Math 152: Applicable Mathematics and Computing

April 10, 2017

Announcements

- Don't forget, first homework is due on Wednesday. Each TA has their own drop-box. Please provide justification for every answer.
- Change in office hours: Dun Qiu's Tuesdays office hours are now from $10.30 \mathrm{am}-12.30 \mathrm{pm}$ in SDSC E294.
- This week we will cover chapters 3 and 4 from Part I, and maybe parts of chapter 5 on Friday (if there is time). This will be the material that will be on the Week 3 exam.

Directed Graphs

Def. A directed graph G is a pair (X, F) where X is a nonempty set of vertices and F is a function that for each vertex $x \in X$ gives a set $F(x)$ that is contained in $X . F(x)$ are called the followers of x.

This is a mathematical representation of a diagram like the following:

Progressively Bounded Graphs

Def. A path of length k is a list of vertices $x_{0}, x_{1}, x_{2}, \cdots, x_{k}$, such that for each $i \geq 1, x_{i} \in F\left(x_{i-1}\right)$. (Note: this is the computer science definition of "path". In pure mathematics, this is usually called a "walk" instead.)

Def. A graph is progressively bounded, if for each vertex x there is a constant n such that every path starting at x has length at most n.

Graph Games

Game (Graph Games)

Given a progressively bounded directed graph $G=(X, F)$, one can play a combinatorial game on the graph as follows. The positions of the game are the vertices in X. On a player's turn, if the current position is x, then the set of available moves is exactly $F(x)$, the followers of x. As usual, in normal play, the last player who takes a move is the winner.

Graph Games Example

- Each of the impartial combinatorial games we have seen so far can be written as graph games.
- Board example. Consider the subtraction game where each player may remove 1 or 2 coins on their turn. Given that there are at most 10 coins in total, represent this as a graph game, and identify the N and P -positions.

The mex function

Def. Given a set of non-negative integers X, the mex of minimal excludant is the smallest non-negative integer that does not belong to X. For example

- $\operatorname{mex}\{0,1,3,4,10,11\}=2$.
- $\operatorname{mex}\{0,1,2,3,4\}=5$.
- If E is the set of even numbers $E=\{0,2,4, \cdots\}$, then $\operatorname{mex}(E)=1$.

The Sprague-Grundy Function

Def. The Sprague-Grundy function of a directed graph (X, F) is a function $g: X \rightarrow \mathbb{N}$ mapping vertices to non-negative integers, defined recursively by

$$
g(x)=\operatorname{mex}\{g(y): y \in F(x)\}
$$

The Sprague-Grundy Function

Lemma

Given a graph game G, the P -positions are exactly the positions x where the Sprague-Grundy function $g(x)$ is 0 .

Proof. Let \mathcal{P} be the set of positions with Sprague-Grundy function equal to zero, and let \mathcal{N} be all other positions.

- Then the terminal positions have no followers, so have SG value zero (so are in \mathcal{P}).
- Positions in \mathcal{N} has SG value greater than zero. So it has a follower with $S G$ value 0 , so there is a move to a position in \mathcal{P}.
- Positions in \mathcal{P} have SG value zero. Then all of its followers have Sprague-Grundy value strictly greater than zero, so all of the moves are to positions in \mathcal{N}.

Sprague-Grundy Values of Games

We have seen that our impartial combinatorial games can be represented as graph games.
Every graph game has a Sprague-Grundy value.
So we can talk about Sprague-Grundy values of impartial combinatorial games.

Algorithm for Sprague-Grundy Values of Games

Given an impartial combinatorial game, we can compute the Sprague-Grundy values of the positions of this game using the following algorithm.
(1) For all terminal positions $x, g(x)=0$.
(2) Find any position x for which we have found the Sprague-Grundy value for all of its followers.
(3) Compute the mex of the SG values of followers of x. The answer is $g(x)$.
(- Repeat step 2.
Board example. Consider the subtraction game where each player may remove 1, 2 or 3 coins on their turn. Find the Sprague-Grundy values of every position of this game. What if you can remove 1, 3, 4 instead?

Sprague-Grundy Motivation

So we have seen that if we know the Sprague-Grundy function of a game, we know the N -positions and P -positions. But why is this useful? We already had a way to find N and P -positions that involved less work. Of course, if there was no use, it wouldn't have been studied by Sprague and Grundy. We will see its importance later this week.

