Math 152: Applicable Mathematics and Computing

June 7, 2017

▶ ◀ Ē ▶ Ē ∽ � < ♡ June 7, 2017 1 / 17

・ロト ・ 日 ト ・ ヨ ト ・

Announcements

- Exam is on Monday in Center 115 at 8am.
- Bring a blue book.
- Cheat-sheet is allowed (1 page, front and back, handwritten).
- Will be cumulative, with a focus on material since midterm 2. So make sure to pay attention to recent homeworks (solutions will be posted today).
- Material: All material from Midterms 1 and 2, all of Part III, and Part IV chapters 1 and 3 (excluding: III subsection 4.4 and IV subsection 3.4).

- We are done with the material needed for the homeworks and exam.
- Today we will tidy up some loose ends, and give another example of Shapley values.

Last Time: w_S

- Last time we examined the following problem: given a coalitional form game v (which maps teams to \mathbb{R}), what is a "fair" value of each player?
- We denoted this value by φ_i(v), where i is the number of the player in question, and v is our game.
- Our solution revolved around a simple game w_S : we have a set of key players S, and for any team T the payoff was 1 if T contained all of our key players, and 0 otherwise.

Last Time: w_S

For example, consider $N = \{1, 2, 3\}$ and $S = \{1, 3\}$. Then w_S is the game given by:

T	Ø	{1}	{2}	{3}	$\{1, 2\}$	$\{1,3\}$	{2,3}	$\{1, 2, 3\}$
$w_s(T)$	0	0	0	0	0	1	0	1

We saw that for such a game,

$$\phi_i(w_S) = \begin{cases} 0 & \text{if } i \notin S \\ \frac{1}{|S|} & \text{if } i \in S \end{cases}$$

イロト イ理ト イヨト イヨト 二日

- Our general solution: given *any* game *v*, write it as a linear combination of games of the form *w*_S.
- Then use additivity to find $\phi_i(v)$.
- For example:

Т	Ø	$\{1\}$	{2}	{3}	$\{1, 2\}$	$\{1,3\}$	{2,3}	$\{1, 2, 3\}$
v(T)	0	0	0	0	1	0	0	4

- Our general solution: given *any* game *v*, write it as a linear combination of games of the form *w*_S.
- Then use additivity to find $\phi_i(v)$.
- For example:

Т	Ø	$\{1\}$	{2}	{3}	$\{1, 2\}$	$\{1,3\}$	{2,3}	$\{1, 2, 3\}$
v(T)	0	0	0	0	1	0	0	4
$w_{\{1,2\}}(T)$	0	0	0	0	1	0	0	1

- Our general solution: given *any* game *v*, write it as a linear combination of games of the form *w*_S.
- Then use additivity to find $\phi_i(v)$.
- For example:

Т	Ø	{1}	{2}	{3}	$\{1, 2\}$	$\{1,3\}$	{2,3}	$\{1, 2, 3\}$
v(T)	0	0	0	0	1	0	0	4
$w_{\{1,2\}}(T)$	0	0	0	0	1	0	0	1
$3w_{\{1,2,3\}}(T)$	0	0	0	0	0	0	0	3

- Our general solution: given *any* game *v*, write it as a linear combination of games of the form *w*_S.
- Then use additivity to find $\phi_i(v)$.
- For example:

Т	Ø	{1}	{2}	{3}	$\{1, 2\}$	$\{1,3\}$	{2,3}	$\{1, 2, 3\}$
v(T)	0	0	0	0	1	0	0	4
$w_{\{1,2\}}(T)$	0	0	0	0	1	0	0	1
$3w_{\{1,2,3\}}(T)$	0	0	0	0	0	0	0	3

From this table, we can see that $v = w_{\{1,2\}} + 3w_{\{1,2,3\}}$. So

$$\phi_1(v) = \phi_1(w_{\{1,2\}}) + \phi_1(3w_{\{1,2,3\}}) = \frac{1}{2} + 3 \cdot \frac{1}{3} = 1.5$$

イロト 不得下 イヨト イヨト 二日

Shapley Value: Last Example

Question

Consider the game in coalitional form with $N = \{1, 2, 3\}$ and characteristic function

$$v(\emptyset) = 0, v(\{1\}) = 1, v(\{2\}) = 0, v(\{3\}) = 1$$

$$v(\{1,2\}) = 4, v(\{1,3\}) = 3, v(\{2,3\}) = 5, v(\{1,2,3\}) = 8$$

Find the Shapley values $\phi_i(v)$ for each player.

First we write v as a sum of w_S's.

2 Then we use the additivity axiom to find $\phi_i(v)$ for i = 1, 2, 3.

A Detail Swept Under the Rug

• Axiom 4 says that for any games v, w:

$$\phi_i(\mathbf{v}+\mathbf{w})=\phi_i(\mathbf{v})+\phi_i(\mathbf{w})$$

• But we have also been using

$$\phi_i(\mathbf{v}-\mathbf{w})=\phi_i(\mathbf{v})-\phi_i(\mathbf{w})$$

(where v, w, v - w are games).

• Are we cheating?

A Detail Swept Under the Rug

Theorem

If v, w, v - w are games, then

$$\phi_i(\mathbf{v}-\mathbf{w})=\phi_i(\mathbf{v})-\phi_i(\mathbf{w})$$

Proof.

By axiom 4, we have

$$\phi_i(\mathbf{v}) = \phi_i((\mathbf{v} - \mathbf{w}) + \mathbf{w}) = \phi_i(\mathbf{v} - \mathbf{w}) + \phi_i(\mathbf{w}).$$

Rearranging this gives us the identity we desire.

Remark. Some authors take this as an axiom (sometimes full linearity is assumed). As we can see, we do not need it as an axiom. **Exercise.** Show that $\phi_i(cv) = c\phi_i(v)$ for any rational c > 0, just using our 4 axioms.

An Aside: Functional Equations

- Note the similarities between Nash's approach to bargaining and Shapley's approach here: define a set of rules our solution will follow, and find the function that satisfies the rules.
- These sorts of problems are known generally as functional equations (not to be confused with the area of *functional analysis*).
- These problems are nice, but are not taught commonly outside of mathematics competitions.
- **Example.** Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy f(x + y) = f(x) + f(y). What if we remove the continuity assumption?
- A useful tool to have: clearly Nash and Shapley had it (and both were Putnam competitors).

イロト 不得下 イヨト イヨト 二日

Theorem

The Shapley value satisfies

$$\phi_i(v) = \sum_{\substack{S \subset N \\ i \in S}} \frac{(|S| - 1)!(n - |S|)!}{n!} (v(S) - v(S - \{i\}))$$

- Since we have shown that ϕ is a unique function, we just need to verify the 4 axioms.
- We will go through these verifications shortly.
- First let us try to interpret it, and use this interpretation to get a nice probabilistic algorithm for computing Shapley values.

Theorem

The Shapley value satisfies

$$\phi_i(v) = \sum_{\substack{S \subset N \\ i \in S}} \frac{(|S|-1)!(n-|S|)!}{n!} (v(S) - v(S - \{i\}))$$

Interpretation: Repeatedly form the grand coalition by randomly adding players in, one at a time. Each time we add in Player 1, record how much the score increases $(v(S) - v(S - \{1\}))$.

The average contribution of Player 1 will be exactly $\phi_1(v)$.

イロト 不得下 イヨト イヨト 二日

Shapley Value: Approximation Algorithm

Algorithm

Set some constant T, the number of steps.

- **Q** Repeat steps 2–4 for T times, and output the **average** result:
- 2 Randomly add players one-by-one until we have all players.
- Let S be the set of players in our team at the point we add Player i.
- Record $v(S) v(S \{i\})$.

Assuming every iteration is independent, we get convergence by the Law of Large Numbers.

(**Remark.** These sorts of randomized approximation algorithms are known as *Monte Carlo* algorithms).

Proof of axiom 4 $(\phi_i(v+w) = \phi_i(v) + \phi_i(w))$. $\phi_i(\mathbf{v}+\mathbf{w})$ $= \sum \frac{(|S|-1)!(n-|S|)!}{n!} \left((v+w)(S) - (v+w)(S-\{i\}) \right)$ $S \subset N$ $= \sum \frac{(|S|-1)!(n-|S|)!}{n!} (v(S)-v(S-\{i\})+w(S)-w(S-\{i\}))$ $S \subset N$ $i \in S$ $= \phi_i(\mathbf{v}) + \phi_i(\mathbf{w})$

Proof of axiom 3 (dummy axiom).

Assume that $v(S \cup \{i\}) = v(S)$ for all S. Then

$$\begin{aligned} \phi_i(v) &= \sum_{\substack{S \subseteq N \\ i \in S}} \frac{(|S| - 1)!(n - |S|)!}{n!} (v(S) - v(S - \{i\})) \\ &= \sum_{\substack{S \subseteq N \\ i \in S}} \frac{(|S| - 1)!(n - |S|)!}{n!} (0) \\ &= 0 \end{aligned}$$

Proof of axiom 2 (symmetry).

Assume that $v(S \cup \{i\}) = v(S \cup \{j\})$ for all S not containing *i* or *j*. Then if S contains both *i* and *j* we have

$$v(S) - v(S - \{i\}) = v(S) - v(S - \{j\})$$

And if S contains i but not j, let $S' = S - \{i\} + \{j\}$. Then

$$v(S) - v(S - \{i\}) = v(S') - v(S' - \{j\})$$

With these two identities, we can check that $\phi_i(v) = \phi_j(v)$ in our formula.

Proof of axiom 1 ($\sum \phi_i(v) = v(N)$).

We need to show

$$\sum_{i=1}^{n} \sum_{\substack{S \subset N \\ i \in S}} \frac{(|S|-1)!(n-|S|)!}{n!} (v(S) - v(S - \{i\})) = v(N)$$

Hint: Separate left-hand side into two sums, one with v(S) and one with $v(S - \{i\})$. Now rewrite each double-sum as a single sum over sets $S \subset N$.