MA152 Spring 2017

Homework 7

Due: 7st June at 4PM in APM basement

1. Draw the TU and NTU-feasible sets for the following bimatrix game. Indicate the Pareto optimal curve in both diagrams.

$$\begin{pmatrix} (0,4) & (3,2) \\ (4,0) & (2,3) \end{pmatrix}$$

2. Find the TU solution and sidepayment for the bimatrix game

(3,1)	(4, 3)	(-5, -5)
(0,5)	(1, 0)	(5,0)

- 3. For each of the following bimatrix games, find the NTU solution given that the threat point is (0,0) (use the Nash approach, and not λ -transfer).
 - (a) $\begin{pmatrix} (1,5) & (0,0) \\ (1,1) & (3,0) \end{pmatrix}$ (b) $\begin{pmatrix} (1,5) & (0,0) \\ (0,0) & (2,4) \end{pmatrix}$
- 4. Let $S = \{(x, y) : 0 \le y \le 4 x^2\}$ be an NTU-feasible set.
 - (a) Find the NTU solution if the threat point is $(u^*, v^*) = (0, 0)$.
 - (b) Find the NTU solution if the threat point is $(u^*, v^*) = (0, 1)$.

- 5. (Not to be handed in.) Consider a three-player game with the following characteristic function: $v(\{1\}) = 1$, $v(\{2\}) = 0$, $v(\{3\}) = 2$, $v(\{1,2\}) = 2$, $v(\{2,3\}) = 3$, $v(\{1,3\}) = 4$, $v(\{1,2,3\}) = 7$. Compute the Shapeley values for each player.
- 6. (Not to be handed in.) Consider the following 3-person game of perfect information. Let $S = \{1, 2, \dots, 10\}$. First Player 1 chooses $i \in S$. Then Player 2, knowing *i*, chooses $j \in S$, $j \neq i$. Finally Player 3, knowing *i* and *j*, chooses $k \in S$, $k \neq i$, $k \neq j$. The payoff given these three choices is (|i j|, |j k|, |k i|). Find the coalitional form of the game.
- 7. (Not to be handed in.) Consider the three player game where each player simultaneously announces 0 or 1. Let x be the sum of the three announced numbers. If x is a multiple of 3, the payoff is x to Player 1 and 0 to the other players. If x is 1 more than a multiple of 3, the payoff is x to Player 2 and 0 to the other players. Finally if x is 2 more than a multiple of 3, the payoff is x to Player 3 and 0 to the other players. Find the coalitional form of the game.