is the convex hull of the points $\left(a_{i j}+s, b_{i j}-s\right)$, where $1 \leq i \leq m$ and $1 \leq j \leq n$ and s is any real number.
- Note that for any point $(x, y) \in \mathbb{R}^{2}$, the set of points $(x-s, y+s)$ is just the line with slope -1 that goes through (x, y).
- In particular, the TU feasible set is just the NTU feasible set translated along the line with slope -1 .

Feasible Sets

Question

For the bimatrix game

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

find the TU feasible set.

Pareto Optimality

- Def. A payoff (x, y) in the feasible set of a game is Pareto optimal if there is no other point in the feasible set $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \geq x$ and $y^{\prime} \geq y$.
- In the diagram of a feasible set, the points which are Pareto optimal will be the upper right boundary.
- When the players come to a binding agreement, they will always choose a point that is Pareto optimal.

Solving TU Games

- The first thing to notice about solving a TU game is that both players will want to choose a point where the sum of the payoffs is maximized.

$$
\sigma=\max _{i} \max _{j}\left(a_{i j}+b_{i j}\right)
$$

- What remains is to decide how to split σ between the two players.
- Both players will choose a threat strategy that they will follow if negotiations break down. Denote these by \mathbf{p} and \mathbf{q}. The payoffs in this case are:

$$
\left(\mathbf{p}^{T} A \mathbf{q}, \mathbf{p}^{T} B \mathbf{q}\right)=\left(D_{1}, D_{2}\right)
$$

- Player I will accept no less than D_{1}, Player II will accept no less than D_{2}. These correspond to the payoffs: $\left(D_{1}, \sigma-D_{1}\right)$ and $\left(\sigma-D_{2}, D_{2}\right)$.

Solving TU Games

- So Player I will accept no less than $\left(D_{1}, \sigma-D_{1}\right)$ and Player II will accept no less than $\left(\sigma-D_{2}, D_{2}\right)$, where $D_{1}=\mathbf{p}^{T} A \mathbf{q}$ and $D_{2}=\mathbf{p}^{T} B \mathbf{q}$.
- A natural compromise is the midpoint:

$$
\left(\frac{\sigma+D_{1}-D_{2}}{2}, \frac{\sigma-D_{1}+D_{2}}{2}\right)
$$

- So Player I wants to maximize

$$
D_{1}-D_{2}=\mathbf{p}^{T}(A-B) \mathbf{q}
$$

and Player II wants to minimize it.

- This is equivalent to playing the zero sum game $A-B$.
- If $\delta=\operatorname{Val}(A-B)$, then the TU solution is given by

$$
\left(\frac{\sigma+\delta}{2}, \frac{\sigma-\delta}{2}\right)
$$

Solving TU Games

Question

Find the TU solution to the game

$$
\left(\begin{array}{ccc}
(0,0) & (6,2) & (-1,2) \\
(4,-1) & (3,6) & (5,5)
\end{array}\right)
$$

We know that the solution is given by

$$
\left(\frac{\sigma+\delta}{2}, \frac{\sigma-\delta}{2}\right)
$$

where

$$
\sigma=\max _{i} \max _{j}\left(a_{i j}+b_{i j}\right)
$$

and

$$
\delta=\operatorname{Val}(A-B)
$$

