MA152 Spring 2017

Homework 4
Due: 10th May at 4PM in APM basement

1. Solve the following matrix game (that is, find the value and an optimal strategy for each player):

$$
\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

2. Solve the following matrix game:

$$
\left(\begin{array}{rrrr}
1 & -1 & 0 & -1 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3. Using invariance, solve the game:

$$
\left(\begin{array}{rrr}
-4 & 1 & 2 \\
1 & -5 & 1 \\
2 & 1 & -4
\end{array}\right)
$$

4. Consider the game where simultaneously Player I announces an integer x and Player II announces an integer y, where $1 \leq x, y \leq 1000$. If $x \geq y$ then Player I wins $x-y$, otherwise Player II wins $y-x$. What is the value of this game?
5. Consider the game

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 5
\end{array}\right)
$$

(a) If Player I knows that Player II's mixed strategy is $\left(\begin{array}{l}q-q)^{T} \text {, }\end{array}\right.$ find Player I's best response strategy (the answer will depend on q).
(b) In this situation, what value of q should Player II choose to minimize her losses?
6. (a) Let A be a matrix game with value V. Let B be the matrix game that is obtained by adding a constant c to every entry of A. Briefly justify why the value of B is $V+c$.
(b) Using (a), find the value of the game

$$
\left(\begin{array}{rrrr}
2 & 1 & 0 & -1 \\
3 & 2 & 1 & 0 \\
4 & 3 & 2 & 1 \\
5 & 4 & 3 & 2
\end{array}\right)
$$

