Math 152: Applicable Mathematics and Computing

May 26, 2017

Announcements

- Homework 6 was posted on Wednesday, due next Wednesday.
- Last homework is Homework 7, posted next week (due Week 10).
- Monday is Memorial day: no sections or class.

Solving TU Games

Question

Find the TU solution to the game

$$
\left(\begin{array}{ccc}
(0,0) & (6,2) & (-1,2) \\
(4,-1) & (3,6) & (5,5)
\end{array}\right)
$$

We know that the solution is given by

$$
\left(\frac{\sigma+\delta}{2}, \frac{\sigma-\delta}{2}\right)
$$

where

$$
\sigma=\max _{i} \max _{j}\left(a_{i j}+b_{i j}\right)
$$

and

$$
\delta=\operatorname{Val}(A-B)
$$

Solving TU Games

- We have $\sigma=5+5=10$.
- The matrix $A-B$ is

$$
\left(\begin{array}{rrr}
0 & 4 & -3 \\
5 & -3 & 0
\end{array}\right)
$$

- The third column dominates the first, leaving

$$
\left(\begin{array}{rr}
4 & -3 \\
-3 & 0
\end{array}\right)
$$

The value of this game is $\delta=-9 / 10$. So the TU solution is $((10-9 / 10) / 2,(10+9 / 10) / 2)=(4.55,5.45)$.

- So the sidepayment is $5-4.55=0.45$ from Player I to Player II.

Solving NTU Games

- John Nash proposed a general model for solving NTU games in 1950 ("The Bargaining Problem", Econometrica, Vol. 18, No. 2, pp. 155-162).
- The inputs are a closed, bounded, convex set S (which represents the feasible payoffs) and a point $\left(u^{*}, v^{*}\right) \in S$ called the threat point or status quo point.
- The approach is to make some reasonable assumptions about the solution that the players will agree on, and then to show that these assumptions uniquely determine a solution.
- We denote this solution by $f\left(S, u^{*}, v^{*}\right)=(\bar{u}, \bar{v})$.

Nash Bargaining Axioms

(1) Feasibility: $(\bar{u}, \bar{v}) \in S$.

- This axiom just asserts that the agreed solution is one of the possible payoffs.
(2) Pareto optimality: there is no point $(u, v) \in S$, other than (\bar{u}, \bar{v}), that satisfies $u \geq \bar{u}$ and $v \geq \bar{v}$.
- They will not agree on a payoff if they can both achieve more than that payoff (or if one can achieve more, while the other's payoff stays the same).
(3) Symmetry: if S is symmetric about the line $u=v$, and if $u^{*}=v^{*}$, then $\bar{u}=\bar{v}$.
- In a symmetric game with equal threats, the agreed upon payoff will be equal for both players.

Nash Bargaining Axioms

(4) Independence of irrelevant alternatives: if T is a closed, convex subset of S, and if $\left(u^{*}, v^{*}\right) \in T$ and $(\bar{u}, \bar{v}) \in T$, then
$f\left(T, u^{*}, v^{*}\right)=f\left(S, u^{*}, v^{*}\right)=(\bar{u}, \bar{v})$.

- Removing possible payoffs that are not part of the solution should not change the bargaining process.
- Nash admits that this is the toughest axiom to justify.
(5) Invariance under change of location and scale: let g_{1}, g_{2} be linear transformations, $g_{1}(t)=\alpha_{1} t+\beta_{1}, g_{2}(t)=\alpha_{2} t+\beta_{2}$, where $\alpha_{1}>0$ and $\alpha_{2}>0$. Then $f\left(T, g_{1}\left(u^{*}\right), g_{2}\left(v^{*}\right)\right)=\left(g_{1}(\bar{u}), g_{2}(\bar{v})\right)$, where $T=\left\{\left(g_{1}(u), g_{2}(v)\right):(u, v) \in S\right\}$
- This just says that if we do a change-of-coordinates then the solution will just be the new coordinates of the old solution.

Nash Bargaining Example

Question

Let $T=\{(u, v): u, v \geq 0, u+v \leq 2\}$. If the threat point is $(0,0)$, what is the NTU solution $f(T, 0,0)$?

Nash Bargaining Example

Question

Let $T=\{(u, v): u, v \geq 0, u+v \leq 2\}$. If the threat point is $(0,0)$, what is the NTU solution $f(T, 0,0)$?

- Axiom 1 implies that $f(T, 0,0) \in T$.

Nash Bargaining Example

Question

Let $T=\{(u, v): u, v \geq 0, u+v \leq 2\}$. If the threat point is $(0,0)$, what is the NTU solution $f(T, 0,0)$?

- Axiom 1 implies that $f(T, 0,0) \in T$.
- Axiom 2 implies that $f(T, 0,0)$ lies on the line $u+v=2$.

Nash Bargaining Example

Question

Let $T=\{(u, v): u, v \geq 0, u+v \leq 2\}$. If the threat point is $(0,0)$, what is the NTU solution $f(T, 0,0)$?

- Axiom 1 implies that $f(T, 0,0) \in T$.
- Axiom 2 implies that $f(T, 0,0)$ lies on the line $u+v=2$.
- Axiom 3 implies that $f(T, 0,0)=(u, u)$ for some $u \in \mathbb{R}$.

Nash Bargaining Example

Question

Let $T=\{(u, v): u, v \geq 0, u+v \leq 2\}$. If the threat point is $(0,0)$, what is the NTU solution $f(T, 0,0)$?

- Axiom 1 implies that $f(T, 0,0) \in T$.
- Axiom 2 implies that $f(T, 0,0)$ lies on the line $u+v=2$.
- Axiom 3 implies that $f(T, 0,0)=(u, u)$ for some $u \in \mathbb{R}$.
- So we get $u+u=2 \Rightarrow f(T, 0,0)=(1,1)$.

Nash Bargaining Base Case

Corollary

Let T be any closed, bounded, convex subset of \mathbb{R}^{2} that contains the points $(0,0),(1,1)$ and lies on or below the line $u+v=2$. Then $f(T, 0,0)=(1,1)$, and moreover $(1,1)$ is the only point that satisfies the Nash axioms.

Proof.
This just follows from the solution to the previous example, together with Axiom 4.

Nash Bargaining Solution

Theorem

There is a unique function satisfying the Nash axioms. Moreover, if there is a point $(u, v) \in S$ with $u>u^{*}$ and $v>v^{*}$, then $f\left(S, u^{*}, v^{*}\right)$ is exactly the point which maximizes $\left(u-u^{*}\right)\left(v-v^{*}\right)$ over all $u \geq u^{*}, v \geq v^{*}$.

Proof.
Let (\bar{u}, \bar{v}) be the point that maximies $\left(u-u^{*}\right)\left(v-v^{*}\right)$.
Let g_{1} be the linear transformation sending $u^{*} \mapsto 0$ and $\bar{u} \mapsto 1$, and g_{2} be the linear transformation sending $v^{*} \mapsto 0$ and $\bar{v} \mapsto 1$. Let $T=\left\{\left(g_{1}(u), g_{2}(v)\right):(u, v) \in S\right\}$. Then:

$$
(\bar{u}, \bar{v}) \text { maximizes }\left(u-u^{*}\right)\left(v-v^{*}\right) \text { in } S
$$

$(1,1)$ maximizes $u v$ in T

Nash Bargaining Solution

Proof continued...
Now since T is convex, this means T is contained below the line $u+v=2$.

By our corollary, this means $f(T, 0,0)=(1,1)$.
Now by axiom 5 that means $f\left(S, u^{*}, v^{*}\right)=(\bar{u}, \bar{v})$.
It is easy to verify that (\bar{u}, \bar{v}) satisfy axioms $1-3$. So we are done.

Nash Bargaining: Geometric Interpretation

Note that the slope of the curve at (\bar{u}, \bar{v}) is the negative of the slope of the line from $\left(u^{*}, v^{*}\right)$ to (\bar{u}, \bar{v}). Why?

Nash Bargaining Example 1

Question

Let S be the triangle with vertices $(0,0),(0,1),(3,0)$. Find $f(S, 0,0)$.

Nash Bargaining Example 1

Question

Let S be the triangle with vertices $(0,0),(0,1),(3,0)$. Find $f(S, 0,0)$.

- We know the solution is on the line joining $(0,1)$ to $(3,0)$. This curve as slope $-1 / 3$.

Nash Bargaining Example 1

Question

Let S be the triangle with vertices $(0,0),(0,1),(3,0)$. Find $f(S, 0,0)$.

- We know the solution is on the line joining $(0,1)$ to $(3,0)$. This curve as slope $-1 / 3$.
- So the slope of the line from $(0,0)$ to (\bar{u}, \bar{v}) must be $1 / 3$.

Nash Bargaining Example 1

Question

Let S be the triangle with vertices $(0,0),(0,1),(3,0)$. Find $f(S, 0,0)$.

- We know the solution is on the line joining $(0,1)$ to $(3,0)$. This curve as slope $-1 / 3$.
- So the slope of the line from $(0,0)$ to (\bar{u}, \bar{v}) must be $1 / 3$.
- The intersection of the line joining $(0,1)$ to $(3,0)$ and the line through $(0,0)$ with slope $1 / 3$ is the point $(3 / 2,1 / 2)$. So this is our NTU solution.

Nash Bargaining Example 2

Question

Let S be the ellipse $S=\left\{(x, y):(x-2)^{2}+4(y-1)^{2} \leq 8\right\}$. Find $f(S, 2,1)$.

Nash Bargaining Example 2

Question

Let S be the ellipse $S=\left\{(x, y):(x-2)^{2}+4(y-1)^{2} \leq 8\right\}$. Find $f(S, 2,1)$.

- By axiom 2, we know that the solution lies on the part of the curve between the points $(2,1+\sqrt{2})$ and $(2+2 \sqrt{2}, 1)$. On this part of the curve we have

$$
y-1=\sqrt{2-\frac{(x-2)^{2}}{4}}
$$

Nash Bargaining Example 2

Question

Let S be the ellipse $S=\left\{(x, y):(x-2)^{2}+4(y-1)^{2} \leq 8\right\}$. Find $f(S, 2,1)$.

- By axiom 2, we know that the solution lies on the part of the curve between the points $(2,1+\sqrt{2})$ and $(2+2 \sqrt{2}, 1)$. On this part of the curve we have

$$
y-1=\sqrt{2-\frac{(x-2)^{2}}{4}}
$$

- We need to maximize $(x-2)(y-1)$ along this arc, and

$$
(x-2)(y-1)=(x-2) \sqrt{2-\frac{(x-2)^{2}}{4}}
$$

Nash Bargaining Example 2

Question

Let S be the ellipse $S=\left\{(x, y):(x-2)^{2}+4(y-1)^{2} \leq 8\right\}$. Find $f(S, 2,1)$.

- By axiom 2, we know that the solution lies on the part of the curve between the points $(2,1+\sqrt{2})$ and $(2+2 \sqrt{2}, 1)$. On this part of the curve we have

$$
y-1=\sqrt{2-\frac{(x-2)^{2}}{4}}
$$

- We need to maximize $(x-2)(y-1)$ along this arc, and

$$
(x-2)(y-1)=(x-2) \sqrt{2-\frac{(x-2)^{2}}{4}}
$$

- Setting the derivative of this to zero, we get $x=2 \pm 2 . x>2$, so $x=4$. Then $y=2$, so $(4,2)$ is our solution.

Nash Bargaining Example 3

Question

For the bimatrix game

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

find the NTU solution if the threat point is $(0,0)$.

Nash Bargaining Example 3

Question

For the bimatrix game

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

find the NTU solution if the threat point is $(0,0)$.
The feasible set is a triangle here, like example 1. The slope of the Pareto optimal curve here is also $-1 / 3$.

Nash Bargaining Example 3

Question

For the bimatrix game

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

find the NTU solution if the threat point is $(0,0)$.
The feasible set is a triangle here, like example 1. The slope of the Pareto optimal curve here is also $-1 / 3$.
However if we take the line from $(0,0)$ with slope $1 / 3$, it does not intersect the Pareto optimal boundary of the triangle at all. (It is below the triangle).

Nash Bargaining Example 3

Question

For the bimatrix game

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

find the NTU solution if the threat point is $(0,0)$.
The feasible set is a triangle here, like example 1. The slope of the Pareto optimal curve here is also $-1 / 3$.
However if we take the line from $(0,0)$ with slope $1 / 3$, it does not intersect the Pareto optimal boundary of the triangle at all. (It is below the triangle).
This means that $u v$ is an increasing function along the upper right boundary of the triangle. So the max occurs at the corner $(4,3)$.

λ-Transfer Approach

- An alternative approach to NTU games follows from observing:
- If the TU solution is in the NTU feasible set, we are done.
- In an NTU game, we can rescale utility for an individual player.
- Given a bimatrix game (A, B), we scale one player's payoffs and TU solve this new game. If the solution is in the NTU feasible set, we have the NTU solution too.
- Then we take this solution and rescale the payoffs back to the original amount.

λ-Transfer Approach

- Let (A, B) be a given bimatrix game. We scale Player I's payoffs by λ, for some λ to be chosen later. The new game is $(\lambda A, B)$.
- Recall that the TU solution to this game is given by

$$
\left(\frac{\sigma(\lambda)+\delta(\lambda)}{2}, \frac{\sigma(\lambda)-\delta(\lambda)}{2}\right)
$$

where $\sigma(\lambda)$ is the largest entry in the matrix $\lambda A+B$ and $\delta(\lambda)$ is the value of $\lambda A-B$.

- We vary λ until this solution is in the NTU feasible set of $(\lambda A, B)$.
- Then the NTU solution to (A, B) is given by

$$
\left(\frac{\sigma(\lambda)+\delta(\lambda)}{2 \lambda}, \frac{\sigma(\lambda)-\delta(\lambda)}{2}\right)
$$

- It was shown by Lloyd Shapley that there is a unique value of λ that will work (1967).

