(4) This game is equivalent to a game with piles of coins, where each pile of coins corresponds to a group of consecutive 'H's. A move consists of removing one or two coins from a single pile, and then (if the player wishes) dividing the pile into two piles (since turning a ' H ' into a ' T ' in the middle of a group of consecutive 'H's breaks the group into two consecutive lists of 'H's).
The position in the question corresponds to $(11,4)$: two piles, with 11 and 4 coins. Since each move of this game acts on a single pile, a game with multiple piles is the same as the sum-of-games where each term is a single-pile game. So $(11,4)=(11)+(4)$, as games.
We compute the Sprague-Grundy function for a single pile version of this game.

$$
\begin{aligned}
g(0) & =0 \\
g(1) & =\operatorname{mex}\{g(0)\}=1 \\
g(2) & =\operatorname{mex}\{g(0), g(1)\}=2 \\
g(3) & =\operatorname{mex}\{g(1), g(2), g(1,1)\}=\operatorname{mex}\{g(1), g(2), g(1) \oplus g(1)\}=3 \\
g(4) & =\operatorname{mex}\{g(2), g(3), g(1) \oplus g(2), g(1) \oplus g(1)\}=1 \\
g(5) & =\operatorname{mex}\{g(3), g(4), g(1) \oplus g(3), g(2) \oplus g(2), g(1) \oplus g(2)\}=4 \\
g(6) & =\operatorname{mex}\{g(4), g(5), g(1) \oplus g(4), g(2) \oplus g(3), g(1) \oplus g(3), g(2) \oplus g(2)\}=3 \\
g(7) & =\operatorname{mex}\{g(5), g(6), g(1) \oplus g(5), g(2) \oplus g(4), g(3) \oplus g(3), g(1) \oplus g(4), g(2) \oplus g(3)\}=2 \\
g(8) & =\operatorname{mex}\{g(6), g(7), g(1) \oplus g(6), \cdots, g(3) \oplus g(4), g(1) \oplus g(5), \cdots, g(3) \oplus g(3)\}=1 \\
g(9) & =\operatorname{mex}\{g(7), g(8), g(1) \oplus g(7), \cdots, g(4) \oplus g(4), g(1) \oplus g(6), \cdots, g(3) \oplus g(4)\}=4 \\
g(10) & =\operatorname{mex}\{g(8), g(9), g(1) \oplus g(8), \cdots, g(4) \oplus g(5), g(1) \oplus g(7), \cdots, g(4) \oplus g(4)\}=2 \\
g(11) & =\operatorname{mex}\{g(9), g(10), g(1) \oplus g(9), \cdots, g(5) \oplus g(5), g(1) \oplus g(8), \cdots, g(4) \oplus g(5)\}=6
\end{aligned}
$$

So the Sprague-Grundy value of $(11,4)$ is $6 \oplus 1=7$. To move to a P -position, we need to make a move in the (11) pile so that the new SG value is 1 . There are two such moves: turn the (11) pile into $(3,7)$ or $(7,3)$. In the original game, this corresponds to the moves:

1. "НННТНННННННТНННН"

2. "HННННННТНННТНННН"

(Remark. This is a variant of the "Google" question from lectures, and this game is in the book on page "I-24". For the SG value computation, after the first few values it is not necessary to list all followers, and these values can be computed relatively quickly from the previous values.)

