MA152 Solutions to Homework 6

June 7, 2017

1. (a) We have

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
1 & 5 \\
0 & 4
\end{array}\right) \\
B & =\left(\begin{array}{ll}
1 & 0 \\
5 & 4
\end{array}\right)
\end{aligned}
$$

In $A, 1$ is a saddle point so $v_{I}=1$. In $B^{T}, 1$ is a saddle point. So $v_{I I}=1$.
(b) We have

$$
v_{I}=\operatorname{Val}\left(\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right)
$$

This is a 2×2 matrix without a saddle point, so we can find its value by looking for equalizing strategies. We get $v_{I}=5 / 2$.

$$
v_{I I}=\operatorname{Val}\left(\begin{array}{cc}
10 & 0 \\
5 & 20
\end{array}\right)
$$

This also doesn't have a saddle point, looking for equalizing strategies we find $v_{I I}=8$.
2. This is a textbook exercise, Part III section 2 question 3. The answer is in the online solutions.
3. This is a textbook exercise, Part III section 2 question 4.
4. This is a textbook exercise, Part III section 3 question 2.
5. This is a textbook exercise, Part III section 3 question 6.

