MA152 Solutions to Homework 3

May 3, 2017

1. Firstly note that the third column dominates the second column. Removing the dominated column, we get

$$
\left(\begin{array}{rr}
5 & -2 \\
-3 & 5 \\
-2 & 6
\end{array}\right)
$$

Now the last row dominates the middle row, leaving

$$
\left(\begin{array}{rr}
5 & -2 \\
-2 & 6
\end{array}\right)
$$

There is no saddle point, and since this is a 2×2 matrix it means we can solve it by finding equalizing strategies.
Let $\mathbf{p}=\left(\begin{array}{ll}p & 1-p\end{array}\right)^{T}$ be Player I's strategy. The expected gain if Player II picks the first column is $5 p-2(1-p)$. The expected gain if Player II picks the second column is $-2 p+6(1-p)$. Setting these to be equal, we get

$$
5 p-2(1-p)=-2 p+6(1-p) \Rightarrow p=8 / 15
$$

So the value of the game is $V=5(8 / 15)-2(7 / 15)=26 / 15$.
Let $\mathbf{q}=\left(\begin{array}{ll}q & 1-q\end{array}\right)^{T}$ be Player II's strategy. The expected payoff is Player I picks the first row is $5 q-2(1-q)$. For the second row, the expected payoff is $-2 q+6(1-q)$. These are the same equations as before, so $q=8 / 15$.
2. The payoff matrix in this case is

$$
\begin{gathered}
1 \\
1 \\
2
\end{gathered}\left(\begin{array}{cc}
1 & 2 \\
-2 & 4
\end{array}\right)
$$

This is a 2×2 matrix with no saddle point, so we look for an equalizing strategy. Let $\mathbf{p}=(p 1-p)^{T}$ be Player I's strategy. The payoff if Player II selects the first column is $p-2(1-p)$. If Player II selects the second column, it is $-2 p+4(1-p)$. Setting these equal we get $p=2 / 3$. The value of the game is $V=(2 / 3)-2(1 / 3)=0$.
Let Let $\mathbf{q}=\left(\begin{array}{ll}q & 1-q)^{T}\end{array}\right.$ be Player II's strategy. The payoff across the first row is $q-2(1-q)$, and across the second row is $-2 q+4(1-q)$. These are the same equations as before, so $q=2 / 3$.
3. (a) There is a saddle point in this matrix: the entry 0 . The corresponding optimal strategies are $\mathbf{p}=\left(\begin{array}{ll}1 & 0\end{array}\right)$ and $\mathbf{q}=\left(\begin{array}{ll}0 & 1\end{array}\right)$, (since the players will choose the row and column that contain the saddle point).
(b) There is no saddle point in this matrix, so since it is a 2×2 matrix we know there will be a pair of equalizing strategies. Let $\mathbf{p}=\left(\begin{array}{ll}p & 1-p\end{array}\right)^{T}$ be Player I's strategy. The expected gain across the first column is $3 p-(1-p)$ and across the second column is $5(1-p)$. Setting these equal and solving, we get $p=2 / 3$, and $V=3(2 / 3)-(1 / 3)=5 / 3$.
Let $\mathbf{q}=\left(\begin{array}{ll}q & 1-q\end{array}\right)^{T}$ be Player II's strategy. Then the expected payoff across the first row is $3 q$ and across the second row is $-q+$ $5(1-q)$. Setting these equal and solving, we get $q=q=5 / 9$.
4. This is question 5(a) in Part II Chapter 2 of the textbook. The solution is given on page II-2 of the online "Solutions to Exercises".
5. The payoff matrix is

$$
\begin{aligned}
& 1 \\
& -2 \\
& 3
\end{aligned}\left(\begin{array}{ccc}
1 & 2 & 3 \\
-2 & 3 & -4 \\
3 & -4 & 5 \\
-4 & 5 & -6
\end{array}\right)
$$

Let \mathbf{p}, \mathbf{q} be the optimal strategies for each player. By the assumption in the question, each entry of \mathbf{q} is positive. By the principle of indifference, the payoff down each column is equal to V.

This gives

$$
\begin{aligned}
-2 p_{1}+3 p_{2}-4 p_{3} & =V \\
3 p_{1}-4 p_{2}+5 p_{3} & =V \\
-4 p_{1}+5 p_{2}-6 p_{3} & =V \\
p_{1}+p_{2}+p_{3} & =1
\end{aligned}
$$

Solving these equations yields $p_{1}=1 / 4, p_{2}=1 / 2, p_{3}=1 / 4, V=0$.
These entries are all positive, so by the Principle of Indifference the expected payoff is the same no matter which row Player I chooses. So Player II has an equalizing strategy. Since the matrix is symmetric, the equations for this equalizing strategy are the same as those above, and hence $q_{1}=1 / 4, q_{2}=1 / 2, q_{3}=1 / 4$.
6. This is question 11 in Part II Chapter 2 of the textbook. The solution is given on page II-4 of the online "Solutions to Exercises".

