Math 152: Applicable Mathematics and Computing

June 5, 2017

Announcements

- Dun's office hours on Thursday are extended, from $12.30-3.30 \mathrm{pm}$ (in SDSC East 294).
- My office hours on Wednesday are extended (1-3pm), and other days by appointment.

Last Time: Coalitional Form Example

Game

Three players simultaneously announces either 1 or 2 . Let x be the sum of the announced numbers. If x is a multiple of 3 , then Player 1 wins x and the remaining players win 0 . If x is one more than a multiple of three, then Player 2 wins x and the other players win 0 . Otherwise, Player 3 wins x and the others win 0 .

Last time, we found the coalitional form of the following game:

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=0 \\
v(\{1,2\})=16 / 5, v(\{1,3\})=5, v(\{2,3\})=25 / 6, v(\{1,2,3\})=6
\end{gathered}
$$

Question. If they all cooperate and recieve a joint payoff of 6 , how should they divide this up?

Shapley Value

- Consider any game in coalitional form, where N is the set of players and v is the characteristic function.
- We assume that the players all cooperate and receive joint payoff $v(N)$.
- Let the final payoff for Player i be denoted $\phi_{i}(v)$.
- Like Nash's approach to bargaining, Shapley proposed several axioms that the solution should satisfy, and showed that they uniquely determine a solution.

Shapley Axioms

(1) Efficiency: $\sum_{i \in N} \phi_{i}(v)=v(N)$.
(2) Symmetry: If i, j are such that $v(S \cup\{i\})=v(S \cup\{j\})$ for all sets S not containing i and j, then $\phi_{i}(v)=\phi_{j}(v)$.
(3) Dummy Axiom: If i is such that $v(S \cup\{i\})=v(S)$ for all S not containing i, then $\phi_{i}(v)=0$.
(9) Additivity: If u, v are characteristic functions, then $\phi(u+v)=\phi(u)+\phi(v)$.

Shapley Value: Example 1

Question

Let $N=\{1,2,3\}$. Let v be the characteristic function

$$
\begin{aligned}
v(\emptyset)=v(\{1\})= & v(\{2\})=v(\{3\})=v(\{1,3\})=v(\{2,3\})=0 \\
& v(\{1,2\})=v(\{1,2,3\})=1
\end{aligned}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.

Shapley Value: Example 1

Question

Let $N=\{1,2,3\}$. Let v be the characteristic function

$$
\begin{aligned}
v(\emptyset)=v(\{1\})= & v(\{2\})=v(\{3\})=v(\{1,3\})=v(\{2,3\})=0 \\
& v(\{1,2\})=v(\{1,2,3\})=1
\end{aligned}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Axiom 1 implies

$$
\phi_{1}(v)+\phi_{2}(v)+\phi_{3}(v)=1
$$

Shapley Value: Example 1

Question

Let $N=\{1,2,3\}$. Let v be the characteristic function

$$
\begin{aligned}
v(\emptyset)=v(\{1\})= & v(\{2\})=v(\{3\})=v(\{1,3\})=v(\{2,3\})=0 \\
& v(\{1,2\})=v(\{1,2,3\})=1
\end{aligned}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Axiom 1 implies

$$
\phi_{1}(v)+\phi_{2}(v)+\phi_{3}(v)=1
$$

Axiom 2 implies $\phi_{1}(v)=\phi_{2}(v)$, since $v(\emptyset \cup\{1\})=v(\emptyset \cup\{2\})$ and $v(\{3\} \cup\{1\})=v(\{3\} \cup\{2\})$.

Shapley Value: Example 1

Question

Let $N=\{1,2,3\}$. Let v be the characteristic function

$$
\begin{aligned}
v(\emptyset)=v(\{1\})= & v(\{2\})=v(\{3\})=v(\{1,3\})=v(\{2,3\})=0 \\
& v(\{1,2\})=v(\{1,2,3\})=1
\end{aligned}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Axiom 1 implies

$$
\phi_{1}(v)+\phi_{2}(v)+\phi_{3}(v)=1
$$

Axiom 2 implies $\phi_{1}(v)=\phi_{2}(v)$, since $v(\emptyset \cup\{1\})=v(\emptyset \cup\{2\})$ and $v(\{3\} \cup\{1\})=v(\{3\} \cup\{2\})$.
Axiom 3 implies $\phi_{3}(v)=0$ (check!).

Shapley Value: Example 1

Question

Let $N=\{1,2,3\}$. Let v be the characteristic function

$$
\begin{aligned}
v(\emptyset)=v(\{1\})= & v(\{2\})=v(\{3\})=v(\{1,3\})=v(\{2,3\})=0 \\
& v(\{1,2\})=v(\{1,2,3\})=1
\end{aligned}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.

So,

$$
\begin{aligned}
\phi_{1}(v) & =1 / 2 \\
\phi_{2}(v) & =1 / 2 \\
\phi_{3}(v) & =0
\end{aligned}
$$

Shapley Value: The game ws

More generally:

Question

For any set of players N, and any $S \subseteq N$, let w_{S} be the characteristic function defined by

$$
w_{S}(T)= \begin{cases}0 & \text { if } S \nsubseteq T \\ 1 & \text { if } S \subset T\end{cases}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Applying axioms $1-3$ just as above, we get

$$
\phi_{i}\left(w_{S}\right)= \begin{cases}0 & \text { if } i \notin S \\ \frac{1}{|S|} & \text { if } i \in S\end{cases}
$$

Remark. The game w_{S} is simply the game where the team scores 1 if the team contains all players in S, and otherwise the team scores 0 .

Shapley Value: The game cws

More generally still:

Question

For any set of players N, and any $S \subseteq N$, let $c w s$ be the characteristic function defined by

$$
\operatorname{cw}_{S}(T)= \begin{cases}0 & \text { if } S \nsubseteq T \\ c & \text { if } S \subset T\end{cases}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Applying axioms $1-3$ just as above, we get

$$
\phi_{i}\left(c w_{S}\right)= \begin{cases}0 & \text { if } i \notin S \\ \frac{c}{|S|} & \text { if } i \in S\end{cases}
$$

Shapley Value: Example 2

Question

Let $N=\{1,2,3\}$. Let v be the characteristic function

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=v(\{1,3\})=v(\{2,3\})=0 \\
v(\{1,2\})=1 \\
v(\{1,2,3\})=4
\end{gathered}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.

Shapley Value: Example 2

Question

Let $N=\{1,2,3\}$. Let v be the characteristic function

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=v(\{1,3\})=v(\{2,3\})=0 \\
v(\{1,2\})=1 \\
v(\{1,2,3\})=4
\end{gathered}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Notice that we can write

$$
v=w_{\{1,2\}}+3 w_{\{1,2,3\}}
$$

Shapley Value: Example 2

Question

Let $N=\{1,2,3\}$. Let v be the characteristic function

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=v(\{1,3\})=v(\{2,3\})=0 \\
v(\{1,2\})=1 \\
v(\{1,2,3\})=4
\end{gathered}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Notice that we can write

$$
v=w_{\{1,2\}}+3 w_{\{1,2,3\}}
$$

So

$$
\phi(v)=\phi\left(w_{\{1,2\}}\right)+\phi\left(3 w_{\{1,2,3\}}\right)=(1 / 2,1 / 2,0)+(1,1,1)
$$

Shapley Values: General Approach

- We know the Shapley value for characteristic functions of the form ws.
- Given a general characteristic function v, if we can write it as

$$
v=\sum_{S \subseteq N} c_{S} w_{S}
$$

for some constants c_{S}, then we can compute $\phi(v)$.

- We will show that we can always write v in this way, and so we can always compute ϕ.

Shapley Values: General Approach

Theorem

There exists a unique function ϕ satisfying the Shapley axioms.

Proof.

- By above, we just need to show that any v can be written uniquely as

$$
v=\sum_{S \subseteq N} c_{S} w_{S}
$$

for some constants c_{S}.

- We are forced to choose $c_{\{i\}}=v(\{i\})$ for each singleton set.
- Now inductively set

$$
c_{T}=v(T)-\sum_{\substack{S \subset T \\ S \neq T}} c_{S}
$$

Shapley Values: General Approach

Theorem

There exists a unique function ϕ satisfying the Shapley axioms.
Proof continued...

- We have set

$$
c_{T}=v(T)-\sum_{\substack{S \subset T \\ S \neq T}} c_{S}
$$

- Now

$$
\begin{aligned}
\sum_{S \subseteq N} c_{S} w_{S}(T) & =\sum_{S \subseteq T} c_{T}=c_{T}+\sum_{\substack{S \subset T \\
S \neq T}} c_{T} \\
& =v(T)-\sum_{\substack{S \subset T \\
S \neq T}} c_{T}+\sum_{\substack{S \subset T \\
S \neq T}} c_{T}=v(T)
\end{aligned}
$$

Shapley Value: Example 3

Question

Recall the coalitional form for the example from last time:

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=0 \\
v(\{1,2\})=16 / 5, v(\{1,3\})=5, v(\{2,3\})=25 / 6, v(\{1,2,3\})=6
\end{gathered}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.

Shapley Value: Example 3

Question

Recall the coalitional form for the example from last time:

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=0 \\
v(\{1,2\})=16 / 5, v(\{1,3\})=5, v(\{2,3\})=25 / 6, v(\{1,2,3\})=6
\end{gathered}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
We need to find the constants cs. We begin with

$$
c_{\{1\}}=v(\{1\})=0
$$

Similarly

$$
c_{\{2\}}=c_{\{3\}}=0
$$

Shapley Value: Example 3

Question

Recall the coalitional form for the example from last time:

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=0 \\
v(\{1,2\})=16 / 5, v(\{1,3\})=5, v(\{2,3\})=25 / 6, v(\{1,2,3\})=6
\end{gathered}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Next, we get

$$
c_{\{1,2\}}=v(\{1,2\})-c_{\{1\}}-c_{\{2\}}=16 / 5
$$

Shapley Value: Example 3

Question

Recall the coalitional form for the example from last time:

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=0 \\
v(\{1,2\})=16 / 5, v(\{1,3\})=5, v(\{2,3\})=25 / 6, v(\{1,2,3\})=6
\end{gathered}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Next, we get

$$
\begin{gathered}
c_{\{1,2\}}=v(\{1,2\})-c_{\{1\}}-c_{\{2\}}=16 / 5 \\
c_{\{1,3\}}=v(\{1,3\})-c_{\{1\}}-c_{\{3\}}=5 \\
c_{\{2,3\}}=v(\{2,3\})-c_{\{2\}}-c_{\{3\}}=25 / 6
\end{gathered}
$$

Shapley Value: Example 3

Question

Recall the coalitional form for the example from last time:

$$
\begin{gathered}
v(\emptyset)=v(\{1\})=v(\{2\})=v(\{3\})=0 \\
v(\{1,2\})=16 / 5, v(\{1,3\})=5, v(\{2,3\})=25 / 6, v(\{1,2,3\})=6
\end{gathered}
$$

Find the Shapley values for each player, $\phi_{i}(v)$.
Finally

$$
\begin{aligned}
c_{\{1,2,3\}} & =v(\{1,2,3\})-c_{\{1,2\}}-c_{\{1,3\}}-c_{\{2,3\}}-c_{\{1\}}-c_{\{2\}}-c_{\{3\}} \\
& =6-16 / 5-5-25 / 6 \\
& =-191 / 30
\end{aligned}
$$

Shapley Value: Example 3

Putting this together, we get

$$
v=\frac{16}{5} w_{\{1,2\}}+5 w_{\{1,3\}}+\frac{25}{6} w_{\{2,3\}}-\frac{191}{30} w_{\{1,2,3\}}
$$

Shapley Value: Example 3

Putting this together, we get

$$
v=\frac{16}{5} w_{\{1,2\}}+5 w_{\{1,3\}}+\frac{25}{6} w_{\{2,3\}}-\frac{191}{30} w_{\{1,2,3\}}
$$

Finally, we have

$$
\phi_{1}(v)=\frac{16}{5} \cdot \frac{1}{2}+5 \cdot \frac{1}{2}+\frac{25}{6} \cdot 0-\frac{191}{30} \cdot \frac{1}{3}=1.97 \overline{7}
$$

Shapley Value: Example 3

Putting this together, we get

$$
v=\frac{16}{5} w_{\{1,2\}}+5 w_{\{1,3\}}+\frac{25}{6} w_{\{2,3\}}-\frac{191}{30} w_{\{1,2,3\}}
$$

Finally, we have

$$
\begin{aligned}
& \phi_{1}(v)=\frac{16}{5} \cdot \frac{1}{2}+5 \cdot \frac{1}{2}+\frac{25}{6} \cdot 0-\frac{191}{30} \cdot \frac{1}{3}=1.97 \overline{7} \\
& \phi_{2}(v)=\frac{16}{5} \cdot \frac{1}{2}+5 \cdot 0+\frac{25}{6} \cdot \frac{1}{2}-\frac{191}{30} \cdot \frac{1}{3}=1.56 \overline{1}
\end{aligned}
$$

Shapley Value: Example 3

Putting this together, we get

$$
v=\frac{16}{5} w_{\{1,2\}}+5 w_{\{1,3\}}+\frac{25}{6} w_{\{2,3\}}-\frac{191}{30} w_{\{1,2,3\}}
$$

Finally, we have

$$
\begin{aligned}
& \phi_{1}(v)=\frac{16}{5} \cdot \frac{1}{2}+5 \cdot \frac{1}{2}+\frac{25}{6} \cdot 0-\frac{191}{30} \cdot \frac{1}{3}=1.97 \overline{7} \\
& \phi_{2}(v)=\frac{16}{5} \cdot \frac{1}{2}+5 \cdot 0+\frac{25}{6} \cdot \frac{1}{2}-\frac{191}{30} \cdot \frac{1}{3}=1.56 \overline{1} \\
& \phi_{3}(v)=\frac{16}{5} \cdot 0+5 \cdot \frac{1}{2}+\frac{25}{6} \cdot \frac{1}{2}-\frac{191}{30} \cdot \frac{1}{3}=2.46 \overline{1}
\end{aligned}
$$

Shapley Value Question

Typically the numbers aren't as bad as in the last question. For example:

Question

Consider the game in coalitional form with $N=\{1,2,3\}$ and characteristic function

$$
\begin{gathered}
v(\emptyset)=0, v(\{1\})=1, v(\{2\})=0, v(\{3\})=1 \\
v(\{1,2\})=4, v(\{1,3\})=3, v(\{2,3\})=5, v(\{1,2,3\})=8
\end{gathered}
$$

(Remark. At this point we have covered all material necessary for the questions in homework 7, including the ungraded ones.)

Shapley Value: An Explicit Formula

Theorem

The Shapley value satisfies

$$
\phi_{i}(v)=\sum_{\substack{S \subset N \\ i \in S}} \frac{(|S|-1)!(n-|S|)!}{n!}(v(S)-v(S-\{i\}))
$$

Since we have shown that the Shapley function is unique, to prove that this formula holds we just need to show it satisfies axioms 1-4.

Remark. A formula is always nice, but the recursive approach from before may be less error-prone (and allows the computation of all Shapley values at the same time).

