Math 152: Applicable Mathematics and Computing

April 13, 2017

Sprague-Grundy Theorem

Theorem (Sprague-Grundy)

If g_{i} is the Sprague-Grundy function of $G_{i}, i=1,2, \cdots, n$, then $G=G_{1}+G_{2}+\cdots+G_{n}$ has Sprague-Grundy function

$$
g\left(x_{1}, x_{2}, \cdots, x_{n}\right)=g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right) \oplus \cdots \oplus g_{n}\left(x_{n}\right)
$$

Sprague-Grundy proof

Theorem (Sprague-Grundy)

Let G_{1}, G_{2} be two impartial combinatorial games, with Sprague-Grundy functions g_{1}, g_{2}. Then $G=G_{1}+G_{2}$ has Sprague-Grundy function

$$
g\left(x_{1}, x_{2}\right)=g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right)
$$

Proof. Let $b=g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right)$. We want to show that this is the SG value of the position $\left(x_{1}, x_{2}\right)$. To prove this, we need to show two things:
(1) No follower of $\left(x_{1}, x_{2}\right)$ has g equal to b.
(2) For any non-negative $a<b$, there is a follower of $\left(x_{1}, x_{2}\right)$ with g equal to a.

Sprague-Grundy proof (1)

No follower of $\left(x_{1}, x_{2}\right)$ has g equal to b :
A follower of $\left(x_{1}, x_{2}\right)$ takes the form $\left(x_{1}^{\prime}, x_{2}\right)$ or $\left(x_{1}, x_{2}^{\prime}\right)$, where $x_{1} \neq x_{1}^{\prime}$ and $x_{2} \neq x_{2}^{\prime}$.
Note that $g_{1}\left(x_{1}^{\prime}\right) \neq g_{1}\left(x_{1}\right)$, since x_{1}^{\prime} is a follower of x_{1}. Then by the cancellation property

$$
g_{1}\left(x_{1}^{\prime}\right) \oplus g_{2}\left(x_{2}\right) \neq g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right)=b
$$

Similarly for any follower of the form $\left(x_{1}, x_{2}^{\prime}\right)$.

Sprague-Grundy proof (2)

For any non-negative $a<b$, there is a follower of $\left(x_{1}, x_{2}\right)$ with g equal to a :
Let k be the leftmost column where b is different to a. Since $a<b$, in this column a is 0 and b is 1 .
Since $b=g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right)$, there is a 1 in column k of either $g_{1}\left(x_{1}\right)$ or $g_{2}\left(x_{2}\right)$. Say it is in $g_{1}\left(x_{1}\right)$.
$a \oplus b$ is zero in every column left of k, and 1 in column k. So

$$
a \oplus b \oplus g_{1}\left(x_{1}\right)<g_{1}\left(x_{1}\right)
$$

There is a move in G_{1} to a position x_{1}^{\prime} with

$$
g_{1}\left(x_{1}^{\prime}\right)=a \oplus b \oplus g_{1}\left(x_{1}\right)
$$

Then

$$
g\left(x_{1}^{\prime}, x_{2}\right)=g_{1}\left(x_{1}^{\prime}\right) \oplus g_{2}\left(x_{2}\right)=a \oplus b \oplus g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right)=a \oplus b \oplus b=a .
$$

Sprague-Grundy Theorem Example

Game (Google Interview Question)

Consider a game where given a string consisting of the two characters ' + ' and '-', and on a player's turn they can turn any two adjacent '-' characters into two ' + ' characters. The last player to move is the winner.

Sprague-Grundy Theorem Example

Game (Google Interview Question, translated)

Consider a game where there are several piles of chips. On a player's turn, they may take any pile which has at least two chips, remove two chips and (if they wish) split the remaining chips into two new piles. The last player to make a move is the winner.

Sprague-Grundy Theorem Example

Game (Google Interview Question, translated)

Consider a game where there are several piles of chips. On a player's turn, they may take any pile which has at least two chips, remove two chips and (if they wish) split the remaining chips into two new piles. The last player to make a move is the winner.

What are the followers of (6) in this game? $(4),(3,1)$ and $(2,2)$. So

$$
\begin{aligned}
g(6) & =\operatorname{mex}\{g(4), g(3,1), g(2,2)\} \\
& =\operatorname{mex}\{g(4), g(3) \oplus g(1), g(2) \oplus g(2)\}
\end{aligned}
$$

Take-and-Break Games

Game (Lasker's Nim)

There are piles of chips on a table. On a player's turn, they select a pile and either remove any positive number of coins from that pile (like Nim), or they may split that pile into two smaller piles (without removing any coins). Find the Sprague-Grundy values for a single-pile version of this game.

