Math 152: Applicable Mathematics and Computing

April 16, 2017

Announcements

- Please bring a blue book for the midterm on Friday. Some students will be taking the exam in Center 201, will announce which students before Wednesday's class.
- Exam covers Part I (chapters 1-4). Use the homeworks and lecture notes as a guide.

Two-Player Zero Sum Games

- As before, we will be concerned with two player games.
- In particular we will study zero sum games: these are games where what one player wins is exactly what the other player loses.
- For example two-player poker: your winnings are exactly my losses.

Two-Person Zero Sum Games

Def. A two-person zero sum game is a game with two players, which we will call Player I and Player II, where one player wins what the other player loses.
Eg. If Player I wins 5 dollars, this means that Player II loses 5 dollars. The prize-money is called the payoff.

Two-Player Zero Sum Games

- Zero sum games are nice mathematically, because we can represent the outcome of the game as a single number x. x represents the winnings of Player \mathbf{I}.
- For example, if x is 100 dollars, player I has taken 100 dollars from player II.
- But if x is -100 dollars, player II has taken 100 dollars from player I.

Strategic Form

Def. The strategic form of a two-person zero sum game is given by the triplet (X, Y, A), where
(1) X is a nonempty set, called the strategies of Player I
(2) Y is a nonempty set, called the strategies of Player II
(3) A is a function mapping $X \times Y$ to \mathbb{R} (ie. for each $x \in X$ and $y \in Y$, $A(x, y)$ is a real number). This represents the payoff, given the strategies of the players.
This is a mathematical way to represent a two-person zero sum game. Board example. Write Rock-Paper-Scissors in strategic form, where the winner wins 1 , and both players receive 0 in the case of a draw.

Strategic Form of a Game

- We imagine the game being played in the following way: simultaneously, player I chooses her strategy x from X and player II chooses his strategy y from Y. Both players do not know what the other player chooses.
- At the same moment, both players announce what strategy they picked.
- The players then consult $A(x, y)$ to see who wins, and the winner pays the loser (remember that a positive number means Player II pays Player I, if $A(x, y)$ is negative, then Player I pays Player II).

Pure and Mixed Strategies

Def. The elements of the player's strategy sets X and Y are called pure strategies. These strategies involves no randomness.

Def. A mixed strategy is a random combination of pure strategies. For example, a player's strategy might consist of choosing pure strategy x_{1} with probability $1 / 4$ and another pure strategy x_{2} with probability $3 / 4$.

Strategic Form Example II

Game (Even/Odd)

At the same time, both players will say either "one" or "two". These two numbers will be added together, if the sum is odd then player I wins, otherwise player II wins. The winner receives x dollars, where x is the sum of the two numbers chosen.

In this case each player only has two strategies: $X=\{1,2\}$ and $Y=\{1,2\}$.
The outcomes are:

$$
\left.\begin{array}{l}
y=1 \\
x=1 \\
x=2
\end{array} \begin{array}{cc}
y=2 \\
-2 & +3 \\
+3 & -4
\end{array}\right)
$$

(this is called the payoff matrix, which is a nice way to represent $A(x, y)$).

Strategic Form Example: Even/Odd

- Player I has an advantage in this game. For example, here is one approach where, on average, Player I will not lose money:
- With probability $3 / 5$, player I picks "one", and with probability $2 / 5$ she picks "two". (This is a mixed strategy).
- If player II calls "one": then with probability $3 / 5$ player II loses 2 dollars; with probability $2 / 5$ player II wins 3 . On average:

$$
-2(3 / 5)+3(2 / 5)=0
$$

- If player II calls "two": then with probability $3 / 5$ player II wins 3 dollars; with probability $2 / 5$ player II loses 4 . On average:

$$
3(3 / 5)-4(2 / 5)=1 / 5
$$

- So on average player I can only win money, not lose money. In fact player I can do even better than this.

Minimax Theorem

Theorem (Minimax)

For every two-person zero sum game where the sets X and Y are finite,
(1) there is a number V, called the value of the game,
(2) there is a mixed strategy for Player I such that I's average gain is at least V no matter what II does, and
(3) there is a mixed strategy for Player II such that II's average loss is at most V no matter what I does.

Def. A game is fair if $V=0$, otherwise it is unfair.
Goal. We want a way to find the value of a game, given the payoff matrix, and the corresponding mixed strategy.

Even/Odd: Optimal Play

- We return to the Even/Odd example.
- Let's try to find a way for player I to always win a positive amount, on average, no matter what player II does. We just need to decide on what probability p to choose 1 .
- To simplify things, let us try to find a p so that player l's average winnings is the same no matter what player II does.
- Such a strategy is called an equalizing strategy. It does not exist for every game.

Even/Odd: Optimal Play

- Let p be the probability that player I chooses "one".
- If player II selects "one", player I wins on average

$$
-2 p+3(1-p)=-5 p+3
$$

- If player II selects "two", player I wins on average

$$
3 p-4(1-p)=7 p-4
$$

- In an equalizing strategy, these are equal, so:

$$
-5 p+3=7 p-4
$$

- Solving these yields $p=7 / 12$. In this case,

$$
-5 p+3=7 p-4=1 / 12
$$

That is, player I wins on average $1 / 12$ dollars no matter what player II does.

Even/Odd: Optimal Play

- We have seen that in the even/odd game player I has a way to ensure she wins $1 / 12$ dollars on average.
- Similarly, player II has a strategy that ensures he loses no more than $1 / 12$ on average (to see this, repeat the computation from the previous slide form the perspective of player II). This is the value of this game.
- Because of player I's advantage, this is an unfair game.

Strategic Form: Not so restrictive

- It seems that games in strategic form are very restrictive. Both players appear to only take a single turn.
- Actually many real, complicated games fit this form. For example, chess, tic-tac-toe, go, etc.
- For example, tic-tac-toe. The strategies for player I, consist of a list of all possible moves that player II can make, and what player I does in response.
- If both players choose such a strategy before the game starts, the outcome is determined without playing the game.

Example 2: Equal

Game (Equal)

Each player picks either "one" or "two". If both players say the same number, the player I wins x dollars, where x is the number both players chose. If both players say different numbers, the player II wins whatever player II said.

Definition Review

- Zero-Sum game: Player I's gain is equivalent to Player II's loss.
- Pure strategy: An explicit description of what the player should do in all eventualities.
- Mixed strategy: A random combination of pure strategies.
- Equalizing strategy: A strategy where the player's average gain is the same no matter what the opposing player does.
- Value of a game: A number V such that Player I has a strategy that wins at least V on average, and Player II has a strategy such that Player II loses no more than V on average.
- Unfair game: A game with value $V \neq 0$.

