MA152 Solutions to Homework 4

May 13, 2017

1. We have

$$
A^{-1}=\left(\begin{array}{cccc}
1 / 2 & 0 & 0 & 0 \\
0 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 / 3
\end{array}\right)
$$

So $\mathbf{1}^{T} A^{-1} \mathbf{1}=(1 / 2+1 / 3+1+1 / 3)=13 / 6$. This is not zero, so we can use the nonsingular matrix theorem. The value of the game is $V=\left(\mathbf{1}^{T} A^{-1} \mathbf{1}\right)^{-1}=6 / 13$. The optimal strategies for each players are given by

$$
\mathbf{p}^{T}=V \mathbf{1}^{T} A^{-1}=\left(\begin{array}{llll}
3 / 13 & 2 / 13 & 6 / 13 & 2 / 13
\end{array}\right)
$$

and

$$
\mathbf{q}^{T}=V \mathbf{1} A^{-1}=\left(\begin{array}{llll}
3 / 13 & 2 / 13 & 6 / 13 & 2 / 13
\end{array}\right)
$$

2. This is an upper triangular matrix, so let us try looking for an equalizing strategy. Let Player I's strategy be $\mathbf{p}^{T}=\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{4}\end{array}\right)$ and let Player II's strategy be $\mathbf{p}^{T}=\left(\begin{array}{llll}q_{1} & q_{2} & q_{3} & q_{4}\end{array}\right)$. We get the following system of equations for Player I:

$$
\begin{aligned}
p_{1} & =V \\
-p_{1}+p_{2} & =V \\
-2 p_{2}+p_{3} & =V \\
-p_{1}+p_{2}-p_{3}+p_{4} & =V \\
p_{1}+p_{2}+p_{3}+p_{4} & =1
\end{aligned}
$$

Solving this, we get $V=1 / 13$ and

$$
\mathbf{p}^{T}=\left(\begin{array}{llll}
1 / 13 & 2 / 13 & 5 / 13 & 5 / 13
\end{array}\right)
$$

For Player II, we get the system

$$
\begin{aligned}
q_{1}-q_{2}-q_{4} & =V \\
q_{2}-2 q_{3}+q_{4} & =V \\
q_{3}-q_{4} & =V \\
q_{4} & =V \\
q_{1}+q_{2}+q_{3}+q_{4} & =1
\end{aligned}
$$

Solving this system, we get

$$
\mathbf{q}^{T}=\left(\begin{array}{llll}
6 / 13 & 4 / 13 & 2 / 13 & 1 / 13
\end{array}\right)
$$

3. Denote the columns by A, B and C , and denote the rows by 1,2 and 3 . Now, swapping rows 1 and 3 and columns A and C leaves the payoff matrix unchanged. So, by Invariance, we can assume that the optimal strategies \mathbf{p} and \mathbf{q} satisfy $\mathbf{p}(1)=\mathbf{p}(3)$ and $\mathbf{q}(A)=\mathbf{q}(C)$.
We look for an equalizing strategy. For Player I, we get

$$
\begin{aligned}
-4 \mathbf{p}(1)+\mathbf{p}(2)+2 \mathbf{p}(3) & =V \\
\mathbf{p}(1)-5 \mathbf{p}(2)+\mathbf{p}(3) & =V \\
2 \mathbf{p}(1)+\mathbf{p}(2)-4 \mathbf{p}(3) & =V \\
\mathbf{p}(1)+\mathbf{p}(2)+\mathbf{p}(3) & =1
\end{aligned}
$$

Now applying $\mathbf{p}(1)=\mathbf{p}(3)$, we get

$$
\begin{aligned}
-2 \mathbf{p}(1)+\mathbf{p}(2) & =V \\
2 \mathbf{p}(1)-5 \mathbf{p}(2) & =V \\
2 \mathbf{p}(1)+\mathbf{p}(2) & =1
\end{aligned}
$$

Solving this system, wet get $V=-1 / 2$ and

$$
\mathbf{p}^{T}=\left(\begin{array}{lll}
3 / 8 & 1 / 4 & 3 / 8
\end{array}\right)
$$

Since the matrix is symmetric, the system of equations for finding an equalizing strategy for Player II is the same as for Player I. So we also have

$$
\mathbf{q}^{T}=\left(\begin{array}{lll}
3 / 8 & 1 / 4 & 3 / 8
\end{array}\right)
$$

4. Answer 1: Note that the payoff matrix A in this question satisfies $A(i, j)=i-j$. So we have

$$
A(i, j)=i-j=-(j-i)=-A(j, i)
$$

and so A is skew-symmetric. Therefore the value of the game is zero.
Answer 2: We can note that the bottom right entry of the matrix (entry $(1000,1000))$ is a saddle point, since $A(1000,1000)=0$, and 0 is the smallest number in the last row and the largest number in the last column. So $V=0$.
Answer 3: Note that the last row dominates all other rows. Similarly, the last column dominates all other columns. All that remains is the bottom right entry, which is 0 . So $V=0$.
5. (a) Given this strategy for Player II, the possible payoffs are

$$
A \mathbf{q}=\binom{2 q+1}{-4 q+5}
$$

Player I will choose the first row if $2 q+1>-4 q+5 \Leftrightarrow q>2 / 3$, and the second row otherwise.
(b) Player II knows that this is what Player I will choose. So Player II will choose the value of q that maximizes the outcome.
If $0 \leq q \leq 2 / 3$, then the payoff is $-4 q+5$. Along this interval, this function is minimized at $q=2 / 3$. The payoff in this case is 7/3.
If2 $/ 3<q \leq 1$, then the payoff is $2 q+1$, which is always greater than $7 / 3$ on this interval. So the minimum payoff that Player II can achieve is $7 / 3$, if they choose $q=2 / 3$.
6. (a) Let C denote the matrix whose entries are all c. So $B=A+C$. Answer 1: Let \mathbf{p}, \mathbf{q} be strategies chosen by players I and II during a game of B. Then the payoff is

$$
\mathbf{p}^{T} B \mathbf{q}=\mathbf{p}^{T}(A+C) \mathbf{q}=\mathbf{p}^{T} A \mathbf{q}+c
$$

where the last equality follows from the fact that the entries of \mathbf{p} and \mathbf{q} sum to 1 .
In particular, playing the game B is exactly the same as playing the game A, and then adding c to the payoff of A. It is clear that the optimal strategy for both players in such a game is just to use their optimal strategies for A. In this case the payoff is $V+c$, and so this is the value of B.
Answer 2: Let \mathbf{p}, \mathbf{q} be a pair of optimal strategies for A. Then, from the definition, we get that

$$
\min \left(\mathbf{p}^{T} A\right)=V=\max (A \mathbf{q})
$$

(where min and max here represent the min and max entry of a vector).
Now we have

$$
\min \left(\mathbf{p}^{T} B\right)=\min \left(\mathbf{p}^{T}(A+C)\right)=\min \left(p^{T} A+\mathbf{p}^{T} C\right)
$$

Note that since \mathbf{p} is a probability vector, every entry of the vector $\mathbf{p}^{T} C$ is just c. So

$$
\min \left(\mathbf{p}^{T} B\right)=\min \left(\mathbf{p}^{T} A\right)+c=V+c
$$

Similarly,

$$
\max (B \mathbf{q})=V+c
$$

From the definition of value, we get that $V+c$ is the value of B, with optimal strategies \mathbf{p} and \mathbf{q}.
(b) Let A be the matrix given in the question. Notice that

$$
\left(\begin{array}{rrrr}
2 & 1 & 0 & -1 \\
3 & 2 & 1 & 0 \\
4 & 3 & 2 & 1 \\
5 & 4 & 3 & 2
\end{array}\right)=\left(\begin{array}{rrrr}
0 & -1 & -2 & -3 \\
1 & 0 & -1 & -2 \\
2 & 1 & 0 & -1 \\
3 & 2 & 1 & 0
\end{array}\right)+\left(\begin{array}{llll}
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2
\end{array}\right)
$$

The first matrix on the right hand side is skew-symmetric, so has value 0 . From (a), we get that

$$
\operatorname{Val}(A)=0+2=2
$$

