MA152 Spring 2017

Homework 4

Due: 10th May at 4PM in APM basement

1. Solve the following matrix game (that is, find the value and an optimal strategy for each player):

2	0	0	$0 \rangle$
0	3	0	0
0	0	1	0
$\setminus 0$	0	0	3/

2. Solve the following matrix game:

$$\begin{pmatrix} 1 & -1 & 0 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. Using invariance, solve the game:

$$\begin{pmatrix} -4 & 1 & 2\\ 1 & -5 & 1\\ 2 & 1 & -4 \end{pmatrix}$$

- 4. Consider the game where simultaneously Player I announces an integer x and Player II announces an integer y, where $1 \le x, y \le 1000$. If $x \ge y$ then Player I wins x y, otherwise Player II wins y x. What is the value of this game?
- 5. Consider the game

$$\begin{pmatrix} 3 & 1 \\ 1 & 5 \end{pmatrix}$$

- (a) If Player I knows that Player II's mixed strategy is $(q \ 1-q)^T$, find Player I's best response strategy (the answer will depend on q).
- (b) In this situation, what value of q should Player II choose to minimize her losses?
- 6. (a) Let A be a matrix game with value V. Let B be the matrix game that is obtained by adding a constant c to every entry of A. Briefly justify why the value of B is V + c.
 - (b) Using (a), find the value of the game

2	1	0	-1
3	2	1	0
4	3	2	1
$\sqrt{5}$	4	3	$_2)$