In this note, we will study the sum of a subtraction game and Nim. Let G_{1} be the subtraction game where, on a player's turn, they may remove 1 or 2 coins. There are 7 chips initially Let G_{2} be the Nim game with four piles, with $1,3,3$ and 4 chips. We will find a winning move (ie. a move to a P-position) in $G_{1}+G_{2}$.

Recall the Sprague-Grundy Theorem,
Theorem 1. Let $G_{1}, G_{2}, \cdots, G_{k}$ be games with Sprague-Grundy functions $g_{1}, g_{2}, \cdots, g_{k}$ respectively. Then the Sprague-Grundy function g of the sum game $G_{1}+G_{2}+\cdots+G_{k}$ is

$$
g\left(x_{1}, x_{2}, \cdots, x_{k}\right)=g_{1}\left(x_{1}\right) \oplus g_{2}\left(x_{2}\right) \oplus \cdots \oplus g_{k}\left(x_{k}\right)
$$

Proposition 1. For $\operatorname{Nim}\left(x_{1}, x_{2}, \cdots, x_{k}\right)$, the Sprague-Grundy function g is given by

$$
g\left(x_{1}, x_{2}, \cdots, x_{k}\right)=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{k}
$$

Proof. First, let us use this to compute the Sprague-Grundy function for Nim. In the lecture, we saw that it follows immediately from the definition of the Sprague-Grundy function and the rules of Nim that for a single-pile game of Nim, we have

$$
g_{\text {nim }}(x)=x
$$

Now, consider Nim with multiple piles. On a player's turn, they choose one of the piles and then remove some number of chips from that pile. This is equivalent to playing the sum of games, where each game is a singlepile game of Nim. It follows from the Sprague-Grundy theorem that the Sprague-Grundy function for Nim is given by:

$$
g\left(x_{1}, x_{2}, \cdots, x_{k}\right)=g\left(x_{1}\right) \oplus g\left(x_{2}\right) \oplus \cdots \oplus g\left(x_{k}\right)=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{k}
$$

Next we compute the Sprague-Grundy function for the subtraction game where each player can subtract 1 or 2 coins. The terminal position is 0 , so we have $g(0)=0$. Using the definition, we can check that $g(1)=1$, $g(2)=2, g(3)=0$, and so on. The pattern appears to be $0,1,2$ repeating, with $g(x)=0$ whenever x is a multiple of 3 . This can be justified in the usual way, this is left as an exercise (see homework 2 question 1, for example).

Finally, we are ready to study $G_{1}+G_{2}$, as defined in the beginning of this document. Let g_{1}, g_{2} be the Sprague-Grundy functions for the subtraction
game and Nim respectively. Let g be the Sprague-Grundy function for $G_{1}+$ G_{2}. The position we are interested in is the position $(7,(1,3,3,4))$.

$$
g(7,(1,3,3,4))=g_{1}(7) \oplus g_{2}(1,3,3,4)
$$

by the Sprague-Grundy theorem. We know that $g_{1}(7)=1$, since 7 is one more than a multple of 3 . We know that

$$
g_{2}(1,3,3,4)=1 \oplus 3 \oplus 3 \oplus 4=5 .
$$

So

$$
g(7,(1,3,3,4))=1 \oplus 5=4
$$

A winning move is any move that results in a Sprague-Grundy value of 0 . Well, we can choose to move in the Nim game and remove the pile with 4 coins. The resulting Sprague-Grundy value is

$$
g(7,(1,3,3,0))=g_{1}(7) \oplus g_{2}(1,3,3,0)=1 \oplus 1 \oplus 3 \oplus 3=0
$$

So this move results in a P-position, as desired.

