MA152 Spring 2017

Homework 7
Due: 7st June at 4PM in APM basement

1. Draw the TU and NTU-feasible sets for the following bimatrix game. Indicate the Pareto optimal curve in both diagrams.

$$
\left(\begin{array}{ll}
(0,4) & (3,2) \\
(4,0) & (2,3)
\end{array}\right)
$$

2. Find the TU solution and sidepayment for the bimatrix game

$$
\left(\begin{array}{ccc}
(3,1) & (4,3) & (-5,-5) \\
(0,5) & (1,0) & (5,0)
\end{array}\right)
$$

3. For each of the following bimatrix games, find the NTU solution given that the threat point is $(0,0)$ (use the Nash approach, and not λ transfer).
(a)

$$
\left(\begin{array}{ll}
(1,5) & (0,0) \\
(1,1) & (3,0)
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{ll}
(1,5) & (0,0) \\
(0,0) & (2,4)
\end{array}\right)
$$

4. Let $S=\left\{(x, y): 0 \leq y \leq 4-x^{2}\right\}$ be an NTU-feasible set.
(a) Find the NTU solution if the threat point is $\left(u^{*}, v^{*}\right)=(0,0)$.
(b) Find the NTU solution if the threat point is $\left(u^{*}, v^{*}\right)=(0,1)$.
5. (Not to be handed in.) Consider a three-player game with the following characteristic function: $v(\{1\})=1, v(\{2\})=0, v(\{3\})=2, v(\{1,2\})=$ $2, v(\{2,3\})=3, v(\{1,3\})=4, v(\{1,2,3\})=7$. Compute the Shapeley values for each player.
6. (Not to be handed in.) Consider the following 3-person game of perfect information. Let $S=\{1,2, \cdots, 10\}$. First Player 1 chooses $i \in S$. Then Player 2, knowing i, chooses $j \in S, j \neq i$. Finally Player 3, knowing i and j, chooses $k \in S, k \neq i, k \neq j$. The payoff given these three choices is $(|i-j|,|j-k|,|k-i|)$. Find the coalitional form of the game.
7. (Not to be handed in.) Consider the three player game where each player simultaneously announces 0 or 1 . Let x be the sum of the three announced numbers. If x is a multiple of 3 , the payoff is x to Player 1 and 0 to the other players. If x is 1 more than a multiple of 3 , the payoff is x to Player 2 and 0 to the other players. Finally if x is 2 more than a multiple of 3 , the payoff is x to Player 3 and 0 to the other players. Find the coalitional form of the game.
