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VII.10 Löb’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Bibliography 287

Subject Index 289

v



vi



Preface

This book provides an introduction to propositional and first logic with an em-
phasis on mathematical development and rigorous proofs. The first chapters
(Chapters I-IV) cover the completeness and soundness theorems for proposi-
tional and first-order logic. The next three chapters cover algorithms and Tur-
ing machines, and finally the Gödel Second Incompleteness Theorem. A final
still-to-be-written Chapter ?? covers Herbrand’s Theorem as an optional topic.
An appendix—also still-to-be written—covers primitive recursive and partial
recursive functions.

The book is intended as an undergraduate textbook in mathematical logic,
intended chiefly for students in mathematics, computer science and philosophy.
The reader is expected to have a certain level of mathematical sophistication,
especially the willingness to deal with abstraction and mathematical proofs.
However, the book does not presuppose much in the way of prerequisites or
mathematical knowledge. Apart from some short sections that discuss alge-
braic structures (such as groups and fields), most of the mathematical prereq-
uisites will be covered in a course in discrete mathematics. In addition, it is
expected that readers will be comfortable with reading and writing (informal)
mathematical proofs.

My goal in writing this book was to write an elementary and straightfor-
ward introduction to classical logic, which is still mathematically rigorous. The
proof systems used in the book are conventional proof systems (called “PL”
and “FO”) with modus ponens and generalization as the main inference rules.
Other proof systems are certainly possible, but PL and FO are arguably the
most straightforward and most traditional proof systems. Considerable efforts
have been made to streamline the presentation without skimping unduly on
mathematical rigor. Only countable languages are covered, but uncountable
languages are treated in a few of the exercises.

Acknowledgments. This book is heavily influenced by earlier textbooks. In
particular, I have taught similar courses in the past from the books of Ender-
ton [5], Boolos, Burgess and Jeffries [1], and Mendelson [13], and I used Hodel’s
textbook [10] as a supplementary text while writing this book. I learned math-
ematical logic from Shoenfield’s book [18] and this also heavily influenced my
choice of topics.

This text was initially written while teaching a course on mathematical logic
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at the University of California, San Diego in Fall 2021 and Winter 2022. Most of
the two courses was taught in-person, but part was taught online due to Covid-
19 closures. I wish to thank the course participants not only for inspiring me
to write this text but also for helpful feedback. Thanks are due to the students
Mark Barbone, Michael Bradley, Elijah Camarena, Trevor Castle, Isaiah Dailey,
Adriana Herrera, Jaeyeong Hwang, Arbi Leka, Andrew Paul, Joseph Phillips,
Ayoob Shahmoradi, Kin James Wong, Zijian Zhang, and Zhicheng Zheng and
to the teaching assistants Ryan Mike and Nathan Wenger for specific sugges-
tions and corrections that helped improve the text. Thanks are also due to Jeff
Edmonds and Frederick Manners for discussion on the overall choice of top-
ics. Further thanks are due to Jonathan Aberle, David Auerbach, Alex Blum.
Dennis Hamilton, and Roussanka Loukanova for comments, suggestions, and
corrections to drafts of this book. Thanks are also due to Jeff Edmonds and
Frederick Manners for discussion on the overall choice of topics.

At present, this is still a preliminary draft. Corrections and, more generally,
suggestions for improvements will be greatly appreciated!

Sam Buss
La Jolla, California

August 2023
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Introduction

Logic is, loosely speaking, the science of how to express concepts and situations
and reason correctly about them. Mathematical logic is chiefly concerned with
expressions in formal languages, how to ascribe meanings to formal expressions,
and how to reason with formal expressions using inference rules. Mathematical
logic is also concerned with algorithmic issues including definability, computabil-
ity, and complexity. Mathematical logic is furthermore a principal tool in the
study of the foundations of mathematics.

Logic has diverse applications, especially in mathematics and computer sci-
ence. The modern development of mathematical logic was motivated by the de-
sire to establish a logical foundation for mathematics.1 From that point of view,
mathematical logic is a branch of mathematics that attempts to understand and
justify all mathematical reasoning. With the Soundness and Completeness The-
orems for first-order logic and the development of set theory, mathematical logic
has been immensely successful in this endeavor and, via first-order set theory,
has succeeded in establishing a foundation for all of mathematics. On the other
hand, the theory of computability and the Gödel Incompleteness Theorems have
revealed important limitations on the use of mathematical logic, and on the use
of any formal system, for proving mathematical truths.

The modern formal theory of computability arose largely from the theory of
Turing machines.2 Turing machines are an idealized model of computation; the
famous Church-Turing thesis states that Turing machines define a very general,
robust notion of computation that captures the intuitive notion of computation.
The original motivation for the definition of Turing machines was to prove the
undecidability (the noncomputability) of mathematical truths about the inte-
gers. Turing achieved this by proving the undecidability of the halting problem.
Subsequent developments in the theory of computer science have explored more
restrictive notions of computation, ranging from time-bounded Turing machines,
to Boolean circuits and to the more speculative prospects of quantum compu-
tation, to mention only a few. In this way, the theory of computer science is an
important part of mathematical logic. It would be equally valid to say this the
other way around: mathematical logic (especially, but not only, its discrete or

1This was initiated primarily by Frege in 1879 but underwent extensive refinement to reach
modern form.

2Turing machines were defined by Turing in 1936. Other equivalent definitions for com-
putability were independently developed by Church, by Post, and by Gödel and Herbrand.
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finitary aspects) is an important part of theoretical computer science.

Indeed, mathematical logic has many applications in theoretical—and not-
so-theoretical—computer science, including the theory of databases, hardware
and software verification, and computer-based theorem proving. Applications of
computer-based theorem proving range from proving theorems about mundane
properties (such as the correctness of a software program with an SMT solver),
to proving advanced mathematical theorems (e.g., with the aid of computerized
theorem proving systems such as Mizar, Isabelle, MetaMath, Coq, Lean, etc.)

With a diverse range of applications, there is also a diverse range of formal
systems of logic. The present book focusses on the core, classical theory of
first-order logic. The first two chapters take up propositional logic, which is
interesting in its own right and serves as a warm-up for the development of first-
order logic in Chapters III and IV. Propositional logic and first-order logic both
have a formal notion of syntax for formulas, an intuitive and straightforward
notion of semantics, and a proof systems based on inference rules. Furthermore,
they both have Soundness and Completeness Theorems. Strikingly, first-order
logic is in some sense the strongest logic with all of these properties. In this
way, propositional logic and first-order logic serve as touchstone systems, against
which all other formal systems can be compared.

The main topics covered in the book include the following:

Syntax and informal semantics. Propositional and first-order logic use for-
mulas that are formed with precise syntactic rules. For propositional logic,
formulas are formed with the connectives ∧, ∨, ¬, → and ↔, with the infor-
mal meanings of “and”, “or”, “not”, “if-then” and “if-and-only-if”. First-
order logic adds the quantifiers “∀x” and ∃x” with the intuitive meanings of
“forall x” and “exists x” where the variable x ranges over some domain of
objects. First-order logic also adds function symbols and relation symbols.

Formal semantics. The informal meanings of propositional and first-order
formulas are formalized by giving mathematical definitions of the truth or
falsity of formulas. In general, the truth or falsity of a formula depends on
how its non-logical components are interpreted in an “interpretation”. Inter-
pretations in propositional logic are rather simple: they consist of assigning
values T or F to propositional variables. Interpretations in first-order logic
are much more complicated: they require choosing a domain of objects (a
“universe”) for the range of variables and choosing meanings for the function
symbols and relation symbols.

Some formulas are true under all interpretations; such formulas are called
“valid”.

Proofs and provability. Propositional logic and first-order logic both have
effective proof systems, in which formulas are deduced from axioms using
inference rules. For propositional logic, we use a proof system PL that has
modus ponens as its sole inference rule. Our proof system FO for first-order
logic has two inference rules, modus ponens and generalization.
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Soundness and completeness. The Soundness Theorem states that only valid
formulas have formal proofs. The Completeness Theorem states that all valid
formulas have formal proofs. Both propositional and first-order logic satisfy
the Soundness and Completeness Theorems. This is an amazing fact!

It is common to work with sets of axioms; for example, the axioms for groups,
the axioms for real closed fields, the Peano Arithmetic (PA) axioms for the
(non-negative) integers, or the axioms for Zermelo-Frankel (ZF) set theory.
The Soundness and Completeness Theorems still apply, and state that a for-
mula can be proved from the axioms if and only if is a logical consequence
of the axioms. Given the fact that first-order logic is strong enough to en-
compass all of mathematics via a first-order theory ZF for sets, this means
that there is a first-order formal system that can encompass essentially all
mathematical validities.3

Computability and decidability. The notion of computability is central to
mathematical logic. The intuitive conception of computability corresponds
to what can be carried out by an idealized computer that is not constrained
by time and space resources. This is made mathematically precise by Turing
machines, which provide a simple but flexible computational model that can
simulate the action of any modern-day computer and thus, by the “Church-
Turing Thesis”, gives a mathematical definition of what it means for a function
to be computable.

A set or a relation is called computable, or “decidable”, if there is a (Turing
machine) algorithm for deciding when a given input is in the set. It is called
“computably enumerable” or “Turing enumerable” if there is an algorithm
that exhaustively lists the members of the set or relation.

Undecidability. Surprisingly, it turns out that there are simple-to-describe
sets that are undecidable; correspondingly, there are simple-to-describe func-
tions that are not computable. A prime example of this is the “halting prob-
lem”. Namely, the set of (descriptions of) Turing machines that do not halt is
undecidable. In other words, there is no algorithm which, given an arbitrary
Turing machine M , determines correctly whether M ever halts.

The undecidability of the halting problem can be leveraged to prove that
the set of true first-order statements about the integers is undecidable (when
working with the the language containing the functions symbols + and ⋅ for
addition and multiplication). Furthermore, the set of true first-order state-
ments about the integers is not even computably enumerable.

Incompleteness. A set of axioms is “complete” if every (closed) formula is
either provable or disprovable from the axioms.4 In effect, being complete
means that the axioms are sufficient to fully describe what is true or false.

3However, as we discuss below, encompassing all mathematical validities is not the same
as encompassing all mathematical truths.

4We are being a bit loose here in informally defining the notion of “complete”. See Defini-
tion III.98 for the actual definition for first-order logic, which applies to theories.
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The First and Second Incompleteness Theorems, both due to Gödel, state
that there is no complete axiomatization of the first-order theory of the inte-
gers. The first-order theory of Peano Arithmetic (PA) is the most common
axiomatization of the integers. The axioms of PA are decidable; it follows
that the theorems of PA are computably enumerable. This combined, with
the undecidability of the halting problem and the representability of the halt-
ing problem in arithmetic, means that Peano Arithmetic is not complete.

At first glance, the Completeness and Incompleteness Theorems might seem
contradictory. But there is no contradiction here. The Completeness Theorem
states, for instance, that all formulas C that are logical consequences of the
axioms of PA (Peano Arithmetic) have proofs from the axioms of PA. That
is to say, if C is true in any setting where the axioms of PA hold (i.e., in
any interpretation of PA), then C has a proof from the axioms of PA. The
Incompleteness Theorem implies that there are formulas C that are true for
the actual integers but do not have proofs from the axioms of PA. The point is
that there are other interpretations of PA, called “nonstandard models of PA”,
which are different from the actual or true integers! There are formulas C
that are true in the actual (“standard”) integers but false in some nonstandard
model. These are statements that are true about the (standard) integers but
cannot be proved from the axioms of Peano arithmetic.

How to read this book.

Figure 1 shows the dependencies among chapters. Although the suggestion is to
read the chapters in order, it is also possible to skip the chapters on propositional
and first-order proofs and still read part of the chapters on algorithms and
Turing machines and the possibly-to-be-written chapter on Herbrand’s theorem.

The book is intended to be used for a course in mathematical logic. Even
if the chapters are covered in order, it is important to introduce algorithmic
concepts and the notion of computability early in the course. This will help
prepare students for the more rigorous coverage of these important topics in
Chapters V and VI.

Alternatively, a course could start with the first part of Chapter V, then
cover undecidabilty using Section V.6 and Chapter VI, and afterwards cover
the first four chapters while adding in topics from the rest of Chapter V.

For quarter-based courses, the author attempts to cover up through the
Completeness Theorem in the first quarter, and then cover the Incompleteness
Theorems in the second quarter. This makes for a rushed course, and typically
some details need to be omitted. This schedule would be more leisurely for two
semesters instead of two quarters.

The chapters all have a range of exercises. Many of them test basic under-
standing of the material, but some of them introduce new concepts. Readers
are strongly encouraged to attempt the exercises.
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Chapter I: Propositional logic

Chapter II: Propositional proofs

Chapter III: First-order logic

Chapter IV: First-order proofs
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Algorithms &
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Algorithms &

propositional logic Section V.5:
Algorithms &

first-order logic

Chapter VI: Turing machines

Chapter VII: Incompleteness

Figure 1: Chapter dependencies.
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Chapter I

Propositional Logic:
Syntax and Semantics

I.1 Introduction to Propositional Logic

Propositional logic is used to express statements using “propositions” or “sen-
tences” that take on true/false values. Propositional logic is sometimes called
“sentential logic” or “Boolean logic”; the latter name is because it deals with
the Boolean values of “True” and “False”. As a simple example, consider three
propositions denoted by variables r, s,w:

r - “It is raining”

s - “The sun is shining”

w - “The grass is wet”

As propositions, they are assumed to take on definite true/false values. For
example, it is assumed that it r will assume a definite truth value of “True” or
“False” indicating either that it is raining or that it is not raining; say at some
particular time or place and without any ambiguity that might arise from issues
such as whether a light mist counts as rain. Likewise, it assumed that s and w
will assume definite truth values as to whether the sun is shining and the grass
is wet.

More complex propositions are formed by combining propositional variables
with operators such as “not” (¬), “and” (∧), “or” (∨). For example,

¬r - “It is not raining”

r ∧w - “It is raining and the grass is wet”

r ∨ s - “It is raining or the sun is shining”

¬(r ∧ s) - “It is not the case that both it is raining and the sun is shining”

The ¬ (“not”) operator is also called logical negation or just negation. The ∧
(“and”) operator is also called conjunction, The ∨ (“or”) operator is also called

7



8 Propositional Logic: Syntax and Semantics (Draft B.2.e)

disjunction. The connective ∨ denotes the “inclusive or” in that it allows the
possibility that both arguments are true. Thus the formula r ∨ s is also true
when both r and s are true.

Other common connectives include “if . . . then . . . ” (→) and “if and only
if” (↔). The → operator is often called implication; and the ↔ operator is the
equivalence operator. For example,

r → w - “If it is raining then the grass is wet”

w → r - “The grass is wet only if it is raining”

r → w - “The grass is wet if it is raining”

w↔ r - “The grass is wet if and only if it is raining”

Some care needs to be taken in translating English sentences to propositional
formulas since a natural language such as English allows many nuances that are
completely lost in propositional logic. However, as shown in some of the above
examples, “B if A” generally means the same thing as “if A then B” . It also
means the same thing as “A only if B”.

Some less explicit uses of propositional connectives occur with “but” and
“unless”; for example,

r ∧ ¬w - “It is raining but the grass is not wet”

(¬w) ∨ r - “The grass is not wet unless it is raining.”

These illustrate that “but” may translate to the propositional connective ∧ (“and”),
and “A unless B” may translate to A ∨ B. The latter can also translate to
(¬A) → B because this means the same as “if ¬A, then B” or “if A is false,
then B is true”. On a related note, “If A, then B” means the same thing in
propositional logic as (¬A) ∨B.

For somewhat more problematic correspondences between English assertions
and propositional logic, consider

b - “You may buy a ticket”

e - “You are over eighteen years old”

that are used to form the compound propositions

e→ b - “You may buy a ticket if you are over eighteen”

b→ e - “You may buy a ticket only if you are over eighteen”

b↔ e - “You may buy a ticket if and only if you are over eighteen”

If someone were to make these English statements in a real-world situation, they
probably use any of the three to mean b ↔ e, i.e. that you may buy a ticket
if and only if you are eighteen.1 However, we use “if” and “only if” in a more
specialized sense, as is common in logic and more generally in mathematics.
This illustrates the need for caution in translating from a natural language to
propositional logic.

1This ignores other such preconditions such as whether the ticket sales office is open and
you have enough money.
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Mathematical logic avoids the ambiguity of English. Instead, the proposi-
tional connectives ¬, ∧, ∨, →, ↔, etc., are purely truth functional, with values
shown in Figure I.1. For instance, whether the formula p → q is true or false
is determined solely by the truth or falsity of p and q, and it does not matter
whether there is some reason why the truth of p should imply the truth of q.
Indeed, p→ q will always have the same truth value as (¬p) ∨ q.

This can be confusing sometimes, as it is somewhat counterintuitive that “if
p, then q” should be true when p is false, independently of whether q is true
or false. This is counterintuitive for the simple reason that in English, there is
generally a distinction between “if A then B” and “B or not A”. For instance,
consider the rather dramatic difference in meanings of the two sentences

“If you will go to your house today, you will find your passport today”,

and

“You will find your passport today, or you will not go to your house today”.

The “if A then B” form of the statement sounds like helpful advice on how
to find your missing passport. On the other hand, the “B or not A” form
of the statement sounds like a threat from a border guard. These nuances are
completely lost when translating the statements from English into propositional
logic, since A→ B means exactly the same thing as B∨¬A in propositional logic.

In natural languages, a statement “if A then B” statement usually means
there is a reason why the truth of A implies the truth of B. In propositional
logic, however, statements like “If pigs have wings then horses can fly” can be
true (because pigs do not have wings) in spite of the fact that wings on pigs
would presumably have nothing to do with flying horses!

For an example of why this treatment of implications makes sense when
dealing with mathematical statements, consider the propositions

P (x) - “x is a prime greater than 2”

O(x) - “x is odd”

Of course, we want the statement ∀x(P (x)→ O(x)),

“For all x, if x is a prime greater than 2, then x is odd”,

to be true for x ranging over all integers. Figure I.2 gives the truth values of
P (x) and O(x) and P (x) → O(x) when x = 1, x = 2 and x = 3. We want
P (x) → O(x) to be true in all three cases, including the two cases where P (x)
is false. Thus we want “F → F” and “F → T” both to evaluate as true to give
the correct results in the cases where x is equal to 1 or 2.

I.2 Propositional Formulas

We now give the formal definitions of the syntax of propositional formulas. After
that, the next section will define the truth value of a formula in terms of the
truth values of its variables.
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p ¬p
T F
F T

p q p ∨ q p ∧ q p→ q p↔ q

T T T T T T
T F T F F F
F T T F T F
F F F F T T

Figure I.1: The values of propositional connectives. “T” and “F” denote the
Boolean values “True” and “False”.

Propositional formulas will be expressions, that is strings of symbols. The
permitted symbols are:

(a) Variables p1, p2, p3, . . .,

(b) Propositional connectives ¬, ∧, ∨, → and ↔, and

(c) Parentheses ( and ).

Definition I.1. The set of propositional formulas is inductively defined by:

(a) pi is a propositional formula, for any i ≥ 1.

(b) If A is a propositional formula, then so is ¬A.

(c) If A and B are propositional formulas, then so are (A ∨B) and (A ∧B)
and (A→ B) and (A↔ B).

It is implicit in the definition that rules (a)-(c) are the only ways of generating
propositional formulas. It is important that parentheses are included exactly as
indicated.

Example I.2. Examples of propositional formulas include:

p1 p2 p1000 ¬p2 ¬¬p2

(p1 → (¬p2 → p1)) ((p1 → ¬p2)→ p1)
¬((p1 ↔ ¬¬¬p2)→ (¬p2 ∨ (p1 ∧ p1))).

On the other hand, p1 ∧ p2 is not a propositional formula due to missing paren-
theses, and (¬p3) is not a propositional formula due to having extra parentheses.
Likewise, p ∨ r is not a propositional formula due to using variables other than
the pi’s.

Informal abbreviations for formulas. The formal definition of formulas
requires the inclusion of many open and close parentheses. These are useful for
uniquely parsing formulas but often detract from readability. Thus it is common
to informally abbreviate formulas by omitting parentheses when writing out
formulas. For instance, we can always omit writing the outermost parentheses
without any ambiguity about what the formula is. However, it is important
that we know how to reinsert parentheses to recover the actual formula. We do
this according to the following rules of precedence:
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x P (x) O(x) P (x)→ O(x)
1 F T T
2 F F T
3 T T T

Figure I.2: Some values of P (x)→ O(x).

● The negation sign, ¬, has the highest precedence.

● The connectives ∧ and ∨ have the second highest precedence.

● The connectives → and ↔ have the lowest precedence.

● If parentheses are omitted amongst connectives of the same precedence,
they are associated from right to left.

Some examples are:

Informal Actual
abbreviation formula
¬p1 ∨ ¬p2 ∨ p3 (¬p1 ∨ (¬p2 ∨ p3))
¬p1 → ¬p2 → p3 (¬p1 → (¬p2 → p3))
¬(p1 → ¬p2)→ p3 (¬(p1 → ¬p2)→ p3)
p1 ∨ ¬p2 → ¬p3 ∧ p4 ((p1 ∨ ¬p2)→ (¬p3 ∧ p4))

In addition to omitting parentheses, variable names such as p, q, r, . . . are fre-
quently used instead of p1, p2, p3, . . .. This is just to improve readability; for-
mally only variables pi can appear in formulas.

The truth functions for ∧, ∨, and↔ are associative, so the convention about
associating from right to left is not so important for them. However, → is not
associative, as p → (q → r) is not equivalent to (p → q) → r. The formula
p → (q → r) is however equivalent truth-functionally to the formula p ∧ q → r.
This is often a convenient and useful way to write a formula, and it is for this
reason that we have chosen to associate from right to left.

It is best to avoid writing things like A ∨ B ∧ C or A → B ↔ C, to avoid
confusing readers. According to our conventions they mean A ∨ (B ∧ C) or
A→ (B ↔ C), but other authors use different conventions.

Proofs by induction and recursive definitions. The reason for being so
careful about giving a formal mathematical definition of propositional formulas
is that we will use to it prove theorems about propositional formulas. That is
to say, we do not merely use formulas, we also prove theorems about formulas.

Definition I.1 gave an inductive definition for formulas. This allows prop-
erties of formulas to be proved by induction. Specifically, suppose we wish to
prove that every propositional formula satisfies some property Q. To prove this
by induction, it suffices to show that:

(a) Every formula pi satisfies property Q,
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(b) If A is a propositional formula that satisfies property Q, then the formula
¬A also satisfies property Q, and

(c) If A and B are propositional formulas that each satisfy property Q, then
the formulas (A ∧ B), (A ∨ B), (A → B) and (A ↔ B) all satisfy prop-
erty Q.

The first case, (a), serves as the base case. Cases (b) and (c) serve as the
induction steps. This means there are two induction steps to be proved, or even
five induction steps if case (c) has to be treated as four different induction steps.

The third case, (c), of Definition I.1 for propositional formulas treats the case
where the principal connective is ∧, ∨, → or ↔. It requires that parentheses be
included so that the formula has the form (A ○B), for ○ one of the four binary
connectives. The presence of all these parentheses means that there is a unique
way to parse any propositional formula. That is to say, if C is a propositional
formula, then there is a unique way to express it in one of the forms (a)-(c) of
Definition I.1. This is called the unique readability property and means that
propositional formulas can be uniquely parsed.

The inductive definition of propositional formulas in Definition I.1 and the
unique readability property together allow using inductive definitions (also called
“recursive definitions”) to define functions of propositional formulas. The gen-
eral framework for defining a function h(A) by recursion on the complexity of
the formula A is as follows.

(a) For the base case, we define the value of h for a propositional formula pi.

(b) For the first case of recursion, we suppose that the value of h for a for-
mula A is already defined. We use this to define the value of h for the
formula ¬A.

(c) For other cases of recursion, we suppose that the values of h on the for-
mulas A and B have already been defined. We use these to define the
value of h for the formula (A ○B) where ○ is one of the connectives ∧, ∨,
→ or ↔.

The unique readability property means that there is exactly one way to express a
propositional formula in one of the forms pi or ¬A or (A○B) to apply recursively
one of the cases (a), (b), or (c). Thus the value h is uniquely defined for all
formulas.

A prominent use of definition by recursion is the Definition I.4 given in the
next section for the truth value of a propositional formula. Section I.9 gives
some examples of proofs by induction on the complexity of formulas.

I.3 Definition of Truth in Propositional Logic

The previous section defined the syntax of propositional formulas; now we define
their semantics, namely what it means for a propositional formula to be true
or false. The truth or falsity of a formula depends on the truth values of the
variables appearing in it. For instance, the formula p1 → p2 could have value



I.4. Satisfiability, Tautologies, and Implication 13

either True (T) or False (F) depending on the values of p1 and p2. Accordingly,
we start with an assignment φ of truth values to the propositional variables.

Definition I.3. A truth assignment φ is a mapping

φ ∶ {p1, p2, p3, . . .}→ {T,F}

from the set of propositional variables to the set of truth values T and F.

A truth assignment φ to the variables gives a truth value φ(pi) to each
variable pi. We can extend φ to give truth values to all propositional formulas:

Definition I.4 (Definition of Truth for Propositional Formulas). Suppose φ is
a truth assignment. The function φ is extended to have domain the set of all
propositional formulas by defining φ by recursion as:

(a) If A is ¬B, then φ(A) = { F if φ(B) = T
T otherwise

(b) If A is (B ∨C), then φ(A) = { T if φ(B) = T or φ(C) = T
F otherwise

(c) If A is (B ∧C), then φ(A) = { T if φ(B) = T and φ(C) = T
F otherwise

(d) If A is (B → C), then φ(A) = { T if φ(B) = F or φ(C) = T
F otherwise

(e) If A is (B ↔ C), then φ(A) = { T if φ(B) = φ(C)
F otherwise

Note how the definition of truth follows the informal meanings as discussed
in Section I.1.

Example I.5. Let A be the formula (p ∨ q) → (q ∧ p). There are only two
variables p, q in this formulas, so the truth value φ(A) of A depends on φ(p)
and φ(q); however φ(A) does not depend on φ(r) for any other variable r. Since
φ(p) and φ(q) can only be T or F, there are only four ways to set the truth
values of p and q. These are pictured in the truth table shown in Figure I.3 in
the first two columns. The second-to-last column of the truth table gives the
corresponding values of φ((p ∨ q)→ (q ∧ p)).

In the second line of Figure I.3, φ(p) = T and φ(q) = F. Hence according to
two applications of the definition of truth, φ(p ∨ q) = T and φ(p ∧ q) = F. With
one more application of the definition of truth, φ((p ∨ q) → (q ∧ p)) = F. That
is A is false when p is true and q is false.

Let B be the formula (p ∧ q) → (q ∨ p). The final column of Figure I.3
shows the values of φ(B) for all possible assignments of values to p and q.
Since φ(B) = T for four assignments, we call B a “tautology” or say that B is
“tautologically valid”. On the other hand, φ(A) is T for some truth assignments
and false for others. Therefore, A is not a tautology; it is “satisfiable”, however,
since there is a truth assignment that makes A true.

The next section discusses tautologies and satisfiability in more depth.
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p q p ∨ q p ∧ q p ∨ q → p ∧ q p ∧ q → p ∨ q

T T T T T T
T F T F F T
F T T F F T
F F F F T T

Figure I.3: The truth tables for (p ∨ q)→ (p ∧ q) and (p ∧ q)→ (p ∨ q).

I.4 Satisfiability, Tautologies, and Implication

Satisfiability and tautologies. A formula is a “tautology” if it is always
true; it is “satisfiable” if it can sometimes be true. Formally:

Definition I.6. A formula A is a tautology if φ(A) = T for all truth assign-
ments φ. In this case, we also say that A is tautologically valid.

A formula A is satisfiable if there is some truth assignment φ such that
φ(A) = T. In this case, we say that φ is a satisfying assignment for A or that A
is satisfied by φ. If there is no satisfying assignment for A, then A is unsatisfiable.

The notation “⊧ A” will also be used to denote that A is a tautology. For this,
see Definition I.10 below.

Example I.7. The formula p1 is satisfiable but not a tautology, since φ(p1) may
equal either T or F. The formulas p1 ∨ ¬p1 and p1 → (p2 → p1) are tautologies,
and hence are satisfiable. The formula p1 ∧ ¬p1 is unsatisfiable.

As already discussed, Figure I.3 shows that p ∧ q → p ∨ q is a tautology and
that p ∨ q → p ∧ q is satisfiable but not a tautology.

It may not be immediately obvious that the formula p1 → p2 → p1 is a
tautology; one way to check this is by the method of truth tables. Figure I.4
shows the truth table, which shows that p1 → p2 → p1 is true under all four
possible combinations of values of φ(p1) and φ(p2).

More generally, suppose a formula A involves k many distinct variables,
pi1 , . . . , pik . There are 2k many ways to set the values of φ(pij). A truth table

for A will thus have 2k lines. This gives an algorithm for determining whether a
given formula A is satisfiable and/or a tautology; namely, consider all possible
2k truth assignments φ on the variables in A and evaluate φ(A). Then A is a
tautology if and only if φ(A) = T for all 2k assignments. And A is satisfiable if
and only if φ(A) = T for at least one of the truth assignments.

Now let Γ denote a set of propositional formulas. It is often interesting to
know whether there is a truth assignment that makes every formula in Γ true.

Definition I.8. A set Γ of propositional formulas is satisfiable if there is a truth
assignment φ such that φ(A) = T for every A ∈ Γ. For such a φ, we say that φ
satisfies Γ or that φ is a satisfying assignment for Γ or that Γ is satisfied by φ.
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p1 p2 p2 → p1 p1 → (p2 → p1)
T T T T
T F T T
F T F T
F F T T

p1 p2 p1 → (p2 → p1)
T T T T
T F T T
F T T F
F F T T

Figure I.4: Truth tables showing that p1 → p2 → p1 is a tautology. The tables
are identical, but the one on the right is written in compact form. The circled
values are the truth values for the entire formula.

The set Γ may be either finite or infinite. If Γ is finite, Γ = {A1,A2, . . . ,Ak},
then Γ is satisfied by φ if and only if φ satisfies A1 ∧A2 ∧⋯ ∧Ak.

If Γ is finite, then the method of truth tables may be used to determine
whether Γ is satisfiable. However, if Γ is infinite then the method of truth
tables cannot be used. This is because in general there may be infinitely many
variables in Γ, and one would have to consider infinitely many truth assignments.

Example I.9. Let Γ be the set of formulas

Γ = {pi ↔ ¬pi+1 ∶ i ≥ 1} = {p1 ↔ ¬p2, p2 ↔ ¬p3, p3 ↔ ¬p4, . . .}.

There are exactly two satisfying assignments for Γ. The first one, φ1, has
φ1(p2j−1) = T and φ1(p2j) = F for all j ≥ 1. The second one, φ2, has φ2(p2j−1) = F
and φ2(p2j) = T for all j ≥ 1.

Tautological implication. A tautological implication is an implication that
is true under any truth assignment. This is defined formally as follows:

Definition I.10. Let A and B be formulas, and Γ be a set of formulas.

(a) We say that A tautologically implies B, or just A implies B for short,
provided that every truth assignment that satisfies A also satisfies B. We
write A ⊧ B to denote that A tautologically implies B.

(b) We say that Γ tautologically implies B, or just Γ implies B for short,
provided that every truth assignment that satisfies Γ also satisfies B. We
write Γ ⊧ B to denote that Γ tautologically implies B.

Unwinding Definitions I.8 and I.10(b), Γ ⊧ A means the same as

For all φ, if φ(B) = T for all B ∈ Γ, then φ(A) = T.

Or equivalently,

For all φ, if φ satisfies Γ, then φ satisfies A.

The symbol “⊧” is called the “double turnstile” sign. Note that A ⊧ B
means the same thing as {A} ⊧ B. It is common to take liberties in notation
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and write things like A,B ⊧ C for {A,B} ⊧ C, and Γ,A ⊧ B for Γ∪{A} ⊧ C. In
all cases, it means that any truth assignment that satisfies all the formulas and
sets of formulas to the left of the ⊧ sign also satisfies the formula to the right
of the ⊧ sign. Finally, we write just ⊧ A for ∅ ⊧ A, where ∅ is the empty set of
(no) formulas. The condition ⊧ A holds if and only A is a tautology.

We write Γ ⊭ A to mean that Γ ⊧ A is false.

Example I.11. Some examples of tautological (non)-implication with a finite
set Γ include:

(a) p1, p1 → p2 ⊧ p2.

(b) p1, p2 ⊧ p2 ∧ p1.

(c) p1 ⊭ p2.

(d) ⊧ p1 → p2 → p1.

(e) ⊭ (p1 → p2)→ p1.

These can be verified by using truth tables. Note that (a) means the same as
{p1, p1 → p2} ⊧ p2, and similarly for (b).

Example I.12. Let Γ be the set of formulas from Example I.9, and φ1 and φ2

be its two satisfying assignments. Then

(a) Γ ⊭ p1 and Γ ⊭ ¬p1.

(b) Γ ⊧ p1 ↔ p3.

Condition (a) holds since φ2(p1) = F and φ1(¬p1) = F. Condition (b) holds
since φ1 and φ2 are the only satisfying assignments, and since φi(p1) = φi(p3)
and thus φi(p1 ↔ p3) = T for both i = 1 and i = 2.

Theorem I.13. Suppose that Γ and ∆ are sets of formulas, and Γ ⊆∆.

(a) If φ satisfies ∆, then φ satisfies Γ.
(b) If ∆ is satisfiable, then Γ is also satisfiable.
(c) If Γ ⊧ A, then ∆ ⊧ A.

Theorem I.13 is an immediate consequence of the definitions.

Implication from an unsatisfiable set. An unsatisfiable set Γ tautologi-
cally implies all formulas B:

Theorem I.14.

(a) Let A and B be formulas. Then A,¬A ⊧ B.
(b) Let B be a formula and Γ be an unsatisfiable set of formulas. Then Γ ⊧ B.

Part (a) is a special case of part (b) since {A,¬A} is unsatisfiable. Part (b)
is proved by observing that since there is no truth assignment satisfying Γ, the
definition of tautological implication means that Γ ⊧ B holds trivially.
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Tautologically equivalent formulas. Two formulas are “tautologically equiv-
alent” if they tautologically imply each other:

Definition I.15. We write A ⊧) B to denote that both A ⊧ B and B ⊧ A.
In this case, we say that A and B are tautologically equivalent . Immediately
from the definitions, A ⊧) B holds if and only if φ(A) = φ(B) for all truth
assignments.

The semantic deduction theorem. The next theorem is the semantic ver-
sion of what will later be called the Deduction Theorem (see Section II.3).

Theorem I.16 (Semantic Deduction Theorem).
Let A and B be formulas and Γ a set of formulas. Then,

(a) A ⊧ B if and only if ⊧ A→ B.

(b) Γ,A ⊧ B if and only if Γ ⊧ A→ B.

Proof. Part (a) is the special case of (b) with Γ equal to the empty set. So
let’s prove (b). The proof is basically just unwinding definitions. To start, the
condition Γ,A ⊧ B means that for any truth assignment φ, if φ satisfies Γ∪{A},
then φ(B) = T. Equivalently, this means that if φ satisfies Γ and φ(A) = T,
then φ(B = T). By the definition of truth for →, the condition

“if φ(A) = T, then φ(B) = T”

is equivalent to φ(A→ B) = T. Therefore, Γ,A ⊧ B is equivalent to the condition
that for all φ, if φ satisfies Γ, then φ(A→ B) = T. In other words, it is equivalent
to Γ ⊧ A→ B.

Example I.17. Returning to the set Γ of Examples I.9 and I.12, we have
Γ, p1 ⊧ p3 and Γ, p3 ⊧ p1.

Theorem I.18. Suppose Γ is a finite set of formulas, Γ = {A1, . . . ,Ak}. Then
Γ ⊧ B if and only if A1 ∧A2 ∧⋯ ∧Ak ⊧ B.

Proof. A truth assignment φ satisfies Γ if and only if it satisfies A1∧A2∧⋯∧Ak.
Therefore, Γ ⊧ B if and only if A1 ∧A2 ∧⋯ ∧Ak ⊧ B.

Theorem I.19. A ⊧) B if and only if ⊧ A↔ B.

Theorem I.19 follows readily from the Semantic Deduction Theorem and the
fact that ⊧ A↔ B holds if and only both ⊧ A→ B and ⊧ B → A.

Duality between satisfiability and validity. The next two theorems show
how the property of being satisfiable is dual to the property of being a tautology.

Theorem I.20. Let A be a formula. Then A is a tautology if and only if ¬A is
not satisfiable.
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Theorem I.20 is a special case of the next theorem, with Γ = ∅. This is a
precursor to Theorems II.19 and II.21 about proof by contradiction.

Theorem I.21. Let Γ be a set of formulas and A be a formula. Then Γ ⊧ A if
and only if Γ ∪ {¬A} is unsatisfiable.

Proof. The condition that Γ ⊧ A means that every truth assignment φ that sat-
isfies Γ has φ(A) = T. The condition that Γ∪{¬A} is unsatisfiable is equivalent
to the condition that every truth assignment that satisfies Γ has φ(¬A) = F.
These two conditions are clearly equivalent.

I.5 Truth Tables

We have already seen a couple of examples of truth tables. This section will
discuss how to write truth tables more compactly, how to form “reduced” truth
tables that can require fewer lines, and how reduced truth tables correspond to
decision trees.

The principal purpose of a truth table is to determine whether or not a
formula is satisfiable or tautologically valid or neither. For a tautology A, a
truth table can serve as a proof that A is valid.

There are straightforward algorithms to build truth tables, and to verify the
correctness of truth tables. The algorithm to build truth tables works roughly
as follows. The input is a formula A. The algorithm first parses A into sub-
formulas and determines the distinct variables that appear in A. If there are
k distinct variables, the algorithm then writes out a truth table with 2k lines,
one for possible assignment of truth values to the k variables. For each of the
2k assignments, the algorithm uses the definition of truth to compute the truth
values of all of the subformulas of A, starting with the propositional variables
and working up to the value of the entire formula A. If the value of A is dis-
covered to be True (T) for all 2k truth assignments, the algorithm outputs that
A is a tautology. Otherwise, it outputs the A is not a tautology. Similarly, if at
least one assignment makes the value of A true, then A is satisfiable.

This is an example of an “effective” algorithm since the algorithm gives an
answer, and the correct answer, for any input formula A. Unfortunately, it is not
a very fast algorithm, since its run time turns out to be at least 2k just because
it has to create 2k lines of the truth table. Thus, this is a so-called “exponential
time” algorithm, and as k grows large, it quickly becomes infeasible to run the
algorithm because it is too slow.

For instance, the universe is believed to be approximately 13 billion years
old, which is approximately 4 × 1026 many nanoseconds. Therefore 288 is ap-
proximately equal to the age of the universe in nanoseconds. Thus the truth
table for a formula A with more than about 100 variables would require more
lines in its truth table than the age of the universe measured in nanoseconds.
This is clearly not feasible to form!
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p q r [p → (q → r)] ↔ [(p ∧ q) → r]
T T T T T T T T
T T F F F T T F
T F T T T T F T
T F F T T T F T
F T T T T T F T
F T F T F T F T
F F T T T T F T
F F F T T T F T

Figure I.5: A compact truth table. The solid box shows the values of the whole
formula. The dotted boxes show the values of the two subformulas p → q → r
and (p ∧ q)→ r. The unboxed columns give the truth values of q → r and p ∧ q.

Compact form of truth tables. Figure I.3 and the lefthand side of Figure I.4
gives two examples of truth tables in traditional notation. In these truth tables,
there is a separate column for each subformula of the formula A being evaluated.

The righthand side of Figure I.4 gives the truth table in more compact form.
In that table, the formula A (in this case, p1 → p2 → p1) is written at the
top of the right column but its subformulas are not rewritten into separate
columns. The truth values of the subformulas of A are written below their
principal connectives. In this case, the truth values for the subformula p2 → p1
are written below the principal → connective for the subformula. Likewise, the
truth values for the whole formula are written below the principal connective of
the whole formula, namely below the first → sign in A.

Figure I.5 shows another example of a compact truth table, for the formula

(p→ q → r)↔ (p ∧ q → r). (I.1)

This shows that (I.1) is a tautology. It follows that p→ (q → r) and (p∧ q)→ r
are tautologically equivalent (see Theorem I.19).

Reduced truth tables. A big disadvantage of truth tables is that they can
be awkwardly big, with 2k many lines when there are k variables. In many cases,
it is possible to form “reduced” truth tables with fewer lines. Reduced truth
tables are based on the fact that sometimes setting just a few of the variables
to true or false is enough to force the value of the whole formula. For example,
in Figure I.5 the formula will be true whenever r is is true. Thus when r is true,
the values of p and q are unimportant.

This insight lets us form the reduced truth table shown in Figure I.6. The
first line of the reduced truth table considers the case where φ(r) = T, and φ(p)
and φ(q) are not determined. In that first line, the definition of truth states
that φ(p ∧ q → r) must equal T no matter what the truth value of p ∧ q is.
Likewise, φ(q → r) and φ(p → q → r) must equal T. This lets us fill enough
of the entries on the first line to determine that the entire formula has truth
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p q r [p → (q → r)] ↔ [(p ∧ q) → r]
- - T T T T - T
- F F T T T F T
T T F F F T T F
F T F T F T F T

Figure I.6: A reduced truth table.

value T. The second line considers the case where φ(r) = F and φ(q) = F and
φ(p) has not been determined. The third and fourth lines consider the two cases
where φ(r) = F and φ(q) = T and where φ(p) is equal to either T or F.

Figure I.6 has half as many rows as Figure I.5, and still manages to cover
all the relevant cases of how the truth assignment is set.

Unfortunately, even though reduced truth tables sometimes provide sub-
stantial savings in size over full truth tables, they can still require exponentially
many lines. Nonetheless, they can be very useful when creating small tables by
hand.

Reduced truth tables and decision trees. Each line in a reduced truth
table for a formula A corresponds to a “partial truth assignment”. A partial
truth assignment means an assignment of truth values to some subset of the
propositional variables appearing in A. A crucial property of reduced truth
tables is the partial truth assignments cover all possible truth assignments,
in the sense that every possible truth assignment extends at least one of the
partial truth assignments. This begs the question, however, of how do we know
that the partial truth assignments from a reduced truth table cover all possible
assignments.2

It is thus desirable that reduced truth tables use some pattern of partial
truth assignments that ensures that they cover every possible truth assignment.
One natural way to do this is to require that the partial truth assignments in
the reduced truth table correspond to a binary decision tree. A binary decision
tree means a procedure that queries the truth values of variables one at a time:
when a variable pi is queried, the procedure receives the truth value φ(pi) of pi.
Rather than define this formally, we illustrate with an example based on the
reduced truth table of Figure I.6.

A binary decision tree is shown in Figure I.7. This represents a procedure
that traverses a branch in the tree, starting at the root node, querying the
truth value of a variable at each node, and following the edge labeled with the
variable’s value to a child node. When a leaf node is reached, the value of the
formula A is known.

The decision tree in Figure I.7 has its root labeled with r; this is the first

2For readers familiar with the theory of P and NP: It is not hard to show that it is NP-hard
to determine if a set of partial truth assignments covers all possible truth assignments.
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r?

q?

p?

φ(A) = T

φ(A) = T

φ(A) = T φ(A) = T

T F

T F

T F

Figure I.7: The decision tree corresponding to the reduced truth table of Fig-
ure I.6. The formula A is (p → q → r) → (p ∧ q → r). The leaves all being
labelled φ(A) = T indicates that A is a tautology.

variable queried. There are two edges leaving r, so r has two children. The first
edge is labelled T meaning that this edge is followed when φ(r) = T. The second
edge is labelled F and that edge is followed when φ(r) = F. One child below r
is a leaf labelled with “φ(A) = T”: that indicates that once that leaf is reached,
straightforward calculations show that the entire formula A has truth value T
(namely, the calculations in the first line of the truth table in Figure I.6).

The other child of r is labelled with q, so q is queried next when φ(r) = F.
When q is queried, its value φ(q) will be either T or F. The process continues
similarly until a leaf is reached. In this example, the leaves are all labelled
“φ(A) = T” since the formula is a tautology.

We still need to describe what “straightforward calculations” can be used at
a leaf of the decision tree to determine the value of A. Some of the variables of A
will have already been determined to have truth value T or F. We let “T” and
“F” now stand for a subformula of A whose value has been determined to be
either true or false. We permit the following two ways for determining further
truth values for subformulas of A (letting B stand for any subformula of A):

(a) Any subformula of the form ¬F or (T ∨ B) or (B ∨ T) or (T ∧ T) or
(F → B) or (B → T) or (F↔ F) or (T↔ T) can be determined to have
truth value T.

(b) Any subformula of the form ¬T or (F∨F) or (F∧B) or (B∧F) or (T→ F)
or (F↔ T) or (T↔ F) can be determined to have truth value F.

If in the end, the truth value of A has been determined, then the current node
is a valid leaf for the decision tree. If, however, the truth value of A does not
get determined in this way, then further variables need to be queried.
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I.6 Examples of Tautologies and Tautological Equiv-
alences

Here we list some of the more common tautologies and tautological equivalences.
These can all be proved with the method of truth tables (or decision trees).
They can also be proved using the proof system PL that will be introduced in
Chapter II.

Simple tautologies on a single variable.

p ∨ ¬p - Law of the Excluded Middle
¬(p ∧ ¬p) - Noncontradiction
p→ p - Self-Implication
p↔ p - Self-Equivalence
¬¬p↔ p - Double Negation

(¬p→ p)↔ p - Equivalence with Implication from Negation

Simple tautological equivalences.

¬(p ∨ q) ⊧) (¬p ∧ ¬q) - De Morgan’s Law
¬(p ∧ q) ⊧) (¬p ∨ ¬q) - De Morgan’s Law

p ∨ p ⊧) p - Idempotency of ∨
p ∧ p ⊧) p - Idempotency of ∧

p ∧ q ⊧) q ∧ p - Commutativity of ∧
p ∨ q ⊧) q ∨ p - Commutativity of ∨
p↔ q ⊧) q↔ p - Commutativity of ↔

p ∧ (q ∧ r) ⊧) (p ∧ q) ∧ r - Associativity of ∧
p ∨ (q ∨ r) ⊧) (p ∨ q) ∨ r - Associativity of ∨

p↔ (q↔ r) ⊧) (p↔ q)↔ r - Associativity of ↔
p ∧ (q ∨ r) ⊧) (p ∧ q) ∨ (p ∧ r) - Distributivity of ∧ over ∨
p ∨ (q ∧ r) ⊧) (p ∨ q) ∧ (p ∨ r) - Distributivity of ∨ over ∧

p→ q ⊧) ¬q → ¬p - Contrapositive (or Transposition)
p→ (q → r) ⊧) (p ∧ q)→ r - Exportation

Some tautologies often used as axioms. Here we list some tautologies that
are also used as axioms for Hilbert-style propositional proof systems. They are
stated with explicit variables p, q, r; however, generally a Hilbert-style system
allows any substitution instance of an axiom to be an axiom.

There are many other possible axioms that have been used in for proposi-
tional proof systems; only a few of them are listed below.

Chapter II defines a Hilbert-style proof system PL, that uses (all substitution
instances of) the first four tautologies below as its axioms. For the second axiom
(among others), be careful to understand how parentheses should be added to
make it a fully parenthesized formula!
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p→ (q → p) - An axiom for →. An axiom of PL.
(p→ q → r)→ (p→ q)→ (p→ r) - An axiom for →. An axiom of PL

¬p→ (p→ q) - An axiom for ¬. An axiom of PL
(¬p→ p)→ p - An axiom for ¬. An axiom of PL

(p→ q)→ (p→ ¬q)→ ¬p - An axiom for ¬
p ∧ q → p - An axiom for ∧
p ∧ q → q - An axiom for ∧

p→ q → p ∧ q - An axiom for ∧
p→ p ∨ q - An axiom for ∨
q → p ∨ q - An axiom for ∨

(p→ r)→ (q → r)→ (p ∨ q → r) - An axiom for ∨
(p→ q)→ (r ∨ p)→ (r ∨ q) - Principle of Summation

(from Principia Mathematica)
((p→ q)→ p)→ p - Pierce’s Law

Tautological equivalences defining ∨, ∧ and ↔. The following three tau-
tological implications can be used to define ∨, ∧ and ↔ in terms of ¬ and →.
This corresponds to the fact that {¬,→} is an adequate set of connectives, as
will be discussed later in Section I.7.

p ∨ q ⊧) ¬p→ q - Definition of ∨ in PL
p ∧ q ⊧) ¬(p→ ¬q) - Definition of ∧ in PL

p↔ q ⊧) (p→ q) ∧ (q → p) - Definition of ↔ in PL

Some tautological implications often used for inferences. Any valid
tautological implication can be used for inferences; thus there are many possible
valid inference rules. Some of the common ones include the following:

p, p→ q ⊧ q - Modus Ponens
¬q, p→ q ⊧ ¬p - Modus Tollens

p→ q, q → r ⊧ p→ r - Hypothetical Syllogism

The proof system PL will allow only Modus Ponens as an inference rule. A
Modus Ponens inference will be written in the form

A A→ B
B

where A and B are permitted to be any well-formed formulas. This inference
rule means that if the two formulas A and A → B have already been inferred,
then B may be inferred as well. Similarly, Modus Tollens and Hypothetical
Syllogism correspond to the inference rules

A→ B ¬B
¬A and

A→ B B → C
A→ C
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I.7 Boolean Functions and DNF and CNF

This section will show how Boolean functions can be represented by proposi-
tional formulas, and introduce Disjunctive Normal Form (DNF) and Conjunc-
tive Normal Form (CNF) formulas.

The motivation for looking at Boolean functions is to justify the use of
the five connectives ¬, ∧, ∨, → and ↔ for propositional formulas. As a first
observation, it is not really necessary to use all five of these. In fact, we could
have used with just the two connectives ¬ and ∨, and would have still be able
to express everything that can be expressed using ¬,∧,∨,→,↔. Similarly with
could have used just ¬ and ∧, or just ¬ and→, without any loss of expressiveness.
(These facts will be proved later in Theorems I.36 and I.37.) On the other hand,
we could not have omitted ¬, as there is no way to express negation using only
∧,∨,→,↔. (For this, see Theorem I.38 and Exercise I.20.)

This raises the question of whether it is enough to use only ¬,∧,∨,→,↔.
Could it be that there is some other connective beyond these that cannot
be expressed using ¬,∧,∨,→,↔? The answer this is no: the five connectives
¬,∧,∨,→,↔ can express any Boolean function. To formalize this, we define the
notion of a “Boolean function. A k-ary Boolean function can be viewed as a
type of k-ary propositional connective. Our first goal will be to prove that every
Boolean function can be represented by a propositional formula.

Definition I.22. Let k ≥ 1. A k-ary Boolean function f takes as input k
true/false values and outputs a true/false value; namely, it is a mapping

f ∶ {T,F}k → {T,F}.

Example I.23. The following define three Boolean functions f¬p1 , fp1∧p2 and
fp1⊕p2⊕p3 :

f¬p1(x) = { T if x equals F
F if x equal T.

fp1∧p2(x1, x2) = { T if x1 and x2 both equal T
F otherwise.

fp1⊕p2⊕p3(x1, x2, x3) = { T if an odd number of x1, x2, x3 equal T
F if an even number of x1, x2, x3 equal T.

Note that f¬p1 is unary (1-ary), fp1∧p2 is binary (2-ary) and fp1⊕p2⊕p3 is 3-ary.

The functions in the example are named fA where the subscript A is a
formula. The third one, p1⊕ p2⊕ p3, uses the “parity connective” ⊕, also called
“exclusive or” or “xor” for short. The parity connective will be discussed more
in the next section; the notation “⊕” comes from the fact that if T and F are
identified with the constants 1 and 0, then ⊕ becomes addition mod 2.

Adequacy of ¬,∨,∧,→,↔. The idea is that the formulas A in the subscripts
in the previous example “represent” the Boolean function. This is formalized
in the next definition.
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Definition I.24. Let k ≥ 1 and let A be a propositional formula that uses (at
most) the variables p1, . . . , pk. The k-ary Boolean function fA(x1, x2, . . . , xk) is
defined by

fA(x1, . . . , xk) = φ(A), where φ(pi) = xi for i = 1,2, . . . , k.

The propositional formula A is said to represent the Boolean function fA.

It is important to note that this gives a well-definition of fA, since the values
of the truth assignment φ on p1, . . . , pk uniquely determine the truth value φ(A)
of A.3

From the definition, every propositional formula represents a Boolean func-
tion. Conversely, the next theorem shows that every Boolean function is repre-
sented by some propositional formula.

Theorem I.25 (Adequacy of ¬,∨,∧,→,↔). Let f be a k-ary Boolean function.
Then there is a propositional formula A that represents f , i.e., with fA = f .

We first give an example to illustrate the proof idea and then will give the
general proof. Consider the Boolean function f defined by

f(x1, x2) = { T if x1 = T or x2 = F
F otherwise.

You might notice that f is the same as fp2→p1 , but let’s pretend we do not notice
that. The complete list of f ’s values is:

x1 x2 f(x1, x2)
T T T
T F T
F T F
F F T

There are three lines in the table for f where f(x1, x2) = T. This tells us that
f(x1, x2) is true precisely when x1 = x2 = T, when x1 = T and x2 = F, and when
x1 = x2 = F. In other words, f(x1, x2) is represented by the formula

(p1 ∧ p2) ∨ (p1 ∧ ¬p2) ∨ (¬p1 ∧ ¬p2). (I.2)

The first disjunct of I.2 is p1 ∧ p2; this is true exactly when the first line of
the table of f ’s value is applicable. The second disjunct and third disjuncts
similarly correspond to the two other ways that f can be true.

By the way, the formula (I.2) is probably not the “best” formula that rep-
resents f . For instance, p1 ∨ ¬p2 is probably a better choice. But (I.2) is the
formula representing f which comes out of the general proof that we give next.

3Strictly speaking, we ought to use the notation fA,k instead of fA since it is not required
that pk actually appears in A. However, we use the simpler notation fA as this should never
cause any confusion.
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Proof of Theorem I.25. Let f be a k-ary Boolean function. If f(x1, . . . , xk) = F
for all inputs x1, . . . , xk ∈ {T,F}, then f is represented by the formula p1 ∧¬p1.
So, suppose there is at least one input where f ’s value is T.

Since f has k inputs, each of which has two possible values, there are 2k many
distinct inputs to f . Let φ1, . . . , φ2k be the 2k many possible truth assignments
to p1, . . . , pk. Although it is not important for the proof, it might be helpful to
think of φ1 as being the truth assignment that sets each pi to T, and φ2k as
being the truth assignment that sets each pi to F, and other φi’s as being the
truth assignments listed in the usual order that lines appear in a truth table.

For 1 ≤ i ≤ 2k and 1 ≤ j ≤ k, define the formula Li,j by

Li,j = { pj if φi(pj) = T
¬pj if φi(pj) = F.

(The letter “L” stands for “literal”.) Clearly Li,j is either pj or ¬pj , and
φi(Li,j) = T. Now define4

Ci =
k

⋀
j=1

Li,j ∶= Li,1 ∧Li,2 ∧⋯ ∧Li,k.

We have φi(Ci) = T since φi(Li,j) = T for all j. Furthermore, if i ≠ i′, then
φi′(Ci) = F. This is because φi′(pj) ≠ φi(pj) for at least one value of j, and
hence φi′(Li′,j) = F for at least one j.

Now let I be the set of values i such that

f(φi(p1), φi(p2), . . . , φi(pk)) = T.

We can write I = {i1, i2, . . . , iℓ}. Note ℓ ≥ 1 since f is not identically equal to F
for all inputs. Then define the formula A to be

A =
ℓ

⋁
m=1

Cm ∶= Ci1 ∨Ci2 ∨⋯ ∨Ciℓ . (I.3)

By inspection, A represents the function f : this is because the Cim ’s and their
associated truth assignments φim enumerate the cases where f is true and be-
cause each Ci is satisfied by a unique φi. This completes the proof Theo-
rem I.25.

Disjunction and conjunctive normal forms. Theorem I.21 showed that
every function can be represented by a formula that uses only the connectives
¬, ∨ and ∧. In fact, it shows that “disjunctive normal form” formulas suffice.

Any formula A expressed in the form

A1 ∨A2 ∨⋯ ∨Ak,

4The “big and” notation, ⋀, is similar to a summation sign (∑): it means the indicated
conjunction (and) of the formulas Li,1 though Li,k.
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with arbitrary parenthesization (not necessarily associated from right to left) is
called a disjunction. It is permitted that k = 1. Each Ai is called a disjunct of A.
We will use the big or notation ⋁k

i=1Ai to denote A; however, this notation is
often reserved for the case where the parenthesization is the usual right-to-left
order.

Similarly, any formula B expressed in the form

B1 ∧B2 ∧⋯ ∧Bk,

again with arbitrary parenthesization, not necessarily associated from right to
left, is called a conjunction. Each Bi is called a conjunct of B. We will use the big
and notation ⋀k

i=1Bi to denote B; however, again often with parenthesization
in the usual right-to-left order.

Definition I.26. A literal is a formula of the form pi or ¬pi. In other words, a
literal is a variable or the negation of a variable.

Definition I.27. A conjunction of literals is a formula of the form5

L1 ∧L2 ∧⋯ ∧Lk,

where k ≥ 1 and each Li is a literal.
A disjunctive normal form formula, or DNF formula for short, is any formula

of the form
C1 ∨C2 ∨⋯ ∨Cℓ,

where ℓ ≥ 1 and each Ci is a conjunction of literals.

Definition I.28. A clause is a disjunction of literals, namely a formula of the
form

L1 ∨L2 ∨⋯ ∨Lk,

where k ≥ 1 and each Li is a literal.
A conjunctive normal form formula, or CNF formula for short, is any formula

of the form
C1 ∧C2 ∧⋯ ∧Cℓ,

where ℓ ≥ 1 and each Ci is a clause.

Theorem I.25 shows that every Boolean function f can be represented by a
propositional formula. In fact, what the proof showed is that the propositional
formula representing f can be taken to be a DNF formula. That is, we have
already proved the next theorem.

Theorem I.29 (Adequacy of DNF Formulas). Let f be a k-ary Boolean func-
tion. Then there is a disjunctive normal form (DNF) formula A that repre-
sents f , i.e., with fA = f .

5In computer science, a conjunction of literals is sometimes called a “term”; however, we
avoid this terminology, since “term” has a different, well-established meaning in first-order
logic.
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Proof. The proof of Theorem I.25 already established this. If f is the constant
F function, and then p1 ∧ ¬p1 represents f ; this formula is a DNF formula
(and also a CNF formula). Otherwise, the formula (I.3) is a DNF formula that
represents f .

The same thing holds also for CNF formulas:

Theorem I.30 (Adequacy of CNF Formulas). Let f be a k-ary Boolean func-
tion. Then there is a conjunctive normal form (CNF) formula A that repre-
sents f , i.e., with fA = f .
Proof. (Sketch) The proof of Theorem I.25 could be reworked to prove this
directly, using the lines in the truth table for f where f takes on the value F.
Instead of doing this, however, we sketch how to obtain Theorem I.30 as a
corollary of Theorem I.29.

Let f¬ be the k-ary Boolean function which is the negation of f . That is,

f¬(x1, . . . , xk) = { T if f(x1, . . . , xk) = F
F if f(x1, . . . , xk) = T

We just proved that f¬ is represented by a DNF formula A. Therefore f is rep-
resented by ¬A. The formula ¬A is the negation of a disjunction of conjunctions
of literals. By De Morgan’s law (see Section I.6), the negation of a conjunction
of formulas is tautologically equivalent to the disjunction of the negations of
the same formulas. Likewise, the negation of a disjunction of formulas is tau-
tologically equivalent to the conjunction of the negations of the same formulas.
Furthermore, the negation of a literal is clearly equivalent to a literal (possibly
by canceling out two negation signs).

This allows ¬A to be rewritten as a tautologically equivalent CNF formula
by using De Morgan’s laws to push the negation sign inside the formula. We
leave the details to the reader.

Corollary I.31. Any propositional formula A is tautologically equivalent to
some disjunctive normal form (DNF) formula, and also tautologically equivalent
to some conjunctive normal form (CNF) formula.

Proof. Let p1, . . . , pk include all the variables in A. Let fA be the k-ary Boolean
function represented by A. By Theorem I.29, fA is represented by some DNF
formula B. Then, since A and B represent the same Boolean function, it must
be that φ(A) = φ(B) for all truth assignments. Therefore A and B are tauto-
logically equivalent.

The proof that A is tautologically equivalent to a CNF formula C is identical,
except it uses Theorem I.30 to obtain a CNF formula C which defines fA.

Example I.32. Let fp1↔p2 be the Boolean functon presented by p1 ↔ p2. We
have f(x1, x2) = T precisely when either x1 and x2 are both equal to T or x1

and x2 are both equal to F. Therefore, using the construction from the proof
of Theorem I.25, fp1↔p2 is represented by

(p1 ∧ p2) ∨ (¬p1 ∧ ¬p2). (I.4)
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Consequently, p1 ↔ p2 is tautologically equivalent to this formula (I.4).

Similar reasoning shows that f¬p1↔p2
= f¬(p1↔p2) is represented by the DNF

formula

(¬p1 ∧ p2) ∨ (p1 ∧ ¬p2). (I.5)

The negation of this represents fp1↔p2 . We can use De Morgan’s law to obtain
a CNF formula representing fp1↔p2 as follows:

¬[(¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)] Negation of (I.5)
⊧) [¬(¬p1 ∧ p2) ∧ ¬(p1 ∧ ¬p2)] De Morgan’s Law
⊧) [(¬¬p1 ∨ ¬p2) ∧ (¬p1 ∨ ¬¬p2)] De Morgan’s Law
⊧) [(p1 ∨ ¬p2) ∧ (¬p1 ∨ p2)] Double Negation

Thus, (p1∨¬p2)∧(¬p1∨p2) is a CNF formula representing fp1↔p2 , and therefore
is tautologically equivalent to p1 ↔ p2.

Theorem I.30 was proved by starting with a DNF formula representing the
negated function f¬, adding a negation sign, and using De Morgan’s laws to
convert it to an equivalent CNF formula. An alternate way to prove this theo-
rem would be to instead start with a DNF formula for f (not for the negated
function f¬) and then applying the distributive laws for ∨ and ∧ and the law
of the excluded middle to convert it to a CNF. As an example, we just saw
that (p1 ∧ p2) ∨ (¬p1 ∧¬p2) is a DNF formula representing fp1↔p2 . This can be
converted using distributive laws as follows, using ⊺ as a constant with truth
value T:

[p1 ∧ p2] ∨ (¬p1 ∧ ¬p2) DNF formula (I.5)
⊧) ([p1 ∧ p2] ∨ ¬p1) ∧ ([p1 ∧ p2] ∨ ¬p2) Distributive Law
⊧) (p1 ∨ ¬p1) ∧ (p2 ∨ ¬p1) ∧ (p1 ∨ ¬p2) ∧ (p2 ∨ ¬p2) Distributive Law
⊧) ⊺ ∧ (p2 ∨ ¬p1) ∧ (p1 ∨ ¬p2) ∧ ⊺ Law of Excluded Middle
⊧) (p2 ∨ ¬p1) ∧ (p1 ∨ ¬p2) ⊺ ∧A ⊧) A

The final formula is another CNF formula for fp1↔p2 ; it is the same as obtained
in the previous example after using commutativity of ∨.

Binary decision trees for non-tautologies. The example of Figure I.7 gave
a reduced decision tree for a tautology. It is also possible to give a decision tree
for formulas that are not tautologies; for example, see Figure I.8. Since A is
satisfiable but not a tautology, some of the leaves are labeled with φ(A) = T
and some with φ(A) = F.

It is easy to convert a function with a decision tree of the type shown in
Figure I.8 into a DNF formula. We leave the details to Exercise I.40, but the idea
is that each branch in the decision tree leading to a leaf labeled with φ(A) = T
corresponds to a disjunct in a disjunctive normal form formula tautologically
equivalent to A.
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p q r r ∨ ((p ∧ ¬q) ∧ ¬r)
- - T T
- T F F F F
T F F T T T
F F F F F F

r?

q?

p?

φ(A) = T

φ(A) = F

φ(A) = T φ(A) = F

T F

T F

T F

Figure I.8: A reduced truth table and a binary decision tree for a formula that
is not a tautology. The formula is tautologically equivalent to the DNF formula
r ∨ (¬r ∧ ¬q ∨ p).

I.8 Propositional Languages

Languages and adequacy. A set L of propositional connectives is called
a language. So far, we have worked with the language L = {¬,∧,∨,→,↔};
however, we have already mentioned a few other connectives such as ⊕ (parity),
⊺ (the constant T) and ⊥ (the constant F).

Definition I.33. Let L be a (propositional) language. An L-formula is a propo-
sitional formula that uses only propositional connectives from L.

So far in this chapter, “formula” has always meant “{¬,∨,∧,→,↔}-formula”.
Chapter II will use a different convention; there “formula” will mean “{¬,→}-
formula”.

Definition I.34. A language L is adequate if every Boolean function is repre-
sented by some L-formula.

We have already proved a couple of languages are adequate:

Theorem I.35. The languages {¬,∨,∧,→,↔} and {¬,∨,∧} are both adequate.

Proof. The first part of the theorem was already stated as Theorem I.25. The
second part is a consequence of Theorem I.29 or I.30.

Note that if L1 ⊂ L2 and L1 is adequate then so is L2. This is immediate
from the fact that every L1-formula is an L2-formula.

The last theorem can be improved to:

Theorem I.36. The languages {¬,∨} and {¬,∧} are both adequate.

Proof. Let f be a Boolean function. We show that f is represented by some
{¬,∨}-formula. By Theorem I.30, f is represented by a CNF formula A, which
is a formula of the form C1 ∧ C2 ∧ . . . ∧ Ck with the Ci’s all clauses and hence
all {¬,∨}-formulas. Using De Morgan’s law, A is tautologically equivalent to
¬(¬C1 ∨⋯ ∨ ¬Ck}. This is a {¬,∨}-formula which represents f .
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The fact that f is also represented by some {¬,∧}-formula is proved similarly.

Theorem I.37. The language {¬,→} is adequate.

Proof. Since {¬,∨} is adequate, it suffices to show that every {¬,∨}-formula A
is tautologically equivalent to a {¬,→}-formula. For this, we use the fact that
B ∨C is tautologically equivalent to ¬B → C for any B and C.

Specifically, transform the formula A by repeatedly choosing a subformula
of the form (B ∨ C) and replacing it with (¬B → C). Each such replacement
removes one ∨ connective and adds a ¬ connective and a→ connective. Thus, the
procedure ends with a {¬,→}-formula that is tautologically equivalent to A.6

Now we give examples of a couple of languages that are not adequate.

Theorem I.38.
(a) {¬} is not adequate.
(b) {∧,∨} is not adequate.

Proof. For (a), note that a {¬}-formula A must be of the form ¬⋯¬pi, with zero
or more ¬’s applied to a variable. Since only one variable appears in A, it cannot
be tautologically equivalent to a formula such as p1 ∧ p2 that depends on more
than one variable. Hence, no {¬}-formula can represent fp1∧p2 for instance.

For (b), let A be any {∧,∨}-formula. We claim that if φ(pi) = T for all i,
then φ(A) = T. The claim implies that A cannot represent f¬p1 , since f¬p1 = F
when φ(pi) = T for all i.

Fix φ to be the assignment such that φ(p1) = T for all i. We need to prove
the claim that for any {∧,∨}-formula A, φ(A) = T. The proof is by induction
on the complexity of A.

Base case: A is a variable pi. Then φ(A) = T by the choice of φ.

Induction step: A is (B∨C) or (B∧C). There are two induction hypotheses,
one for B and one for C: they state that φ(B) = T and φ(C) = T. Therefore,
by the definitions of truth for ∨ and for ∧, we must have φ(A) = T.

That completes the proof of the claim, and of part (b) of the theorem.

Other propositional connectives. There are many other propositional con-
nectives that can be used in addition to the standard ones of ¬, ∨, ∧, → and ↔.

The parity connective, ⊕, is defined so that

φ(A⊕B) = { T if φ(A) ≠ φ(B)
F if φ(A) = φ(B)

The notation “⊕” reflects the fact that when T and F are identified with 1 and 0
(respectively), then ⊕ is the same as addition modulo two. Another name for

6See Corollary I.49.
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the parity connective ⊕ is “exclusive or”, since φ(A ⊕ B) is true if and only
if exactly one of φ(A) or φ(B) is true. Exercise I.26 asks you to show that
A⊕B ⊧) ¬(A↔ B).

Another very interesting connective is the nand connective, denoted “∣”.
This is also called the Sheffer stroke after its discoverer H. Sheffer. “Nand” is
short for “not-and”. As the name indicates, p∣q has truth value equal to the
negation of the conjunction of p and q, so that for all φ,

φ(A∣B) = φ(¬(A ∧B)).

A remarkable aspect of the ∣ connective is that it is adequate all by itself:

Theorem I.39. {∣} is adequate.

Proof. It is easy to check that ¬A is tautologically equivalent to A∣A. Further-
more, A ∧B is tautologically equivalent to ¬(A∣B), and hence to (A∣B)∣(A∣B).
Thus, any {¬,∧}-formula can be converted to a tautologically equivalent {∣}-
formula by repeatedly replacing subformulas of the form ¬A with (A∣A) and
subformulas of the form (A ∧B) with ((A∣B)∣(A∣B)).

Theorem I.36 showed that {¬,∧} is adequate; therefore {∣} is also adequate.

Exercise I.24 defines the dual nor connective, ↓, and asks for a proof that
{↓} is adequate.

Two very simple connectives are the constants ⊺ and ⊥. These are 0-ary or
“nullary” connectives that do not take any arguments. Their truth values are
defined by φ(⊺) = T and φ(⊥) = F.

Theorem I.40. {⊥,→} is adequate.

Proof. Any negated formula ¬A is tautologically equivalent to A →⊥. Since
{¬,→} is adequate (by Theorem I.37), it follows that {⊥,→} is adequate.

We have so far introduced examples of 0-ary, 1-ary and 2-ary connectives.
It is also possible to have k-ary connectives for k > 2. One example is the 3-ary
connective Case(⋅, ⋅, ⋅); this can also be called the “if-then-else” connective. The
truth value of Case(A,B,C) is defined by

φ(Case(A,B,C)) = { φ(B) if φ(A) = T
φ(C) if φ(A) = F.

This mean one can think of Case(A,B,C) as meaning the same as “If A then
B else C”. It is easy to check that Case(p, q, r) is tautologically equivalent to
the DNF formula (p∧q)∨(¬p∧r). In view of the equivalence with “If A then B
else C”, it is also tautologically equivalent to (p → q) ∧ (¬p → r). Hence it is
tautologically equivalent to the CNF formula (¬p ∨ q) ∧ (p ∨ r).

Exercise I.28 asks you to prove that {¬,Case} is adequate but {Case} is
not.
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An example of a k-ary connective for arbitrary fixed k ≥ 1 is the majority
connective Maj k. The semantics for majority connectives is defined by letting
Maj k(A1, . . . ,Ak) be true exactly when the number of true Ai’s is ≥ k/2. Exer-
cise I.29 deals with the adequacy of Maj k together with ¬.

I.9 Examples of Proofs by Induction

This section gives some examples of proof by induction on the complexity of
formulas. The proof of Theorem I.38 already used a proof by induction. We have
in addition already used some “obvious” properties of formulas that, strictly
speaking, should have been proved by induction. Most prominently this includes
the unique readability property (which was needed in order to give definitions
by recursion), as well as the fact that the truth of a formula A only depends
on the truth values of the variables that actually appear in A. The latter fact
was used several times already; e.g. in Definition I.24 and Theorem I.38(a), and
even more importantly, to justify the fact that truth tables need only finitely
many lines.

We start by proving that the truth of A only depends on the truth values of
the variables that appear in A.

Theorem I.41. Let A be a propositional formula. Suppose φ and φ′ are truth
assignments such that for each pi that appears in A, φ(pi) = φ′(pi). Then
φ(A) = φ′(A).

Another way to state the hypothesis is that φ(p1) ≠ φ′(pi) only if pi does
not appear in A.

Proof. We use induction on the complexity of A.

Base case: The base case is where A is a variable pi. Of course pi appears
in A, so φ(A) = φ′(A) by the assumption on φ and φ′.

Induction step #1: Suppose A is ¬B. Now any variable appearing in B
also appears in A. Thus φ and φ′ have the same values for all variables in B.
Therefore the induction hypothesis tells us that φ(B) = φ′(B). The definition
of truth for ¬ thus implies that φ(A) = φ′(A).

Induction step #2: Suppose A is B ○ C where ○ is one of the binary con-
nectives ∨, ∧, → or ↔. Now any variable appearing in either B or C also
appears in A. Thus φ and φ′ have the same values for all variables in B and
all variables in C. There are two induction hypotheses: the first states that
φ(B) = φ′(B) and the second states that φ(C) = φ′(C). The definition of
truth for ○ thus implies that φ(A) = φ′(A).

Notice how the base case and the induction steps of the proof by induc-
tion correspond exactly to the cases in the inductive definition of propositional
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formulas in Definition I.1. The proof uses only two induction cases: the sec-
ond induction case manages to roll four separate cases into one argument by
considering ○ to be any of the four connectives ∨, ∧, → or ↔.

The next theorem gives another simple example of a proof by induction.

Theorem I.42. Let A be a formula. The number of open parentheses appearing
in A is equal to the number of close parentheses appearing in A.

This theorem is obvious of course, just because the inductive definition of
propositional formulas paired up open and close parentheses. A formal proof
uses induction.

Proof. We will use mA and nA to denote the numbers of open parentheses and
close parentheses in A (respectively). The proof proceeds by induction.

Base case: Suppose A is pi. There are no parentheses and mA = 0 = nA.

Induction step #1: Suppose A is ¬B. The induction hypothesis is that
mB = nB . Of course A has the same numbers of open and close parentheses
as B. Therefore mA = nA.

Induction step #2: Suppose A is (B ○ C) where ○ is one of ∨, ∧, → or ↔.
There are two induction hypotheses: that mB = nB and that mC = nC . There
is one more pair of open and close parentheses in A than in B and C combined.
Thus, mA =mB +mC + 1 and nA = nB + nC + 1; whence, mA = nA.

The next theorem is less trivial, and it is also the basis for proving the unique
readability property. Recall that a formula A is an expression, namely a string
of symbols. A non-empty, proper initial subexpression of A means any prefix of
the string of symbols in A that contains at least one symbol but is not all of A.
For example, “(”, “(p1”, “(p1∧” and “(p1 ∧ p2” are all of the non-empty proper
initial subexpressions of “(p1 ∧ p2)”.

Theorem I.43. Let A be a formula in which the first symbol is an open paren-
thesis. Let B be a non-empty, proper initial subexpression of A. Then B con-
tains more open parentheses than close parentheses. Consequently, B is not a
propositional formula.

Exercises I.36-I.38 ask for proofs of Theorem I.43 and unique readability.

A final example of a theorem that can be proved by induction is:

Theorem I.44. Let A be a formula. Suppose A has m occurrences of binary
connectives and n occurrences of propositional variables. Prove that n =m + 1.

Exercise I.39 asks for a proof of this theorem.
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I.10 Propositional Substitution

Propositional substitution means substituting a formula B for a variable pi
inside some formula A. In other words, it means replacing a variable p in A
with a formula B. There are several reasons to look carefully at substitution.
First of all, we need to prove that if A is a tautology, then so is the formula
obtained by substituting B for every occurrence of p in A. This will be important
for the proof system PL defined in the next chapter. Second, we need to prove
that if B and C are tautologically equivalent, and we replace an occurrence of B
as a subformula of A with C, then the result is tautologically equivalent to A.
This is a fact we have already used more than once, notably in Section I.8 when
discussing adequate sets of connectives. For example, the proof of Theorem I.37
replaced subformulas B ∨ C with ¬B → C, and argued that this preserved
tautological equivalence. A third reason is that studying the substitution of
propositional formulas for variables will give a glimpse of the issues we will
encounter with substitution in first-order logic in later chapters.

We use the notation A(B/p) to mean the formula that results from A after
replacing every occurrence of the variable p in A with the formula B. More
generally, we write A(B1, . . . ,Bk/pi1 , . . . , pik) to denote the result of replacing,
in parallel, each occurrence of each pi in A with Bi. The formal definition is
below, but first we consider a few examples.

Example I.45. Let A be the formula (p1 → (p2 → p1)). Letting B be
((p2 ∧ p3)→ p1), we have A(((p2 ∧ p3)→ p1)/p1) is the formula

(((p2 ∧ p3)→ p1)→ (p2 → ((p2 ∧ p3)→ p1))).

As this example shows, it is permitted that p1 appears in B.
For another example, A(p1/p1) is the same as A.
Finally, let C be (p2 ∧ p3) and D be (p1 ∧ p4). Then A(C,D/p1, p2) is the

formula
((p2 ∧ p3)→ ((p1 ∧ p4)→ (p2 ∧ p3))).

Note that the two p1’s in A were replaced with C and the p2 in A was replaced
with D. But the p1 and p2 that appear in C and D do not change. This reflects
the fact that the substitution of C and D for occurrences of p1 and p2 is done
“in parallel”.

If substitutions are to be done sequentially instead of parallel, we would use
the notation A(C/p1)(D/p2). This would mean first substituting C for p1 in A
and then substituting D for p2 in the resulting formula. You should convince
yourself that this is the same A(C ′/p1,D/p2) where C ′ is C(D/p2).

Definition I.46. Let k ≥ 1 and A,B1, . . . ,Bk be propositional formulas and
pi1 , . . . , pik be (distinct) propositional variables. Then the formula A(B1, . . . ,Bk/pi1 , . . . , pik)
is recursively defined as follows:

(a) If A is the variable pij for some 1 ≤ j ≤ k, then A(B1, . . . ,Bk/pi1 , . . . , pik)
is Bj .
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(b) If A is a variable pℓ with ℓ ∉ {i1, . . . , ik}, then A(B1, . . . ,Bk/pi1 , . . . , pik)
is pℓ. In other words, A is unchanged by the substitution.

(c) If A is ¬C, then A(B1, . . . ,Bk/pi1 , . . . , pik) is ¬C(B1, . . . ,Bk/pi1 , . . . , pik).
In other words, it is ¬C ′ where C ′ is C(B1, . . . ,Bk/pi1 , . . . , pik).

(d) If A is C ○D for ○ a binary connective, then A(B1, . . . ,Bk/pi1 , . . . , pik) is
C(B1, . . . ,Bk/pi1 , . . . , pik) ○D(B1, . . . ,Bk/pi1 , . . . , pik). In other words, it
is C ′ ○D′ where C ′ is as before and D′ is D(B1, . . . ,Bk/pi1 , . . . , pik).

The reader is warned that sometimes different notations are used for sub-
stitution. For example, some authors will introduce a formula A as A = A(p),
and then write A(B) to denote what we mean by A(B/p). This notation A(B)
has the advantage of being less cluttered and more readable, but it has the dis-
advantage of being a little ambiguous about whether A(B) means the result of
replacing all of the occurrences of p with B or just some of the occurrences. For
the time being, we will stick with the notation A(B/p), and it always means
replacing all of the occurrences of p.

Definition I.47. Any formula of the form A(B/pi) is called an instance of A.

The next theorem states that if B and C have the same truth value, then
the formulas A(B/p) and A(C/p) have the same truth value. It is a straight-
forward result, but is the crucial fact needed to prove the rest of our theorems
on substitution of propositional formulas.

Theorem I.48. Let A, B and C be formulas, and pi be a variable. Also, let φ
be a truth assignment. If φ(B) = φ(C), then φ(A(B/pi)) = φ(A(C/pi)).

Proof. Let B, C, pi and φ be fixed. We prove that the theorem holds for all A,
by using induction on A.

Base case #1: Suppose A is the propositional variable pi. Then A(B/pi) and
A(C/pi) are just B and C. So by the hypothesis that φ(B) = φ(C), we have
immediately φ(A(B/pi)) = φ(A(C/pi)).

Base case #2: Suppose A is a variable pj , with j ≠ i. Then A(B/pi) and
A(C/pi) are both just A, so of course φ(A(B/pi)) = φ(A(C/pi)).

Induction step #1: Suppose A is ¬D, so A(B/pi) is ¬D(B/pi) and A(C/pi)
is ¬D(C/pi). The induction hypothesis states that φ(D(B/pi)) = φ(D(C/pi)).
By the definition of truth for ¬, we have immediately that φ(A(B/pi)) =
φ(A(C/pi)).

Induction step #2: Suppose A is D ○ E where ○ is one of ∧,∨,→,↔. Thus
A(B/pi) is D(B/pi) ○ E(B/pi) and A(C/pi) is D(C/pi) ○ E(C/pi). There
are two induction hypotheses: that φ(D(B/pi)) = φ(D(C/pi)) and that
φ(E(B/pi)) = φ(E(C/pi)). By the definition of truth for ○, φ(A(B/pi)) =
φ(A(C/pi)).
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Theorem I.48 was stated relative to a single truth assignment. If we strengthen
the hypothesis to say that φ(B) = φ(C) for all truth assignments we get the
following corollary.

Corollary I.49. Suppose B ⊧) C. Then A(B/pi) ⊧) A(C/pi).

This corollary has already been used earlier, for instance in the proof of
Theorem I.37. In that proof, we asserted that if a subformula (B ∨ C) of A
is replaced with (¬B → C), then the resulting formula A′ is tautologically
equivalent to A. Of course, we have so far only discussed substituting a formula
for a variable, not for a subformula. Nonetheless, we can recast substitution so
as to apply it to replacing a subformula with another formula.

Namely, let pℓ be a variable that does not appear in A, and let A∗ be the
formula obtained from A by replacing the subformula (B ∨ C) with pℓ. Then
A is the same as A∗((B ∨C)/pℓ) and A′ is the same as A∗((¬B → C)/pℓ). The
corollary states that A∗((B ∨ C)/pℓ) and A∗((¬B → C)/pℓ) are tautologically
equivalent. That is, that A and A′ are tautologically equivalent. This is exactly
what was needed for the proof of Theorem I.37.

The above corollary talked about substituting two tautologically equivalent
formulas into the same formula A. The next theorem talks about substituting
A into two tautologically equivalent formulas.

Theorem I.50. Suppose B ⊧) C. Then B(A/pi) ⊧) C(A/pi).

Proof. Let φ be an arbitrary truth assignment. We need to show that φ(B(A/pi)) = φ(C(A/pi)).
Let pℓ be a variable that does not appear in any of A, B or C. Define φ′ to be
the truth assignment such that φ(pℓ) = φ(A) and otherwise agrees with φ. In
other words,

φ′(pj) = { φ(A) if j = ℓ
φ(pj) if j ≠ ℓ. (I.6)

We call φ′ a “pℓ-variant” of φ since φ and φ′ agree on all variables except
possibly pℓ. Note that φ and φ′ agree on all variables that appear in B(A/pi)
or in C(A/pi). We have

φ(B(A/pi)) = φ′(B(A/pi)) By Theorem I.41 since pℓ does not appear in B(A/pi)
= φ′(B(pℓ/pi)) By Theorem I.48 since φ′(A) = φ′(pℓ)
= φ′(C(pℓ/pi)) By B ⊧) C since pℓ does not appear in B or C 7

= φ′(C(A/pi)) By Theorem I.48 again
= φ(C(A/pi)) By Theorem I.41 again.

7Informally, B(pℓ/pi) and C(pℓ/pi) are obtained from B and C by renaming pi to pℓ,
and therefore B ⊧) C implies B(pℓ/pi) ⊧) C(pℓ/pi). Strictly speaking, we should introduce
another truth assignment φ′′ which is the pi-variant of φ′ with φ′′(pi) = φ′(pℓ). Then we
argue φ′(B(pℓ/pi)) = φ′′(B) = φ′′(C) = φ′(C(pℓ/pi)).
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Corollary I.51.

(a) Any instance of a tautology is a tautology.
(b) If A ⊧ B, then A(C/pi) ⊧ B(C/pi)
(c) If A1, . . . ,Ak ⊧ B, then A1(C/pi), . . .Ak(C/pi) ⊧ B(C/pi).

Proof. Let A be a tautology, and A(B/pi) be an instance of A. To prove (a),
we must show that A(B/pi) is a tautology. Let pℓ be a variable that does not
occur in A. We have A ⊧) (pℓ ∨¬pℓ) since both A and pℓ ∨¬pℓ are tautologies.
Therefore, by the previous theorem, substituting B for pi,

A(B/pi) ⊧) (pℓ ∨ ¬pℓ),

since pi does not appear in (pℓ ∨ ¬pℓ). Therefore, A(B/pi) is a tautology.

Part (b) follows easily from part (a). First, A ⊧ B holds iff and only if
⊧ A→ B. Likewise, A(C/pi) ⊧ B(C/pi) holds if and only if ⊧ A(C/pi)→ B(C/pi).
Finally, A(C/pi)→ B(C/pi) is equal to (A→ B)(C/pi). Thus (a) implies (b).

Part (c) is proved similarly to part (b) using the fact that A1, . . . ,Ak ⊧ B
holds if and only if A1 ∧⋯ ∧Ak → B is a tautology.

Exercises

Exercise I.1. Which of the following are true statements? Assume that the
statements such as “cats have wings” have their usual true/false value. Use
the “logical”/“mathematical” interpretation of the connectives such as “if”, “if-
then”, and “only if”.

(a) Cats have wings only if dogs have wings.
(b) Parrots have wings only if dogs have wings.
(c) Parrots have wings if dogs have wings.
(d) If dogs have wings then parrots have wings.
(e) If cats have wings and dogs have wings, then cats have wings or dogs have

wings.
(f) If cats have wings or dogs have wings, then cats have wings and dogs have

wings.

Then, rewrite (a)-(c) as statements in the form “If ⋯, then ⋯.”

Exercise I.2. Recall the formulas e→ c and c→ e discussed on page 8. Explain
what the difference is between the meanings of e → c and c → e. Is it possible
for e→ c to be true when c→ e is false? If so, how?

Exercise I.3. Characterize each of the following sentences as being either true
or false. Use the “logical”/“mathematical” interpretation of the connectives
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such as “if-then”, “only if”, “unless”, etc.
(a) If porpoises have wings then seagulls can fly.
(b) Porpoises have wings if seagulls can fly.
(c) Porpoises have wings only if seagulls can fly.
(d) Porpoises have wings if and only if seagulls can fly.
(e) Porpoises have wings unless seagulls can fly.
(f) Porpoises have wings but seagulls can fly.
(g) If porpoises have wings then seagulls cannot fly.
(h) Porpoises have wings if seagulls cannot fly.
(i) Porpoises have wings only if seagulls cannot fly.
(j) Porpoises have wings if and only if seagulls cannot fly.
(k) Porpoises have wings unless seagulls cannot fly.
(l) Porpoises have wings but seagulls cannot fly.

Exercise I.4. Use the variables

p - “Propoises have wings”

s - “Seagulls can fly”

to reexpress the English sentences (a)-(l) of Exercise I.3 as propositional formu-
las.

Exercise I.5. Use the variables

b - “The mirror will break”

g - “The mirror is made of glass”

s - “The mirror is made of silver”

w - “The mirror is high on the wall”

to reexpress the sentences (a)-(g) as propositional formulas. You do not need
to include all the parentheses required in the formal definition of formulas.
However, as always, you should use parentheses when necessary to clarify the
meaning of the propositional formulas.

(a) The mirror will break if it is made of glass.
(b) The mirror will break only if is made of glass.
(c) If the mirror is high on the wall, it will break.
(d) Unless it is made of glass, the mirror will not break.
(e) The mirror is made of either glass or silver, but not both.
(f) The mirror will break unless it is made of silver or glass.
(g) The mirror is high on the wall, but it will not break unless it is made of

glass.
Note the placement of the comma in sentence (g).

Exercise I.6. Use the variables

f - “The coffee pot falls”

b - “The coffee pot breaks”

g - “The coffee pot is made of glass”

t - “The coffee pot is made of titanium”
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and propositional connectives ¬,∨,∧,→,↔ to express the sentences (a)-(g) as
propositional formulas. When necessary, use parentheses to clarify the meaning
of the propositional formulas. (You do not need to include all the parentheses
required in the formal definition of formulas.)

(a) The coffee pot breaks only if it is made of glass.
(b) The coffee pot breaks if it is made of glass and falls.
(c) The coffee pot is made of titanium or glass, but not both.
(d) The coffee pot falls if and only if it is made of glass.
(e) The coffee pot falls but does not break.
(f) The coffee does not break unless it is made of glass.
(g) The coffee pot falls, but it does not break unless it is made of glass.

Again, watch the placement of the comma in (g).

Exercise I.7. Give the actual formulas (with correct parenthesization) corre-
sponding to the following informal abbreviations. If the informal abbreviation
is already an actual formula, please state this.

(a) ¬p1 → p2 → ¬p3.
(b) p1 ∨ p3 → ¬p1 → p4 → ¬p1.
(c) p1 ∨ p3 ↔ ¬p1 ∧ p4 ↔ ¬p1.
(d) ¬p1 ∨ p2 ∨ ¬p3.
(e) (p1 → p2)→ p3.
(f) (¬p1)→ p2.
(g) ¬p1 → p2.
(h) ¬(p1 → p2).

Exercise I.8. Show that ⊭ (p→ q)→ (q → p).

Exercise I.9. For each formula (a)-(e) on the left, which formula or formulas
on the right is it tautologically equivalent to?

(a) p⊕ q
(b) ¬(p ∧ q)
(c) p ∧ q → p ∨ q
(d) p ∨ q → p ∧ q
(e) (q → p) ∧ (¬p→ q)

(i) p↔ q
(ii) p↔ ¬q

(iii) p↔ p
(iv) q↔ p↔ q
(v) None of the above.

Exercise I.10. Use truth tables or reduced truth tables to prove the two De
Morgan’s laws:

¬(p ∨ q) ⊧) (¬p ∧ ¬q)
¬(p ∧ q) ⊧) (¬p ∨ ¬q).

Exercise I.11. Use reduced truth tables to prove the two distributivity laws:

p ∧ (q ∨ r) ⊧) (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ⊧) (p ∨ q) ∧ (p ∨ r).

Exercise I.12. Show ⊧ (A → B) → (¬A → B) → B, where A and B are
arbitrary propositional formulas.
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Exercise I.13. Use the method of truth tables to show that ↔ is associative.

Exercise I.14. (Non-distributivity for ∧ over ↔.) For each of the following
either prove it is true or give a truth assignment φ which shows it is false. (To
prove it is true, you may either argue informally, or use truth tables or reduced
truth tables.)

(a) p ∧ (q↔ r) ⊧ (p ∧ q)↔ (p ∧ r).
(b) (p ∧ q)↔ (p ∧ r) ⊧ p ∧ (q↔ r).

Exercise I.15. (Non-distributivity for ↔ over ∧.) For each of the following
either prove it is true or give a truth assignment φ which shows it is false. (To
prove it is true, you may either argue informally, or use truth tables or reduced
truth tables.)

(a) p↔ (q ∧ r) ⊧ (p↔ q) ∧ (p↔ r).
(b) (p↔ q) ∧ (p↔ r) ⊧ p↔ (q ∧ r).

Exercise I.16. Let Γ be a set of formulas.
(a) Suppose Γ is finite. Prove that there exists a formula A such that Γ ⊧ A

and A ⊧ Γ. (The latter means that for all B ∈ Γ, A ⊧ B.)
(b) Give an example of an infinite, satisfiable Γ for which there does not exist

a satisfiable formula A such that A ⊧ Γ.

Exercise I.17. Is there a formula that uses at least three variables and is in
both a CNF formula and a DNF formula? If so, give an example. If not, explain
why not.

Exercise I.18. Let A be the formula (p→ q) ∧ (q → r).
(a) Give a CNF formula that is tautologically equivalent to A.
(b) Give a DNF formula that is tautologically equivalent to A.

Exercise I.19. Now let A be the formula p↔ (q → r ∧ p).
(a) Give a CNF formula that is tautologically equivalent to A.
(b) Give a DNF formula that is tautologically equivalent to A.

Exercise I.20. Recall the function fp1⊕p2⊕p3 from Example I.23.
(a) Give a DNF formula that represents fp1⊕p2⊕p3 .
(b) Give a CNF formula that represents fp1⊕p2⊕p3 .

Exercise I.21. Let f be the Boolean function defined by f(x1, x2, x3, x4) = T
if and only if at least three of x1, x2, x3, x4 are equal to T. Give a propositional
formula that represents f .

Exercise I.22. Prove that {¬,→} is adequate.

Exercise I.23. Prove that {∨,∧,→,↔} is not adequate.

Exercise I.24. The binary “nor” connective is denoted “↓”. Its truth is defined
so that φ(A ↓ B) is equal to φ(¬(A∨B)). (“Nor” means “not-or”.) Show that
{↓} is adequate. Give {↓}-formulas which are tautologically equivalent to ¬p,
to p ∨ q, and to p ∧ q.
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Exercise I.25. Consider a formula

p1 ↔ p2 ↔ p3 ↔ ⋯↔ pk.

Give a simple characterization of when φ(p1 ↔ p2 ↔ p3 ↔ ⋯↔ pk) = T. Your
answer should be in terms of the number of i’s such that φ(pi) is equal to T
or F. [Hint: Recall that ↔ is associative.]

Exercise I.26. Use the method of truth tables to show that ¬(p1 ⊕ p2) is
tautologically equivalent to p1 ↔ p2.

Exercise I.27.

(a) Show that {⊕,↔} is not adequate.
(a) Show that {¬,⊕,↔} is not adequate.
(b) Show that {→,⊕} is adequate.

Exercise I.28. Recall that Case is the 3-ary “if-then-else” connective.

(a) Show that {Case} is not adequate.
(b) Show that {¬,Case} is adequate.

Exercise I.29. Fix k ≥ 2. Recall Maj k is the k-ary majority connective.

(a) Prove that {Maj k} is not adequate.
(b) Suppose that k is even. Prove that {¬,Maj k} is adequate. [Hint: Try the

k = 2 case first. What Boolean function is represented by Maj 2(p1, p2)?]
(c) Suppose that k is odd. Prove that {¬,Maj k} is not adequate.

Exercise I.30. Theorem I.39 and Exercise I.24 showed that the singleton sets
{∣} and {↓} (that is, “nand” and “nor”) are both adequate. Prove that there is
no other binary connective ○ such that {○} is adequate. (See also Exercise I.35.)

Exercise I.31. Prove that {Maj 3,⊕} is not an adequate set of propositional
connectives.

Exercise I.32. (a) Let ⍟ be a new binary connective defined by letting the
truth value of p⍟ q be the same as the truth value of Case(p, p∣q, p→ q). Is
{⍟} adequate? If so, give {⍟}-formulas that are tautologically equivalent
to ¬p and to p ∨ q. If not, explain why it is not adequate.

(b) Let ⊙ be a new binary connective defined by letting the truth value of
p⊙ q be the same as the truth value of Case(p, p∣q, p↓q). Is {⊙} adequate?
If so, give {⊙}-formulas that are tautologically equivalent to ¬p and to
p ∨ q. If not, explain why it is not adequate.

(c) Let f be a new 3-ary binary connective defined by letting the truth value
of f(p, q, r) be the same as the truth value of Case(p, p → q, q → r). Is
{f} adequate? If so, give {f}-formulas that are tautologically equivalent
to ¬p and to p ∨ q. If not, explain why it is not adequate.
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Exercise I.33. Let A be p1 → (p1 ∨ p2) and let B be p1 ∨ p3. Write out the
following formulas explicitly:

(a) A(B/p1).
(b) A(B/p2).
(c) A(B/p3).
(d) B(A/p1).
(e) B(A/p2).
(f) B(A/p3).
(g) B(A,B/p1, p3).

Exercise I.34. Prove the two following assertions. Your answers should use
proof by induction on the complexity of formulas.

(a) If A is an {∧,∨,→,↔}-formula then A is satisfiable.
(b) If A is an {∧,∨}-formula, then A is not a tautology.

Exercise I.35. There are two nullary (0-ary) Boolean functions, represented
by ⊺ and ⊥ (the constants T and F). There are four unary (1-ary) Boolean
functions; namely, the two constant functions T and F (also represented by ⊺
and ⊥), the identify function fp1 , and the negation function f¬p1 . How many
binary (2-ary) Boolean functions are there? In general, how many k-ary Boolean
functions are there? Justify your answers. [Hint: Consider how many lines there
are in a truth table over k variables.]

Exercise I.36. Prove Theorem I.43. Suppose that A is a formula with first
symbol a parenthesis. Prove that any non-empty, proper initial subexpression
of A has more open parentheses than close parentheses.

[A suggested way to work this problem is to prove the following using in-
duction on the complexity of A. Suppose that A is a formula — not necessarily
starting with an open parenthesis. Also suppose B is a non-empty, proper ini-
tial subexpression of A. Prove that either B is all ¬ signs or B has more open
parentheses than close parentheses.]

Exercise I.37. Suppose A is a formula, and B is a non-empty, proper initial
subexpression of A. Prove that B is not a formula. [Suggestion: use induction
on the length of formulas to handle the case where A and B start with a negation
symbol (¬); use the previous exercise to handle the case where they start with
a parenthesis.]

Exercise I.38. (Unique Readability.) Work with fully parenthesized formulas
as specified in the inductive definition of propositional formulas.

(a) Suppose that a formula A can be written in both the form (B ○ C) and
the form (D ○′ E) where B,C,D,E are formulas, and ○ and ○′ are binary
connectives. Prove that these two forms must be identical, with B = D
and C = E and ○ = ○′. [Hint: One of B or D must be a non-empty initial
subexpression of the other. Then use the previous exercise.]

(b) Prove the unique readability property for propositional formulas.

Exercise I.39. Prove Theorem I.44 about the numbers of binary connectives
and propositional variables appearing in a formula.
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Exercise I.40. (Converting a decision tree to a DNF or CNF formula.) Suppose
you are given a decision tree T . It represents a Boolean function f . Describe
an easy method that uses T to construct a DNF formula that represents the
same f . As a hint, consider the paths that lead from the root of T to leaves
labeled with “T”.

Also, describe an easy method to construct a CNF formula that represents f .
For this, you should consider paths from the root to leaves labelled “F”.



Chapter II

Propositional Logic:
Proofs

II.1 Introduction to Propositional Proofs

This chapter introduces a Hilbert-style proof system for propositional logic
called PL. The method of truth tables is already a proof system, but PL has
the advantage of providing a formal proof system based on step-by-step reason-
ing starting with axioms or other assumptions and using Modus Ponens as an
inference rule. The Modus Ponens rule is written as

A A→ B
B

and allows the formula B to be inferred provided that the two formulas A and
A→ B have already been inferred. This allows PL to model (to a certain extent)
how humans construct proofs.

The introduction of the proof system PL is a first step towards the develop-
ment of metamathematics. “Metamathematics” means the use of mathematical
tools, especially the use of mathematical logic, to study the formalization of
mathematics itself. The definition of PL-proofs provides a mathematical defi-
nition of proofs; this allows us to treat proofs as mathematical objects in their
own right, and even to prove theorems about proofs. First-order logic will give a
much more meaningful treatment of metamathematics, but propositional logic
and PL-proofs already illustrate many of the key concepts.

The purpose of a propositional proof is to establish that some formula is
a tautology, or that some tautological implication holds. We will write ⊢ A to
denote that A has a propositional proof, and will write B1, . . . ,Bk ⊢ A to denote
that A has a PL-proof from the hypotheses B1, . . . ,Bk. Thus the single turnstile
sign “⊢” is used for provability, in contrast to the double turnstile notation “⊧”
for tautological validity/implication.

45
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There are many, many proof systems, even for propositional logic. When
choosing a proof system, there are several desirable properties to keep in mind.
Note, however, that not all of these objectives can be fully achieved.

(1) Algorithmic. Proofs will be strings of symbols (also called “expressions”)
with specified syntactic properties. There should be an algorithm, which
given a string w of symbols, determines whether w is a valid proof, and
if so, what formula it proves, or what tautological implication it proves.
We have not yet formally defined the concept of “algorithm”, but infor-
mally, this means any procedure that can be carried out by an appropriate
(idealized) computer program.

(2) Soundness. A formula A should have a proof only if it is a tautology.
Similarly, if A can be proved from the hypotheses B1, . . . ,Bk, then the
tautological implication B1, . . . ,Bk ⊧ A should hold.

(3) Completeness. Conversely, any tautology A should have a proof. Simi-
larly, if B1, . . . ,Bk ⊧ A holds, then there should be a proof of A from the
hypotheses B1, . . . ,Bk.1

Taken together, the soundness and completeness properties mean that ⊢ A
holds if and only if ⊧ A holds. The same holds for tautological implications
as well.

(4) User-friendly. This could also be called Human-centric. There are
several aspects to this. (i) A proof system should be able to simulate
human reasoning efficiently. (ii) In particular, it should permit reasoning
using step-by-step inferences. (iii) And, proofs should be understandable
to humans without too much effort.

(5) Elegance. A proof system should be mathematically elegant, and without
an excessively large number of axioms or rules.

(6) Efficient proof search. There should be efficient, practical algorithms
for searching for and constructing proofs.
Unfortunately, it is open problem (related to the P versus NP question)
whether truly efficient proof search is always possible. Nonetheless, some
proof systems are better than others at allowing efficient proof search.
This is a large and active area of ongoing research, and the state of the art
allows finding proofs for at least some very large propositional formulas,
even many formulas with 100,000’s or millions of variables!

The method of truth tables can serve as a propositional proof system. For this,
we just need to establish a canonical way to code an entire truth table as a
string of symbols. Truth tables certainly meet criteria (1)-(3) above. They fail
criteria (6) since truth tables are generally exponentially large. They also fail
criteria (4) and (5).

The Hilbert-style proof system PL meets well the criteria (1)-(5), except for
that condition (4.iii) of being readily comprehensible. It is an open question

1Completeness is sometimes called “Adequacy’, e.g. by Hodel [10], but we follow here the
common convention and call it “completeness”.
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whether PL satisfies criteria (6) of allowing efficient proof search; in fact, it
is generally conjectured that proof search can be very hard for PL, requiring
exponential time in the worst case.

II.2 The Proof System PL

We now define the propositional proof system PL. This is a so-called “Hilbert-
style” proof system.2

In the interests of making PL as simple as possible, PL uses only {¬,→}-
formulas. Other connectives such ∨, ∧ and ↔ are abbreviations for equivalent
formulas that use only {¬,→}. Specifically,

A ∨B is an abbreviation for ¬A→ B
A ∧B is an abbreviation for ¬(A→ ¬B)
A↔ B is an abbreviation for (A→ B) ∧ (B → A)

PL-proofs start with axioms or other hypotheses and infer new formulas with
Modus Ponens. Four types of axioms are permitted in PL-proofs.

PL axioms. The axioms of PL are all formulas of the forms:3

PL1: A→ (B → A)

PL2: [A→ (B → C)]→ [(A→ B)→ (A→ C)]

PL3: ¬A→ (A→ B)

PL4: (¬A→ A)→ A

where A, B and C may be any {¬,→}-formulas.

Modus Ponens. The only inference rule for PL is Modus Ponens; namely,
from A and A→ B, it is permitted to infer B. This is denoted as

A A→ B
B

Here A and B may be any {¬,→}-formulas.

2Hilbert-style systems are named after David Hilbert, one of the founding fathers of math-
ematical logic, as this style of proof was used in D. Hilbert and W. Ackermann’s 1928 book
Grundzüge der theoretischen Logic (Foundations of Mathematical Logic). A system similar
to a Hilbert-style system was already used by A.N. Whitehead and B. Russell in 1910 in
their classic Principia Mathematica. Even earlier, G. Frege used a precursor to Hilbert-style
proof systems in his 1879 Begriffsschrift. All three of these were landmark developments in
establishing the modern study of mathematical logic.

The Hilbert-style system PL that we use is taken from Hodel [10], who named it L.
3The square brackets in PL2 are the same as usual parentheses and are used just to improve

readability.
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Definition II.1. Let A be a {¬,→}-formula. A PL-proof of A is a sequence of
{¬,→}-formulas

A1,A2,A3, . . . ,Aℓ

such that Aℓ is A and such that each Ai satisfies one of the following conditions:

(a) Ai is a PL-axiom; or

(b) Ai is inferred by Modus Ponens from two earlier formulas Aj and Ak with
j, k < i. Specifically we have Ak equal to Aj → Ai, so the Modus Ponens
inference has the form

Aj Aj → Ai

Ai

The final formula Aℓ is the conclusion of the PL-proof and is the formula that
is proved.

More generally, we can use a set Γ of formulas as extra hypotheses in a
PL-proof that can be used freely in the proof.

Definition II.2. A PL-proof of A from the hypotheses Γ is a sequence of {¬,→}-
formulas A1,A2, . . . ,Aℓ such that Aℓ is A and such that each Ai satisfies one of
the following conditions:

(a) Ai is a PL-axiom;

(b) Ai is in Γ; or

(c) Ai is inferred by Modus Ponens from two earlier formulas Aj and Ak with
j, k < i.

PL-proofs are also sometimes called PL-derivations. We write ⊢ A to denote
that A has a PL-proof; in this case we say that A is a theorem. Similarly, we
write Γ ⊢ A to denote that A has a PL-proof from the hypotheses Γ; we then say
that A is a theorem of Γ. Note that it is permitted that Γ is infinite; however,
a single proof can contain only finitely many formulas, and thus can use only
finitely many hypotheses from Γ.

When Γ is a finite set {B1, . . . ,Bk}, we usually omit the set braces and write
just B1, . . . ,Bk ⊢ A. We also abuse notation by writing things like Γ,A ⊢ B
instead of Γ ∪ {A} ⊢ B.

Theorem II.3.
(a) If Γ ⊢ A and Γ′ ⊃ Γ, then Γ′ ⊢ A.
(b) If Γ ⊢ A, then there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊢ A.

Proof. Part (a) is immediate from the definition of Γ ⊢ A. Part (b) follows from
the observation that a proof can contain only finitely many formulas.

To simplify notation, we assume that all formulas are {¬,→}-formulas for
the rest of the chapter.

Example II.4. There is a PL-proof of (¬A→ A)→ (¬A→ B), where A and B
are any formulas. The PL-proof consists of the following three formulas:
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1. ¬A→ A→ B Axiom PL3
2. (¬A→ A→ B)→ (¬A→ A)→ (¬A→ B) Axiom PL2
3. (¬A→ A)→ (¬A→ B) Modus Ponens, 1, 2

The PL2 axiom above is formed by letting A, B and C in the definition of the
PL2 axiom be the formulas ¬A, A and B, respectively.

Example II.5. There is a PL-proof of A → A, where A is any formula. That
is, ⊢ A→ A. The PL-proof consists of the following five formulas:

1. (A→ ((A→ A)→ A))→ (A→ (A→ A))→ (A→ A) Axiom PL2
2. A→ ((A→ A)→ A) Axiom PL1
3. (A→ (A→ A))→ (A→ A) Modus Ponens, 1, 2
4. A→ (A→ A) Axiom PL1
5. A→ A Modus Ponens, 3, 4

The PL2 axiom above is formed by letting B be the formula A→ A, and letting
C be the formula A. The first PL1 axiom is obtained by letting B be A → A;
the second is formed by letting B be A.

Example II.6. For any A and B, the formulas B → (A∨B) and ¬¬A→ (A∨B)
have PL-proofs. To see this, recall that a formula C ∨D is an abbreviation for
¬C → D. Thus the two formulas are actually equal to B → (¬A → B) and
¬¬A → (¬A → B). The first is an instance of the axiom PL1; the second is an
instance of the axiom PL3. Therefore they each have a PL-proof consisting a
single formula, namely an axiom.

Exercise II.11 asks you to show that A→ (A ∨B) has a PL-proof.

Example II.7. The formula A → B has a PL-proof from the hypothesis B.
That is, B ⊢ A→ B. The PL-proof has three formulas:

B → (A→ B) Axiom PL1
B Hypothesis
A→ B Modus Ponens

Example II.8. Any formula A has a proof from itself as a hypothesis; that is,
A ⊢ A. The PL proof consists of just the single formula A.

Theorem II.9. The set of theorems (of PL) is closed under substitution. In
other words, if ⊢ A, then ⊢ A(B/pi) for any formulas A and B and any vari-
able pi.

Proof. The set of axioms of PL is clearly closed under substitution. Also, the
valid Modus Ponens inferences are closed under substitution, since

D(B/pi) (D → E)(B/pi)
E(B/pi)

is the same as
D(B/pi) D(B/pi)→ E(B/pi)

E(B/pi)
It follows that if A1, A2, A3, . . . , Aℓ is a PL-proof, then so is

A1(B/pi), A2(B/pi), A3(B/pi), . . . , Aℓ(B/pi).

This is proved by induction on the steps in the PL-proof.
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II.3 Deduction Theorem

The Deduction Theorem is our first main tool for proving the existence of PL-
proofs. It is the analogue for provability of Theorem I.16, which stated that
Γ ⊧ A→ B is equivalent to Γ,A ⊧ B.

The intuition behind the Deduction Theorem is that proving the implication
A → B is equivalent to assuming that A holds and proving B with the aid of
the hypothesis A.

Theorem II.10 (Deduction Theorem). Γ,A ⊢ B if and only if Γ ⊢ A→ B.

Proof. The “if” direction is very easy. Suppose Γ ⊢ A → B. Then also
Γ,A ⊢ A→ B. Since Γ,A ⊢ A, Modus Ponens, gives Γ,A ⊢ B.

The “only if” direction is the important direction. Suppose that Γ,A ⊢ B
and that

C1, C2, C3, . . . , Cℓ

is a PL-proof of B from Γ,A so that Cℓ is the formula B. Each Ci is an axiom,
a member of Γ or the formula A, or is inferred by Modus Ponens.

We prove by induction on i that Γ ⊢ A → Ci. The proof by induction splits
into three cases.

Case 1: Suppose that Ci is either an axiom or a member of Γ. Then, certainly
Γ ⊢ Ci. Also, Ci → (A → Ci) is an instance of Axiom PL1. Thus, by Modus
Ponens, Γ ⊢ A→ Ci, as desired.

Case 2: Suppose Ci is A. By Example II.5, Γ ⊢ A → A, which is the same as
Γ ⊢ A→ Ci, as desired.

Case 3: Suppose Ci is inferred from Modus Ponens from Cj and Ck with
j, k < i. Without loss of generality, Ck is equal to Cj → Ci. The induc-
tion hypotheses for Cj and Ck are that A → Cj and C → Ck are theorems of
Γ. We prove that there is a proof of A→ Ci from Γ as follows:

Γ ⊢ A→ Cj Induction hypothesis
Γ ⊢ A→ Cj → Ci Induction hypothesis
Γ ⊢ (A→ Cj → Ci)→ (A→ Cj)→ (A→ Ci) Axiom PL2
Γ ⊢ (A→ Cj)→ (A→ Ci) Modus Ponens
Γ ⊢ A→ Ci Modus Ponens

That completes the proof by induction and, since A→ Cℓ is the same as A→ B,
it also completes the proof of the Deduction Theorem.

Note how Axiom PL2 is exactly what is needed to make the argument work
easily in Case 3 above.

Theorem II.9 and the Deduction Theorem are some first examples of “meta-
mathematics”, that is the use of mathematical tools to study mathematical
objects such as theorems and proofs. We have given formal definitions of “the-
orems” and “proofs” as mathematical objects, and now Theorem II.9 and the
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Deduction Theorem are theorems that state properties about (PL-)theorems;
their proofs use induction on a given PL-proof to prove the existence of another
PL-proof.

Hypothetical Syllogism. As an example of how to use the Deduction The-
orem, we show that the inference rule of Hypothetical Syllogism,

A→ B B → C
A→ C

, (II.1)

is a derived rule of inference for PL.

Theorem II.11. For A, B and C any formulas,

⊢ (A→ B)→ ((B → C)→ (A→ C)).

Proof. We use “⇔” to mean “if and only if”. Applying the Deduction Theorem
three times gives the equivalences

⊢ (A→ B)→ ((B → C)→ (A→ C))
⇔ A→ B ⊢ (B → C)→ (A→ C) Deduction Theorem
⇔ A→ B, B → C ⊢ A→ C Deduction Theorem
⇔ A→ B, B → C, A ⊢ C Deduction Theorem

And, A→ B, B → C, A ⊢ C holds by combining the three hypotheses with two
uses of Modus Ponens to prove C.

Corollary II.12. If Γ ⊧ A→ B and Γ ⊧ B → C, then Γ ⊧ A→ C.

The corollary implies that the Hypothetical Syllogism inference rule is ad-
missible in PL-proofs as a “derived rule” of inference.4 That is, although Modus
Ponens in the only allowed rule of inference for PL-proofs, we may nonetheless
allow Hypothetical Syllogism inferences when proving the existence of a PL-
proof. This is because Hypothetic Syllogism can be simulated by multiple steps
in a PL-proof. Consequently, if Hypothetical Syllogism were to be added to PL
as an additional rule of inference, it would not make the proof system PL any
stronger.

II.4 Consistency, Inconsistency, and Proof by
Contradiction

Consistency and inconsistency. A set Γ is said to be “inconsistent” if
it is possible to derive a contradiction from Γ. Otherwise, is it “consistent”.
Formally, these are defined as follows:

Definition II.13. A set Γ of formulas is inconsistent if, for some formula A,
both A and ¬A are theorems of Γ. In other words, if both Γ ⊢ A and Γ ⊢ ¬A.
Otherwise, Γ is consistent.

4Derived rules of inference are sometimes called “admissible rules” of inference.
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Example II.14. As a simple example, the set Γ = {¬p1 → p1, ¬¬p1 → ¬p1}
is inconsistent. To see this, first note that the PL3 axiom (¬p1 → p1) → p1
and Modus Ponens can be used to show that Γ ⊢ p1. Similarly, the PL3 axiom
(¬¬p1 → ¬p1)→ ¬p1 means that Γ ⊢ ¬p1. Thus Γ is inconsistent.

Theorem II.15. If Γ is consistent and Π ⊆ Γ, then Π is consistent.

Proof. If Π is inconsistent, there are proofs of A and ¬A from the hypotheses Π.
These are also proofs from the hypotheses Γ.

It is a remarkable, but simple, fact that if Γ is inconsistent, then it can be
used to prove any formula:

Theorem II.16. Γ is inconsistent if and only if Γ ⊢ B for every formula B.

Proof. Certainly, if Γ ⊢ B for all formulas B, then Γ ⊢ p1 and Γ ⊢ ¬p1 and hence
Γ is inconsistent.

Conversely, suppose Γ is inconsistent and thus Γ ⊢ A and Γ ⊢ ¬A for some
formula A. Let B be any formula. Now, ¬A → (A → B) is an instance of
Axiom PL3. From this, with two uses of Modus Ponens, we conclude that
Γ ⊢ B.

Corollary II.17. Let A and B be formulas. Then A,¬A ⊢ B.

Note that the corollary is the analogue of Theorem I.14(a) for provability
in place of tautological implication. It is an immediate consequence of Theo-
rem II.16. In fact, the last two sentences of the proof of Theorem II.16 were
just a proof of the corollary.

Theorem II.18. If Γ is inconsistent, then there is a finite subset Γ0 of Γ which
is inconsistent.

Proof. Suppose Γ ⊢ A and Γ ⊢ ¬A. By Theorem II.3(b) there are finite subsets
Γ1 and Γ2 of Γ such that Γ1 ⊢ A and Γ2 ⊢ ¬A. Let Γ0 = Γ1 ∪ Γ2. Then Γ0 ⊆ Γ
and both A and ¬A are theorems of Γ0. That is, Γ0 is a finite, inconsistent
subset of Γ.

The converse to Theorem II.18 also holds, and its proof is immediate from
Theorem II.15. That is, Γ is inconsistent if and only if some finite subset of Γ is
inconsistent. For more on this, see Section II.8 on the Compactness Theorem.

Proof by contradiction. Proof by contradiction is a powerful technique for
finding and constructing proofs. The idea is that to prove a formula A, it is
sufficient to assume that A is false and obtain a contradiction.

Theorem II.19 (Proof by Contradiction, First Version).

Γ ⊢ A if and only if Γ ∪ {¬A} is inconsistent.
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Proof. First, suppose Γ ⊢ A. Then clearly, from the hypotheses Γ ∪ {¬A} there
are proofs of both A and ¬A. Therefore Γ ∪ {¬A} is inconsistent.

Now suppose Γ ∪ {¬A} is inconsistent. By Theorem II.16, Γ ∪ {¬A} has a
proof of every formula; in particular, it has a proof of A. Now,

Γ,¬A ⊢ A
⇔ Γ ⊢ ¬A→ A Deduction Theorem
⇒ Γ ⊢ A By PL4 axiom (¬A→ A)→ A and Modus Ponens

Hence Γ ⊢ A.

Corollary II.20. ⊢ ¬¬A→ A.

Proof. By the Deduction Theorem and Theorem II.19, ⊢ ¬¬A→ A holds if and
only if {¬¬A,¬A} is inconsistent. But this is obvious since both ¬A and ¬¬A
have proofs from the hypotheses {¬¬A,¬A}.

The second version of the Proof by Contradiction theorem interchanges the
roles of A and ¬A.

Theorem II.21 (Proof by Contradiction, Second Version).

Γ ⊢ ¬A if and only if Γ ∪ {A} is inconsistent.

Proof. First, suppose Γ ⊢ ¬A. Then Γ ∪ {A} has both A and ¬A as theorems
and thus is inconsistent.

Second, suppose Γ ∪ {A} is inconsistent. We have

Γ ∪ {A} is inconsistent
⇒ Γ,A ⊢ ¬A Theorem II.16
⇔ Γ ⊢ A→ ¬A Deduction Theorem
⇒ Γ ⊢ ¬¬A→ ¬A By ⊢ ¬¬A→ A (Corollary II.20) and Hypothetical Syllogism
⇒ Γ ⊢ ¬A By PL4 axiom (¬¬A→ ¬A)→ ¬A and Modus Ponens

Thus we have Γ ⊢ ¬A and the theorem is proved.

Corollary II.22. ⊢ A→ ¬¬A.

Proof. By the Deduction Theorem, it suffices to prove that A ⊢ ¬¬A. By the
previous theorem, A ⊢ ¬¬A holds if and only if {A,¬A} is inconsistent. But this
is obvious since both A and ¬A have proofs from the hypotheses {A,¬A}.

Example II.23. We show that {A∧¬A} is inconsistent. Recalling the conven-
tion that ∧ is used to abbreviate a {¬,→}-formula, this is identical to showing
that {¬(A→ ¬¬A)} is inconsistent. By the first version of Proof by Contradic-
tion (Theorem II.19), this is equivalent to ⊢ (A → ¬¬A). And this is true by
Corollary II.22.
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Modus Tollens. The Modus Tollens inference rule has the form

A→ B ¬B
¬A

This turns out to be a valid derived rule for PL. Its validity is justified by the
following.

Theorem II.24. For any formulas A and B, ⊢ (A→ B)→ (¬B → ¬A).

Proof. We have

⊢ (A→ B)→ (¬B → ¬A)
⇔ A→ B, ¬B ⊢ ¬A Deduction Theorem (used twice)
⇔ {A→ B,¬B,A} is inconsistent Proof by Contradiction (2nd version)
⇔ A→ B, A ⊢ B Proof by Contradiction (1st version)

The final assertion holds by Modus Ponens.

Corollary II.25. If Γ ⊢ A→ B and Γ ⊢ ¬B, then Γ ⊢ ¬A.

Proof by Cases. The technique of “proof-by-cases” allows proving a for-
mula B by splitting into two cases depending on whether another formula A is
true or false. Specifically, it means proving both A → B and ¬A → B. Since at
least one of A and ¬A must be true (for any particular truth assignment), this
suffices to prove B.

Theorem II.26. Suppose Γ ⊢ A→ B and Γ ⊢ ¬A→ B. Then Γ ⊢ B.

Proof. To prove Γ ⊢ B, it suffices to prove that Γ ∪ {¬B} is inconsistent. Since
Γ ⊢ A→ B, we have Γ,¬B ⊢ ¬A by Modus Tollens. Similarly, since Γ ⊢ ¬A→ B,
we have Γ,¬B ⊢ ¬¬A. Since both ¬A and ¬¬A are theorems of Γ ∪ {¬B}, the
set Γ ∪ {¬B} is inconsistent.

Corollary II.27. Suppose Γ,A ⊢ B and Γ,¬A ⊢ B. Then Γ ⊢ B.

An important special case of the proof-by-cases principle is Corollary II.29
which states that a consistent Γ can be extended at least one of Γ ∪ {A} or
Γ ∪ {¬A} and remain consistent. This will be a corollary of the next theorem.

Theorem II.28. Γ is inconsistent if and only both Γ ∪ {A} and Γ ∪ {¬A} are
inconsistent.

Proof. By Theorem II.15, if Γ is inconsistent, then so are both Γ ∪ {A} and
Γ ∪ {¬A}.

So suppose that both of Γ ∪ {A} and Γ ∪ {¬A} are inconsistent. Let B be
an arbitrary formula. We want to show Γ ⊢ B, as that will establish that all
formulas are theorems of Γ. We have that both Γ ∪ {A} ⊢ B and Γ ∪ {¬A} ⊢ B
since those two theories are presumed to be inconsistent. Thus, by proof-by-
cases (Corollary II.27), Γ ⊢ B.
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Corollary II.29. Suppose Γ is consistent. Then at least one of Γ ∪ {A} and
Γ ∪ {¬A} is consistent.

For another example of how to use proof-by-cases, we prove the following.

Theorem II.30.
(a) Γ, (A→ B) ⊢ C if and only if both Γ,¬A ⊢ C and Γ,B,⊢ C.
(b) Γ, (A → B) is inconsistent if and only if both Γ ∪ {¬A} and Γ ∪ {B} are

inconsistent.

Proof. Since a set is inconsistent if and only if it has all formulas C as theorems,
part (a) implies part (b). So we prove (a). First suppose Γ,A → B ⊢ C. Recall
that ¬A → (A → B) is an axiom PL3. Thus Γ,¬A ⊢ A → B. It follows readily
that Γ,¬A ⊢ C. Also recall that B → (A → B) is an axiom PL1. By similar
reasoning, it follows readily again that Γ,B ⊢ C.

Now suppose that both Γ,¬A ⊢ C and Γ,B,⊢ C. To prove (a), we use
proof-by-cases, using the formula A for the cases. Namely, it suffices to prove
that

(i) Γ, (A→ B),A ⊢ C, and

(ii) Γ, (A→ B),¬A ⊢ C
Item (ii) is obvious, since by hypothesis even Γ,¬A ⊢ C. To establish (i), use
Modus Ponens to derive B from A → B and A. Then use the assumption that
Γ,B ⊢ C.

Proof-by-cases can be a powerful technique for proving the existence of PL-
proofs, sometimes greatly simplifying the proofs. However, it can be tricky to
choose the formula to use for defining the two cases. The proof of Theorem II.30
used A and ¬A for the two cases of the proof-by-cases argument. It would
have also worked well to use B and ¬B for the two cases of the proof-by-cases
argument. However, sometimes it can be very difficult to find a good formula
for defining the two cases.

II.5 Constructing PL-Proofs

The previous two sections have given a large variety of tools for proving state-
ments such as “Γ ⊢ A” or “Γ is inconsistent”. The ones that tend to be the
most useful in practice include the following (1)-(5) and (6)-(9).

(1) To prove Γ ⊢ A→ B, it suffices to prove Γ,A ⊢ B.

(2) To prove Γ ⊢ ¬A, it suffices to prove Γ ∪ {A} is inconsistent.

(3) To prove Γ ⊢ pi, it suffices to prove that Γ ∪ {¬pi} is inconsistent.

(4) To prove Γ,¬A is inconsistent, it suffices to prove that Γ ⊢ A.

(5) To prove Γ ∪ {A → B} is inconsistent, it suffices to prove first that Γ ⊢ A
and second that Γ ∪ {B} is inconsistent.
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Item (5) can be justified by Theorem II.30(b).
It can be shown that repeatedly applying the reductions of items (1)-(5)

is sufficient to generate a proof of any {¬,→}-tautology. For this, see Ex-
ercise II.29. Some additional principles that are also very useful in practice
include:

(6) To prove Γ ⊢ A, it suffices to prove that Γ∪{¬A} is inconsistent. (This is a
more general form of item (3), the first version of proof by contradiction.)

(7) To prove Γ ⊢ B, it suffices to prove both that Γ,A ⊢ B and that Γ,¬A ⊢ B.
(This is proof-by-cases.)

(8) Suppose Γ contains the two formulas A and A → B. Let Γ∗ be Γ ∪ {B}.
To prove that Γ is inconsistent, it suffices to prove that Γ∗ is inconsistent.
To prove that Γ ⊢ C, it suffices to prove that Γ∗ ⊢ C. (This is justified by
Modus Ponens.)

(9) Suppose Γ contains the two formulas ¬B and A→ B. Let Γ∗ be Γ∪{¬A}.
To prove that Γ is inconsistent, it suffices to prove that Γ∗ is inconsistent.
To prove that Γ ⊢ C, it suffices to prove that Γ∗ ⊢ C. (This is justified by
Modus Tollens.)

(10) Suppose Γ contains the two formulas A → B and B → C. Let Γ∗ be
Γ∪{A→ C}. To prove that Γ is inconsistent, it suffices to prove that Γ∗ is
inconsistent. To prove that Γ ⊢D, it suffices to prove that Γ∗ ⊢D. (This
is justified by Hypothetical Syllogism.)

Of course, the previous sections gave several other possible principles that
can help with proving the existence of PL-proofs. For example, a formula ¬¬A
may be replaced with the formula A. Nonetheless, items (1)-(10) are often
(but not always) good strategies to follow. There will generally be multiple
possibilities for which of (1)-(10) to apply; it can require some cleverness (or
luck) to decide whether and how to best apply items (1)-(10), or other strategies.

Item (7) can be much harder to use than the other eight items since it
requires choosing the formula A. For this, it helps to have some intuition on
what formula A could help with showing the existence of a PL-proof.

Items (8) and (9) are still valid if Γ∗ is instead defined to omit the formula
A→ B.

A chart of the main definitions and theorems that can be used for proving
the existence of PL-proof is shown on page 57.

Example II.31. We show that

A→ B ∨C, B →D, C →D ⊢ A→D.

Since B ∨C is an abbreviation for ¬B → C, this is identical to

A→ ¬B → C, B →D, C →D ⊢ A→D.

By item (1), or the Deduction Theorem, it suffices to show

A, A→ ¬B → C, B →D, C →D ⊢D.
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Constructing PL-proofs

Logical axioms: PL1: A→ (B → A)
PL2: [A→ (B → C)]→ [(A→ B)→ (A→ C)]
PL3: ¬A→ (A→ B)
PL4: (¬A→ A)→ A

Modus Ponens:
A→ B A

B

Abbreviations: A ∨B, A ∧B and A↔ B abbreviate, respectively,
¬A→ B, ¬(A→ ¬B) and (A→ B) ∧ (B → A).

Deduction Theorem: Γ ⊢ A→ B iff Γ,A ⊢ B.

Proof by Contradiction:

Γ ⊢ A iff Γ ∪ {¬A} is inconsistent.

Γ ⊢ ¬A iff Γ ∪ {A} is inconsistent.

Proof by Cases: If Γ,A ⊢ B and Γ,¬A ⊢ B, then Γ ⊢ B.

Derived (admissible) rules of inference:

Modus Tollens:
A→ B ¬B

¬A
Hypothetical Syllogism:

A→ B B → C
A→ C

Using item (6), or proof by contradiction, it suffices to show that

{A, A→ ¬B → C, B →D, C →D, ¬D} is inconsistent.

Using item (9) twice, namely using Modus Tollens on the last three formulas,
it suffices to show that

{A, A→ ¬B → C, ¬B, ¬C, ¬D} is inconsistent.

Using item (8) twice, namely using Modus Ponens, it suffices to show that

{A, C, ¬B, ¬C, ¬D} is inconsistent.

This is inconsistent as it contains both C and ¬C as members.

II.6 Soundness and Completeness Theorems for
PL

The Soundness and Completeness Theorems express the fact that PL is a good
proof system for propositional logic. The Soundness Theorem states that PL
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is “sound” in the sense that any PL-theorem A is a tautology. Furthermore, it
states that if A is provable from a set Γ of hypotheses, then Γ tautologically
implies A. This is really a basic property for any system of propositional logic
since we of course only want to have proofs of formulas that are tautologically
implied.

The Completeness Theorem states the converse, namely that PL is “com-
plete”. This means firstly that if A is a tautology, then A has a PL-proof. And,
secondly, that if A is a tautological consequence of Γ, then Γ ⊢ A. In other
words, PL with its four axiom schemes, PL1-PL4, and with the sole rule of in-
ference of Modus Ponens is strong enough to give proofs of all tautologies. This
is fairly remarkable!

We now state the Soundness and Completeness Theorems more carefully and
prove the Soundness Theorem. After that, Section II.7 will present the more
difficult proof of the Completeness Theorem.

Theorem II.32 (Soundness Theorem for PL).
(a) If Γ is satisfiable, then Γ is consistent.
(b) If Γ ⊢ A, then Γ ⊧ A.

Theorem II.33 (Completeness Theorem for PL).
(a) If Γ is consistent, then Γ is satisfiable.
(b) If Γ ⊧ A, then Γ ⊢ A.

Taken together, the Soundness and Completeness Theorems state that sat-
isfiability is equivalent to consistency. They also state that ⊧ (tautological
implication) is equivalent to ⊢ (provability). In other words, Γ ⊢ A is equivalent
to Γ ⊧ A. In the special case with Γ the empty set, ⊢ A is equivalent to ⊧ A. In
other words, A has a proof in PL if and only if A is a tautology.

The Completeness Theorem allows us to introduce a new derived rule of
inference for PL called Tautological Implication. For this, suppose A1, . . . ,Ak ⊧
B. Then the following Tautological Implication (TAUT) is admissible as a
derived rule for PL-proofs:

A1 A2 ⋯ Ak
TAUT:

B

To prove that TAUT is an admissible inference rule when A1, . . . ,Ak ⊧ B, note
that the Completeness Theorem implies that A1, . . . ,Ak ⊢ B. So k uses of the
Deduction Theorem imply that ⊢ A1 → A2 → ⋯ → Ak → B. Then, if the
hypotheses A1, . . . , Ak have been derived, k uses of Modus Ponens allows B to
be derived.

Hypothetical Syllogism and Modus Tollens (and also Modus Ponens) are
special cases of the Tautological Implication rule. In fact, by the Soundness
and Completeness Theorems, the Tautological Implication rule is the strongest
possible admissible rule of inference for PL.

In both the Soundness and Completeness Theorems, the two parts (a) and (b)
easily imply each other. Let’s start by proving that part (a) of the Soundness
Theorem implies part (b). For this, we note that
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Γ ⊢ A
⇔ Γ ∪ {¬A} is inconsistent Proof by Contradiction, Theorem II.19
⇒ Γ ∪ {¬A} is unsatisfiable Soundness Theorem II.32, part (a)
⇔ Γ ⊧ A Theorem I.21

That finishes the proof of (b) from (a) for the Soundness Theorem. For the
Completeness Theorem, we argue similarly:

Γ ⊧ A
⇔ Γ ∪ {¬A} is unsatisfiable Theorem I.21
⇒ Γ ∪ {¬A} is inconsistent Completeness Theorem II.33, part (a)
⇔ Γ ⊢ A Proof by Contradiction, Theorem II.19

That finishes the proof that part (a) of the Completeness Theorem implies
part (b).

We now prove the Soundness Theorem.

Proof of the Soundness Theorem for PL. Suppose Γ is a set of formulas, and
Γ ⊢ A. We shall prove that Γ ⊧ A. (Essentially we are proving part (b) of the
Soundness Theorem, and will then use that to prove part (a).) Let

A1, A2, . . . ,Aℓ

be a PL-proof of A. Suppose φ is a truth assignment satisfying Γ. We prove
that φ(Ai) = T for i = 1, . . . , ℓ, by induction on i. Since Aℓ is A, this implies
that φ(A) = T.

There are two base cases for the proof by induction. If Ai is a PL-axiom,
then Ai is a tautology, so of course φ(Ai) = T. If A ∈ Γ, then φ(Ai) = T
since φ satisfies Γ. For the induction step, suppose Ai is inferred by Modus
Ponens from Aj and Ak where j, k < i, and Ak is equal to Aj → Ai. The two
induction hypotheses are that φ(Aj) = T and φ(Aj→Ai) = T. By the definition
of truth for Aj → Ai, we must thus have φ(Ai) = T. That completes the proof
by induction.

Now we can prove part (a) of the Soundness Theorem. Suppose Γ is in-
consistent. Then Γ ⊢ A and Γ ⊢ ¬A. By the previous two paragraphs, Γ ⊧ A
and Γ ⊧ ¬A for some formula A. Suppose φ is a truth assignment satisfying Γ.
By Γ ⊧ A, φ(A) = T. Similarly, by Γ ⊧ ¬A, φ(¬A) = T. This is impossible.
Therefore, there is no φ that satisfies Γ; i.e., Γ is unsatisfiable. That proves
part (a), and finishes the proof of the Soundness Theorem for PL.

II.7 Proof of the Completeness Theorem

The proof of the Completeness Theorem II.33 is harder than the proof just
given for the Soundness Theorem. The proof will be given in two parts. First,
we state and prove Lindenbaum’s Theorem about the existence of a complete,
consistent set Π of formulas extending Γ. Then Lemma II.37 uses the set Π to
define a truth assignment φ that satisfies Π, and hence satisfies Γ.

First, we give the definition of what it means for Γ to be “complete”:
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Definition II.34. A set Γ of formulas is complete provided that, for every
formula A, either A ∈ Γ or ¬A ∈ Γ.

It is trivial that, if Γ is complete, then for every formula A, either Γ ⊢ A or
Γ ⊢ ¬A. The idea behind completeness, is that Γ is “maximal” in that there is
no way to add another formula to Γ and still have a consistent set of formulas.

Theorem II.35 (Lindenbaum’s Theorem). Suppose Γ is a consistent set of
formulas. Then there is a consistent, complete set Π of formulas such that
Γ ⊆ Π.

Proof. There are countably many propositional formulas, so the set of all propo-
sitional formulas can be enumerated in an infinite sequence

A1, A2, A3, A4, . . . .

The crucial property is that every propositional formula appears in the sequence
as one of the Ai’s.

We define a sequence of sets Γi of formulas for i = 0,1,2, . . .. Each Γi will
be consistent, and they satisfy Γi+1 ⊇ Γi. To start the process, set Γ0 = Γ.
Inductively define

Γi+1 = { Γi ∪ {Ai} if Γ ∪ {Ai} is consistent

Γi ∪ {¬Ai} otherwise.

Claim. For each i,
(a) Γi ⊇ Γi−1 and Γi ⊇ Γ.
(b) Γi is consistent.

Part (a) of the claim is immediate from the definitions. Part (b) is proved by
induction on i. For i = 0, Γ0 = Γ is consistent by assumption. For the induction
step, assume Γi is consistent. Then Γi+1 is consistent since by Corollary II.29,
if Γi ∪ {Ai} is not consistent, then Γi ∪ {¬Ai} is consistent.

Now define Π to equal the union ⋃i Γi. Every formula A is equal to some Ai.
This means that either A or ¬A is a member of Γi+1. Therefore, either A ∈ Π
or ¬A ∈ Π. Hence, Π is complete.

To prove Π is consistent, suppose to the contrary that Π is inconsistent.
By Theorem II.18, there is a finite Π0 ⊆ Π which is inconsistent. Since Π0 is
finite and a subset of ⋃i Γi, and since the Γi’s are increasing, there is a single Γi

such that Π0 ⊆ Γi. But this gives a contradiction since Γi is consistent and its
subset Π0 is inconsistent (contradicting Theorem II.15). Therefore, Π cannot
be inconsistent.

That completes the proof of Lindenbaum’s Theorem.

Lemma II.36. Suppose Π is complete and consistent. Let A and B be any
formulas. Then,

(a) A ∈ Π if and only ¬A ∉ Π.
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(b) (A→ B) ∈ Π if and only if A ∉ Π or B ∈ Π.

Proof. Since Π is complete, at least one of A and ¬A must be in Π. But since
Π is consistent, they cannot both be in Π. Thus (a) must hold.

Now we prove (b). First suppose A → B is in Π. Also suppose, for the
sake of contradiction, that both A ∈ Π and B ∉ Π. By (a), ¬B ∈ Π. This is a
contradiction, since {A → B,A,¬B} is inconsistent and is a subset of Π. This
shows that if (A→ B) ∈ Π, then A ∉ Π or B ∈ Π.

Second, suppose A → B is not in Π. By (a), ¬(A → B) is in Π. Then, since
{¬(A → B),¬A} is inconsistent, ¬A cannot be in Π. Therefore, by (a), A ∈ Π.
And, since {¬(A → B),B} is inconsistent, B is not in Π. Thus we have shown
that if A → B is not in Π, then A ∈ Π and B ∉ Π. That completes the proof of
part (b).

Lemma II.37. Suppose Π is complete and consistent. Then Π is satisfiable.

Proof. We must define a truth assignment φ satisfying Π. For this, define φ’s
truth values for variables pi by:

φ(pi) = { T if pi ∈ Π
F otherwise.

To prove the lemma, it suffices to prove the claim that:

Claim. For every A, φ(A) = T if and only if A ∈ Π.

The claim is proved by induction on the complexity of the formula A. If A is
a variable pi, the claim holds immediately by the definition of φ. For the first
induction step, suppose A is ¬B. The induction hypothesis tells that the claim
holds for B. Thus,

¬B ∈ Π ⇔ B ∉ Π Lemma II.36(a)
⇔ φ(B) = F Induction hypothesis
⇔ φ(¬B) = T Definition of truth

For the second induction step, suppose A is B → C. Then

(B → C) ∈ Γ ⇔ B ∉ Γ or C ∈ Γ Lemma II.36(b)
⇔ φ(B) = F or φ(C) = T Induction hypotheses for B and C
⇔ φ(B → C) = T Definition of truth

That completes the proof of the claim.
Since φ(A) = T for every A ∈ Γ, the set Γ is satisfiable with satisfying

assignment φ. That finishes the proof of the lemma.

Lindenbaum’s Theorem and Lemma II.37 together imply part (a) of the
Completeness Theorem II.33. Lindenbaum’s Theorem gives a complete, consis-
tent Π extending the consistent set Γ, and Lemma II.37 gives a truth assignment
that satisfies Π and hence satisfies its subset Γ.

As argued in Section II.6, part (a) of the Completeness Theorem implies
part (b). Thus we have finished the proof of the Completeness Theorem for PL.
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II.8 The Compactness Theorem for PL

The Compactness Theorem is one of the fundamental properties of both propo-
sitional and first-order logic. It has a very simple proof from the Soundness and
Completeness Theorems.

Definition II.38. A set Γ of formula is finitely satisfiable if every finite subset Π
of Γ is satisfiable.

Theorem II.39 (Compactness Theorem).

(a) Γ is satisfiable if and only if Γ is finitely satisfiable.
(b) Γ ⊧ A if and only there is finite subset Γ0 of Γ such that Γ0 ⊧ A.

Proof. By the Soundness and Completeness Theorems, Γ is satisfiable if and
only if Γ is consistent. Likewise, Γ is finitely satisfiable if and only if every finite
subset of Γ is consistent. Part (a) is now immediate from the fact that Γ is con-
sistent if and only if every finite subset of Γ is consistent. (See Theorem II.18.)

The proof of (b) is similar. It follows from the fact that Γ ⊢ A if and only if
Γ0 ⊢ A for some finite Γ0 ⊆ Γ. (See Theorem II.3(b).)

Exercises

Your answers for Exercises II.1-II.22 should not use the Completeness Theorem.
Exercises II.1-II.3 can be done using only the material of Section II.2. Exercises
II.4-II.7 are intended to be done using only the techniques developed up through
Section II.3 (on the Deduction Theorem).

Exercise II.1. Give explicit PL-proofs for the following formulas. The explicit
proofs should show every line in the PL-proofs.

(a) A→ B ⊢ A→ B.
(b) A→ B,B ⊢ B.
(c) A→ B,A ⊢ B.
(d) ¬A,A ⊢ B

Exercise II.2. Show that ⊢ (A → B) → (A → A) by giving an explicit three
line PL-proof of that formula.

Exercise II.3. Give explicit PL-proofs for:

(a) A ∧B,¬B ⊢ A
(b) A ∧B,¬A ⊢ B

Exercise II.4. Prove the following. You only need to prove that a PL-proof
exists; you do not need to give it explicitly.

(a) A→ B, C ⊢ A→ (C → B). Are both hypotheses needed?
(b) A→ B → C ⊢ B → A→ C.
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Exercise II.5.
(a) Prove ⊢ (A→ B)→ (B → C)→ (C →D)→ (A→D).
(b) Conclude the following generalization of Hypothetical Syllogism is a valid

derived rule of inference for PL:

A→ B B → C C →D
A→D

Exercise II.6. Prove ⊢ (A ∨B)→ ¬A→ B.

Exercise II.7. Prove A→ B ⊢ (¬A→ A)→ B.

Exercise II.8. Show ⊢ (A → B) → (¬A → B) → B. (Compare with Exer-
cise I.12.)

Exercise II.9. Prove that the following are inconsistent.
(a) {¬(p1 → p1)}.
(b) {p1 ∧ ¬p1}.

Exercise II.10. Prove that Γ is inconsistent if and only if Γ ⊢ ¬(p1 → p1).

Exercise II.11. Show that the following formulas have PL-proofs. (See Exam-
ple II.6.)

(a) A→ A ∨B.
(b) B → A ∨B.
(c) ¬(A ∨B)→ (¬A ∧ ¬B).

Exercise II.12. Show that the following formulas have PL-proofs.
(a) (A ∧B)→ A.
(b) (A ∧B)→ B.
(c) ¬(A ∧B)→ (¬A ∨ ¬B).
(d) A→ B → A ∧B.

Exercise II.13. Do the following for each of the formulas (a)-(c): (i) State
whether it is unsatisfiable, or satisfiable but not a tautology, or a tautology;
(ii) If it is not a tautology, give a truth assignment that falsifies it; (ii) Otherwise
if it is a tautology, prove that it has a PL-proof.

(a) p→ (q → p)→ p.
(b) (p→ (q → p))→ p.
(c) ((p→ q)→ p)→ p.

Exercise II.14. Prove that Γ∪{A∧B} is inconsistent if and only if Γ∪{A,B}
is inconsistent. [Hint: You may use the results of Exercise II.12 in your answer.]

Exercise II.15. Show that Γ,A∨B is inconsistent if and only if both Γ ∪ {A}
and Γ ∪ {B} are inconsistent.

Exercise II.16. Show that Γ,A ∨ B ⊢ C holds if and only if Γ,A ⊢ C and
Γ,B ⊢ C both hold. [HInt: Use proof-by-cases.]

Exercise II.17. Show that Γ,A ↔ B is inconsistent if and only if both Γ ∪
{A,B} and Γ ∪ {¬A,¬B} are inconsistent.
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Exercise II.18. Prove that ⊢ ((p → q) → p) → p. This tautology is known
as Pierce’s Law and is sometimes used as an axiom related to the Law of the
Excluded Middle. (This is a duplicate of Exercise II.13.)

Exercise II.19. Show that {A → B,A,¬B} is inconsistent. (This was used in
the proof of Lemma II.36.)

Exercise II.20. Prove
(a) {¬(A→ B),¬A} is inconsistent.
(b) {¬(A→ B),B} is inconsistent.

These facts were used in the proof of Lemma II.36.

Exercise II.21. Prove that Γ ∪ {A → B} is inconsistent if and only if Γ ⊢ A
and Γ∪ {B} is inconsistent. (Compare to Theorem II.30 and to item (5) in the
list in Section II.5.)

Exercise II.22. (Generalization of proof-by-cases.) Suppose that Γ ⊢ A ∨ B
and Γ ⊢ A → C and Γ ⊢ B → C. Prove that Γ ⊢ C. [Hint: One way to do this
is to prove

⊢ (A→ C)→ (B → C)→ (A ∨B → C).
This is the last axiom for ∨ on page 23 and is related to Exercise II.16. In any
event, it is suggested to use proof-by-cases.]

Exercise II.23. Give a direct proof that part (a) of the Soundness Theo-
rem II.33 implies part (b). (See the last part of the proof of the Soundness
Theorem.)

Exercise II.24. Suppose that Γ ⊧ pi or Γ ⊧ ¬pi, for every i. Prove that, for
every formula A, Γ ⊧ A or Γ ⊧ ¬A. (This is similar to being complete; however,
instead of having one of A or ¬A a member of Γ, we have one of A or ¬A
tautologically implied by Γ.)

Exercise II.25. Suppose that Γ and ∆ are sets of formulas and that Γ ∪∆ is
unsatisfiable.

(a) Prove that there is a finite Γ′ ⊆ Γ and a finite ∆′ ⊆∆ such that Γ′ ∪∆′ is
unsatisfiable.

(b) Prove that there is a formula A such that Γ ⊧ A and ∆ ⊧ ¬A.

Exercise II.26. Two sets Γ and ∆ of formulas are called complementary if
every truth assignment φ, satisfies exactly one of Γ and ∆. Suppose Γ and ∆
are complementary. Prove there are subsets Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that Γ′

and ∆′ are finite and such that Γ′ ⊧ Γ and ∆′ ⊧ ∆. (Recall that the notation
Γ′ ⊧ Γ means Γ′ ⊧ A for all A ∈ Γ.)

Exercise II.27. (This builds on Exercise II.26.)
(a) Prove that a set Γ has a complementary set ∆ if and only if there is a

formula A such that Γ ⊧ A and A ⊧ Γ.
(b) Give an example of a set Γ which does not have a complementary set.

Prove that it does not have a complementary set.
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Exercise II.28. Use the Compactness Theorem for propositional logic to prove
that a graph G is 3-colorable if and only if every finite subgraph is 3-colorable.
(“3-colorable” means there is an assignment of three colors to the vertices of the
graph so that no edge connects vertices assigned the same color.) For this, fix a
graph G. Use propositional variables ri, gi, bi whose intended meanings are that
“Vertex i is red”, “Vertex i is green”, and “Vertex i is blue”, respectively. Let
Γ be a set of formulas using these variables that expresses the conditions that
(a) each vertex has a color assigned to it, and (b) if two vertices i and j are
joined by an edge in G, then they are not assigned the same color. The set Γ
should be satisfiable if and only if G is 3-colorable. Then apply the Compactness
Theorem.

Exercise II.29☀ Show that the reductions of items (1)-(5) of Section II.5 can
be used to give an alternate proof of the Completeness Theorem for PL by
working out the details of the following proof sketch.

First, define N(Γ) to be the number of occurrences of→’s and ¬’s in formulas
in Γ minus the number of negated literals ¬pi appearing in Γ. In other words,
N(Γ) counts only the negation signs ¬ that are not part of literals. Then prove
by induction on N that the following two statements both hold:

If N(Γ) = 0 and Γ is unsatisfiable, then Γ is inconsistent.
If N(Γ) +N({A}) = N and Γ ⊧ A, then Γ ⊢ A.

Each induction step will use one or two of the reductions given in items (1)-(5)
of Section II.5.

In the base case, N(Γ) = 0 means that Γ is a set of literals. In this case,
show that either Γ is satisfiable or Γ is inconsistent. Also show that if N(Γ) =
N({A}) = 0, then either Γ ⊭ A or Γ ⊢ A.

Exercise II.30☀ (For readers who know some set theory.) The proof of Lin-
denbaum’s Theorem II.35 depended on the fact that, since there are only count-
ably many variables pi, there are only countably many formulas. It is also
possible to allow uncountably many propositional variables pα where α ∈ I for
an arbitrary set I. Use Zorn’s Lemma to prove Lindenbaum’s Theorem holds
also when there are uncountably many variables and hence uncountably many
formulas. Use this to prove the Completeness and Compactness Theorems hold
also for propositional formulas over uncountably many variables.

Exercise II.31☀ Give a proof of the Compactness Theorem that does not
depend on the Soundness or Completeness Theorems. Use the following proof
sketch.

(a) Prove that if Γ is finitely satisfiable and A is a formula, then at least one
of Γ ∪ {A} or Γ ∪ {¬A} is finitely satisfiable.

(b) Prove the analogue of Lindenbaum’s Theorem for finitely satisfiability
instead of consistency. Namely, prove that if Γ is finitely satisfiable, then
there is a complete, finitely satisfiable Π ⊇ Γ.

(c) Prove that the properties of Lemma II.36 hold under the assumption that
Π is complete and finitely satisfiable.

(d) Prove the analogue of Lemma II.37 that states that if Π is complete and
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finitely satisfiable, then Π is satisfiable. (Exactly the same proof works
for this part with no changes needed.)



Chapter III

First-Order Logic:
Syntax and Semantics

III.1 Introduction to First-order Logic

First-order logic is a very expressive and powerful formal system, capable of
formalizing statements in a wide range of topics. It is particularly well suited
to the formalization of mathematical statements, but it also works well in many
applications governed by well-defined properties and rules. First-order logic
augments propositional logic by having variables that range over some domain
of “objects” or “individuals”. These variables can be quantified with univer-
sal (∀) quantifiers and existential (∃) quantifiers, so that a formula can express
properties of the entire domain of objects. First-order logic includes “pred-
icates” or “relations” that describe properties of individuals or relationships
between individuals. It also includes “constants” that name individuals, and
“functions” that map individuals to individuals. First-order logic incorporates
propositional logic so that all the constructions from the previous two chapters
are still relevant for first-order logic.

The name “first-order” refers to the fact that the quantifiers act on indi-
viduals. Second-order logic and higher-order logic allow quantifying over sets
of individuals or over functions acting on individuals. Higher-order logics are
ostensibly stronger than first-order logic. On the other hand, practically any
formal logic can be recast as a first-order logic (albeit perhaps in an unnatural
manner). This makes first-order logic a kind of “ultimate” logic; furthermore,
first-order logic has very nice properties, including having a proof system with
the Soundness and Completeness Theorems. In addition, set theory is usually
formalized as a first-order logic, and type theories can be recast as first-order log-
ics (at least in principle). Arguably, set theory and type theories can formalize
all of mathematics as presently practiced, so this means that all of mathematics
can be formalized using first-order logic.

We start by presenting three small examples to illustrate the essential in-
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gredients of first-order formulas. After that, Section III.2 will give the formal
definition of first-order formulas.

Natural language example. Let’s start with the sentence

Everyone has read a book they don’t like.

This can be expressed as the first-order formula

∀x (Person(x)→ ∃y [Book(y) ∧Read(x, y) ∧ ¬Likes(x, y)]). (III.1)

using “predicate symbols” (also called “relation symbols”) with the meanings:

Person(x) means “x is a person”
Book(y) means “y is a book”
Read(x, y) means “x has read y”
Likes(x, y) means “x likes y”.

These predicates take individuals as inputs and output true/false values. The
quantifiers “∀x” and “∃y” mean “for all x” and “for some y”, of course. We
are being deliberately vague about the universe of objects that the quantified
variable range over, but it should include, say, the universe of all people and all
objects.

For a second example, consider

Everyone’s mother likes Moby Dick.

This can be expressed in first-order logic as:

∀x[Person(x)→ Likes(Mother(x),Moby Dick)]. (III.2)

Here “Mother is a “function symbol”, giving the mother of x as a function of x.
This makes the implicit assumption that everyone has exactly one mother. The
“Moby Dick” is a “constant symbol”; namely it refers to a specific object.

For a third example, consider

No two people have read exactly the same books.

We can express this as

∀x∀w [Person(x) ∧Person(w) ∧ ¬x = w
→ ∃y(Book(y) ∧ ¬(Read(x, y)↔ Read(w,y)))]. (III.3)

This introduces the equality predicate, =. It is common to write “x ≠ y” as an
abbreviation for “¬x = y”. As a final example, consider

No one likes a book unless they have read it.
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This can be expressed as:

∀x∀z [Person(x) ∧Book(z) ∧ Likes(x, z)→ Read(x, z)] (III.4)

or as

¬∃x∃z [Person(x) ∧Book(z) ∧ Likes(x, z) ∧ ¬Read(x, z)]. (III.5)

The formulas (III.1) and (III.2) both use the construction

“∀x(Person(x)→ ⋯)”.

This is a common construction used to state that every person x satisfies
the property in the ellipses “⋯”. In other words, if we let Persons denote
the set of all people, then “∀x(Person(x) → ⋯)” means the same thing as
“∀x ∈ Persons (⋯)”. The dual construction for existential quantification is il-
lustrated in formulas (III.1) and (III.3): these two formulas use the construction
“∃y(Book(y) ∧ ⋯)” to mean the same thing as “∃y ∈ Books (⋯)” where Books
is the set of all books.1

These two constructions are also illustrated in the formulas (III.4) and (III.5).
The former uses the pattern “∀⋯→ ⋯” and the latter uses the pattern “∃⋯∧⋯”.
The correspondence between (III.4) and (III.5) can be understood by noting that
“∀x” means the same as “¬∃x¬”. To state this in English, a property holds for
all x if and only if it is not the case that the property fails for some x. If the
“∀x” and “∀y” of (III.4) are replaced by “¬∃x¬” and “¬∃y¬”, then tautological
equivalences show that the result is equivalent to (III.5). For more on this, see
Section III.4 below.

The above examples illustrate some of the features of first-order logic, but
they also show that first-order logic is not good at capturing many of the nuances
of natural language. For example, it is presumed that for every x and y, the
predicate Read(x, y) is either true or false. There is no consideration of whether
x might have read only part of y, or just skimmed it, etc. Likewise, the constant
“Moby Dick” is presumed to denote one particular book; there is no allowance
for nuance about different editions of the book, etc. In the same vein, it is
presumed that everyone has a unique mother; something which is true in most
cases, but of course is not universally true. Finally, there is presumed to be a
definite, fixed universe of objects that quantified variables range over; this can
also be a problematic assumption in the setting of natural language.

First-order logic is better at capturing mathematical statements, as the next
examples show.

Group theory examples. A group is a mathematical structure with a bi-
nary operation that is associative and has an identity element and inverses.
To formalize groups, we first need to choose a first-order language, namely the

1The notations “∀x ∈” and “∃x ∈” will not be included in the syntax for first-order formulas.
As just discussed, this does not cause any loss of expressiveness for first-order formulas.
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predicate symbols, function symbols, and constant symbols that may be used
in formulas. For (multiplicative) groups, we can use the language with three
symbols: a binary function ⋅ for multiplication, a unary inverse function −1,
and a constant symbol 1 for the identity element. As is usual, the equality
predicate, =, is also allowed. The three axioms for groups can be written as:2

∀x∀y∀z [x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z] - Associativity

∀x (1 ⋅ x = x ∧ x ⋅ 1 = x) - Identity

∀x (x ⋅ x−1 = 1 ∧ x−1 ⋅ x = 1) - Inverses

(III.6)

There are many possible groups of course. However, these three axioms
exactly characterize groups in the sense that a mathematical structure is a
group if and only it satisfies these three axioms.

Other languages for groups can be used instead of ⋅, −1 and 1. For instance, it
is also possible to use the language containing only the binary group operation ⋅.
This would not reduce the expressibility of formulas. Indeed, the identity and
inverse axioms can be rewritten so as to use just the function symbol ⋅ as:

∃z∀x (x ⋅ z = x) - Right identity

∀x∃y∀u [u ⋅ (x ⋅ y) = u] - Right inverses

To keep things simpler, these axioms state only the existence of a right identity
element and of right inverses; however, it is easy to modify them to give the full
identity and inverses axioms.3

Many group properties can be expressed in first-order logic. For instance,
∀x (x ≠ 1→ x⋅x ≠ 1) states that no element has order two. Similarly, ∀x (x ≠ 1→ x⋅(x⋅x) ≠ 1)
states that no element has order three. In the same way, for any k ≥ 2, there is
a formula Tk expressing that no element has order k. Specifically, let k ≥ 2 be
a fixed integer. Let xk denote the k-fold product of x with itself, and let Tk be
the formula ∀x(x ≠ 1→ xk ≠ 1). The formula Tk states that the order of x does
not divide k. Let Div(k) denote the (finite) set of proper divisors of k. Then
Tk(x) ∧ xk = 1 ∧⋀i∈Div(k) ¬Ti(x) expresses that x has order k.

As another example, the center of a group can be defined by the formula
∀x (z ⋅ x = x ⋅ z), as this characterizes the members z of the center. Note how
z is not quantified in this. This is because the formula expresses a property of
the object z.

However, there are many common concepts in group theory that are not
first-order expressible. For instance, first-order logic is unable to talk directly
about subgroups since variables range only over group elements and there is
no way to existentially or universally quantify over subgroups. Certainly, spe-
cial subgroups (such as the center) can be defined, but properties of arbitrary
subgroups cannot in general be expressed in first-order logic.

2When we formally define first-order logic in the next section, we will require all function
symbols to be written in prefix notation. Thus, strictly speaking, we should write ⋅(x, y) and
−1(x) instead of x ⋅ y and x−1. However, for readability, we use the more common notations
of x ⋅ y and x−1 as abbreviations for terms written in prefix notation.

3And, in any event, it is well known that right identity and right inverses axioms (together
with associativity) imply the full identity and inverses axioms. In addition, it is easy to see
that the right inverses axiom is stated in a way that implies the right identity axiom.
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A group is called torsion-free if there are no elements of finite order (other
than the identity). The infinite set of formulas

Γ = {T2, T3, T4, . . .}

expresses the property of being torsion-free. However, as we see later in Sec-
tion IV.5 no single formula, nor finite set of formulas, characterizes the property
of a group being torsion-free. It will follow that there is no set Π of first-order
formulas, finite or infinite, that characterizes the property of not being torsion-
free. For this, see Theorem IV.48.

The theory of the integers. The first-order theory of the integers is of cen-
tral importance in mathematical logic, as well as in mathematics in general.
For logicians, it is typical to define the integers N as {0,1,2, . . .}, namely start-
ing with 0. So, henceforth, we generally use “integer” to mean “nonnegative
integer”.

It is traditional for the language of arithmetic to include the following sym-
bols: the constant 0, the unary successor function S, and the binary addition
and multiplication function + and ⋅. These have their usual meanings; the suc-
cessor function S(x) is intended to denote S(x) = x + 1. As usual, the equality
symbol = is also allowed. Many properties of integers can be expressed with
these symbols. For instance, the constants 1 and 2 can be represented by the
terms S(0) and S(S(0)). And, the relation “x ≤ y” is expressible with

∃z (x + z = y), (III.7)

Note this formula has two “free” variables x, y (that is, x and y are not quan-
tified), and one “bound” (quantified) variable z. This means that the formula
expresses a property of x and y.

The property “x is a divisor of y” can be expressed as ∃z(z ⋅ x = y). The
property that “x is even” can be expressed as either

∃v (v + v = x) or ∃z (z ⋅ S(S(0)) = x.

Then, “x is a power of 2” can expressed by saying that any divisor of x either
is equal to 1 or is even; namely,

∀u (∃z (z ⋅ u = x)→ u = S(0) ∨ ∃v (v + v = u)).

The property that x is prime can be expressed by

x ≠ S(0) ∧ ∀y (∃z (y ⋅ z = x)→ y = S(0) ∨ y = x). (III.8)

This expresses that any divisor y of x is equal to either 1 or x.
Let Prime(x) denote the formula (III.8). The property that there exist

infinitely many primes can be expressed by

∀x∃y (x ≤ y ∧Prime(y)). (III.9)
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Theory of the integers Group theory

Language L: 0, S, +, ⋅, = 1, ⋅, ()−1, =

L-Terms: x1 + 0 and S(x1 ⋅ x2) x1 ⋅ x2 and (x1 ⋅ 1)−1

Atomic
L-formulas:

x1 + 0 = S(x1 ⋅ x2) x1 ⋅ x2 = (x1 ⋅ 1)−1

L-formulas: ∀x1 ∃x2 (x1 + 0 = S(x1 ⋅ x2)) ∃x1 ∀x2 (x1 ⋅ x2 = (x1 ⋅ 1)−1)

Figure III.1: Examples of the components of the definition of first-order formulas

Here Prime(y) means the result of substituting y for each occurrence of x in
Prime(x).4 The formula (III.9) does not say directly that there are infinitely
many primes, as the property of infinitude cannot be directly expressed in first-
order logic. Instead, (III.9) states that there are arbitrarily large primes.

In contrast to group theory, where mathematicians study many, very dif-
ferent, groups, there is only one set of integers. As is shown later, first-order
logic is very expressive for the integers. Nonetheless, there are inherent difficul-
ties in expressing, axiomatizing, and proving some important concepts about
the integers. In fact, it is impossible to rule out “nonstandard integers” which
satisfy exactly the same first-order properties as the integers. It is also impos-
sible to give a decidable set of axioms that implies exactly the true first-order
statements about the integers. These limitations will be established later, in the
context of the Completeness and Compactness Theorems and in the context of
undecidability and the Gödel Incompleteness Theorems.

III.2 First-order Syntax

This section defines the syntax of first-order formulas. The definition goes
through a four-step process. First, we define the notion of a language L. A
language specifies which non-logical symbols may be used in formulas. The
symbols ¬, ∧, ∨, →, ↔, ∀, ∃ and = can be considered logical symbols since they
have a prescribed meaning in all settings. The non-logical symbols however can
have different meanings in different settings. For example, ⋅ can mean differ-
ent things in different groups and yet another thing in the integers. Once a
language L is fixed, we define the notions of L-terms, atomic L-formulas, and
finally L-formulas. Figure III.1 shows examples of these four concepts.

First-order formulas are expressions, i.e. strings of symbols, that are built
from logical symbols, the equality sign, non-logical symbols, variables, and
parentheses. The logical symbols include propositional connectives, the exis-
tential quantifier ∃, and the universal quantifier ∀. Variables xi are intended to

4For a detailed discussion of substitution, see Section III.6. There the formula Prime(y/x)
will mean the result of substituting y for x in Prime, and the notation Prime(y) will be a
convenient informal notation.
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range over a domain of “objects” or “individuals”. The non-logical symbols are
specified by a first-order language. For example, for the theory of groups, we
might take the language to consist of ⋅, −1, 1, and =. Or for the theory of the
integers, we might use the language 0, S, +, ⋅ and =. The specification of the
non-logical symbols and their attributes is called a language:5

Definition III.1. A language L is a set of symbols along with information about
what kind of symbols they are and their arities. (The “arity” of a function or
predicate is the number of arguments it takes.) The following kinds of symbols
can be constituents of a language.

(a) Constant symbols. These are intended to denote particular objects in
the domain of discourse. (A constant symbol has arity zero.)

(b) Function symbols, along their arities.

(c) Predicate symbols, along with their arities. These are often called “re-
lation symbols”.

(d) The equality sign =. This is included in a language as a special binary
predicate symbol unless it is explicitly excluded as a symbol.

Example III.2. The language of the theory of the integers described in the
previous section had the following constituents:

(a) The constant symbol 0.

(b) The unary function symbol S and the two binary function symbols + and ⋅.
(c) Apart from equality, no predicate symbols.

(d) The binary predicate symbol for equality, =.
This language is denoted LPA. The subscript “PA” stands for “Peano Arith-
metic”, which will be defined later in Section VII.2.

The predicates ≤ and Prime(−) were discussed above. These are not part
of LPA. They can instead be expressed by LPA-formulas.

Once a language L has been fixed, we can define the notion of a first-order
formula over the language L. For this, we shall define first “terms”, then “atomic
formulas”, and finally “formulas”. Terms and formulas are expressions, namely
strings of symbols. The symbols that may appear in an L-term or an L-formula
include:

(a) The symbols of L,

(b) The propositional connectives ¬, ∨, ∧, → and ↔.

(c) The quantifier symbols ∀ and ∃.

(d) Variables x1, x2, x3, . . ..

(e) Parentheses and commas. Parentheses show precedence and delimit the
scope of functions and predicates; commas separate arguments to func-
tions and predicates.

5A language is sometimes called a “signature”.
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Predicate symbols and quantifier symbols do not appear in terms.

Definition III.3. Let L be a language. The L-terms are inductively defined
by

(a) For i ≥ 1, the variable xi is a term.

(b) If c is a constant symbol of L, then c is a term.

(c) If f is a k-ary function symbol of L where k ≥ 1, and if t1, t2, . . . , tk are
L-terms, then

f(t1, t2, . . . , tk)
is an L-term.6

As examples of infix notation, +(0, S(x1)) and ⋅(S(S(x2)),+(S(x3), S(x4)))
are LPA-terms. Their intended meanings, in more readable notation, are 0+(x1+1)
and (x2+2) ⋅((x3+1)+(x4+1)). These terms will denote objects in the domain
of individuals, depending on what objects the variables xi are equal to.

Definition III.4. A term is closed if does not contain any variables. In other
words, a closed term is a term that is built from only constant symbols and
function symbols.

The simplest type of formulas is the atomic formulas.

Definition III.5. Let L be a language. There are two ways of forming an
atomic L-formula.

(a) If P is a k-ary predicate symbol of L and t1, . . . , tk are L-terms, then
P (t1, . . . , tk) is an atomic L-formula.

(b) If L contains the symbol = and t1 and t2 are L-terms, then t1 = t2 is an
atomic L-formula.

For example, +(0, S(x1)) = ⋅(S(S(x2)),+(S(x3), S(x4))) is an atomic LPA-
formula. If we add ≤ as a binary predicate symbol, then

≤ (+(0, S(x1)), ⋅(S(S(x2)),+(S(x3), S(x4))))

is an atomic LPA ∪ {≤}-formula. These two formulas could be either true or
false, depending on what objects the variables xi are equal to.

Finally, we can define L-formulas.

Definition III.6. Let L be a language. The L-formulas are inductively defined
as follows.

(a) Any atomic L-formula is an L-formula.

6The use of parentheses and commas in the term f(t1, t2, . . . , tk) is redundant. The re-
dundancy comes from the fact that functions have a fixed, constant arity, and since we use
prefix (Polish) notation for terms, and there is a simple parsing algorithm that could uniquely
recover the underlying formula even if parentheses and commas were omitted. Nonetheless,
in practice, parentheses and commas make it much easier to read and comprehend terms, so
we choose to include them.
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(b) If A is an L-formula, then ¬A is an L-formula.

(c) If A and B are L-formulas, then (A∨B), (A∧B), (A→ B) and (A↔ B)
are L-formulas.

(d) If A is an L-formula and xi is a variable, then ∀xiA and ∃xiA are L-
formulas.

When the language L is understood, we generally refer to L-terms and L-
formulas as just “terms” and “formulas”.

Abbreviations for formulas. It is often convenient to use informal notations
for formulas that that are easier to read but do not fully obey the above definition
of formulas. As an example, Prime(x) as defined in (III.8) does not fit the
formal definition for an LPA-formula; instead it is meant to be the readable
transcription of an LPA-formula. To write the actual formula, we must add
parentheses and we need to replace x, y, z with some choice of variables xi. If
we, say, use x1, x2, x3 for x, y, z, then it becomes

¬x1 = S(0) ∧ ∀x2 (∃x3 (x2 ⋅ x3 = x1)→ (x2 = S(0) ∨ x2 = x1)). (III.10)

The actual formula, with all parentheses and in prefix notation, is

(¬x1 = S(0) ∧ ∀x2 (∃x3 ⋅ (x2, x3) = x1 → (x2 = S(0) ∨ x2 = x1))). (III.11)

The formula (III.8) is an informal way of writing this.
This is an example of how we often write first-order formulas in more read-

able form, similarly to what was done for propositional logic earlier in Sec-
tion I.2.

● First of all, we often omit parentheses. The order of precedence of operations
is similar to propositional logic:

(a) Negation ¬ and quantifiers ∀ and ∃ have the highest precedence.

(b) ∧ and ∨ have the second highest precedence.

(c) → and ↔ have the lowest precedence.

(d) Binary connectives of the same precedence associate from right to left.

● Second, we often use variable names such as x, y, z, . . . instead of x1, x2, x3, . . ..

● Third, when it helps with readability, we often use infix notation to write
binary functions (such as + and ⋅) and binary predicates (such as ≤ and <).
E.g., we write s + t and s ≤ t as abbreviations of +(s, t) and ≤(s, t). We also
use s ≠ t as a shorthand notation for ¬s = t.

● Fourth, we often add parentheses to make formulas more readable. A com-
mon example is when writing quantifiers with formulas that use infix nota-
tion. For instance, we might write ∀x(0 ≤ x) instead of ∀x0 ≤ x, just to
make the formula more readable. In the same vein, we will generally write
∀x(S(x) ≠ x) instead of the more correct ∀xS(x) ≠ x.
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● Other conventions are used in the literature. For instance, parentheses are
often used around quantifiers, to write (∀x) and (∃x) instead of just ∀z
and ∃x. Sometimes dots are used instead of parentheses; for example by
writing ∃x.x = 0 ∨ S(x) = 0 instead of ∃x(x = 0 ∨ S(x) = 0). We will avoid
these conventions in this book however.

The use of variables such as x, y, z to informally denote x1, x2, x3 brings up
a technical complication. Namely, how did we decide to use x1, x2, x3 instead of
other xi’s? To illustrate this, consider the following three formulas, all of which
are versions of (III.8):

x1 ≠ S(0) ∧ ∀x2 (∃x3 (x2 ⋅ x3 = x1)→ x2 = S(0) ∨ x2 = x1) (III.12)

x1 ≠ S(0) ∧ ∀x5 (∃x6 (x5 ⋅ x6 = x1)→ x5 = S(0) ∨ x5 = x1) (III.13)

x4 ≠ S(0) ∧ ∀x5 (∃x6 (x5 ⋅ x6 = x4)→ x5 = S(0) ∨ x5 = x4) (III.14)

The first two formulas have used x1 for the variable x, and thus assert that x1

is prime. The difference between these two formulas is that one uses x2, x3 for
y, z and the other uses x5, x6 for y, z. But these are quantified variables, usually
called “bound” variables. Thus the formulas (III.12) and (III.13) have the same
meaning, they both say that x1 is prime, and they both equally well can serve
as the formula Prime(x1).

On the other hand, (III.14) uses x4 for x, and thus can serve as the formula
Prime(x4) asserting that x4 is prime, not that x1 is prime. Therefore, (III.14) is
not equivalent to the first two formulas! The variable x in (III.8) is called a
“free” variable. Likewise, x1 in (III.12) and (III.13), and x4 in (III.14) are
“free” variables. These formulas assert that their free variable is a prime.

This topic of free variables will be revisited in Sections III.3 and III.6. For
now, we just formally define what it means for an occurrence of a variable to
be free or bound. But first, consider the formula

∀x1 (x1 = 0 ∨ P (x1)) ∧ x1 = x1.

as an example. The two occurrences of x1 in the subformula (x1 = 0 ∨ P (x1))
are bound occurrences; they are “bound by” the quantifier ∀x1. The two oc-
currences of x1 in the subformula x1 = x1 are free occurrences. The symbol x1

in the quantifier ∀xi is neither a free nor bound occurrence.

Definition III.7. Let A be a formula, and let xi be an occurrence of a variable
in A that does not immediately follow a ∀ or ∃ symbol. The notions of xi being
a free or bound are defined recursively as follows. At the same time, for xi a
bound occurrence, we define which quantifier xi is bound by. In all cases, the
occurrence of xi is either free or bound, but not both.

(a) If A is an atomic formula, then the occurrence xi is free in A.
(b) If A is ¬B or B ○C for ○ a propositional connective, then the occurrence

of xi is free or bound in A according to whether the corresponding occur-
rence in B or in C is free or bound. If the occurrence of xi is bound, then
it is bound by the same quantifier in A that it is bound by in B or C.

(c) If A is ∃xiB or ∀xiB, then every occurrence of xi is bound in A (and is
not free in A). If an occurrence of xiis free in B, then we say that that
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free

∀x1 (∃x2 (x3 = x2 + x1 ∧ ∃x1 (x1 + x1 = x2))) ∨ x1 = 0.

Figure III.2: The first occurrence of x1 is bound by the first quantifier ∀xi. The
second and third occurrences of x1 are bound by the final quantifier ∃xi. The
fourth occurrence of x1 is free.

occurrence in A is bound by the quantifier ∃xi or ∀xi at the start of A.
Otherwise, the occurrence of xi is bound by the same quantifier in A that
it is bound by in B.

(d) If j ≠ i and A is ∃xjB or ∀xjB, then the occurrence of xi is free or bound
in A according to whether the corresponding occurrence in B is free or
bound. If the occurrence of xi is bound, then it is bound by the same
quantifier in A that it is bound by in B.

It is also possible to give a characterization of what it means for a variable
to be free or bound in terms of the “scope” of a quantifier.

Definition III.8. Let ∀xB or ∃xB be a subformula occurring in A. The scope
of the quantifier ∀x or ∃x is the subformula B. (The scope does not include the
quantifier itself.)

Then, an occurrence of xi that does not immediately follow a quantifier
symbol ∀ or ∃ is bound in A if and only if it is in the scope of a quantifier
∃xi or ∀xi in A. It is bound by the leading quantifier of ∀xiB or ∃xiB if and
only if it is not within the scope of any other occurrence of ∀xi or ∃xi in the
subformula B.

Example III.9. Let A be the formula ∃x2(x2 +x2 = x1)∨x3 = 0, which asserts
that x1 is even or x3 is equal to 0. The occurrences of x1 and x3 are free
in A. The two occurrences of x2 in the term x2 + x2 are bound occurrences.
The formula A might also be (informally) written as A(x1, x3) to indicate it is
asserting properties of x1 and x3.

On the other hand, let B be ∃x3(x3+x3 = x1)∨x3 = 0. In this formula, there
are two bound occurrences of x3 and one free occurrence of x3. It still asserts,
like A, that x1 is even or x3 equals 0. Here x3 is being used in two completely
different, independent ways.

Example III.10. Figure III.2 shows an example of free and bound occurrences
of variables in a formula the variable x1 is used in two different ways as a
quantified variable and once as a free variable.

Admittedly, it is bad form to use variables in multiple ways in the same
formula like in Figure III.2, if for no other reason than because it is confusing
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to a reader. But it is permitted by the syntax of first-order formulas and will
need to be dealt with in the next section when giving the definition of truth.

Another complication is that if we want to adapt A to say that “x2 is even
or x3 = 0”, we cannot just replace the x1 in A with x2 because this would create
a new bound occurrence of x2. This problem will be addressed in Section III.6
on substitution by renaming the bound variable x2.

Definition III.11. A first-order formula with no free occurrences of variables
is called a sentence.

Sentences are also called “closed formulas”.
For example, ∀x(0 ≤ x) is a sentence, whereas 0 ≤ x is not. The second

formula asserts something about its free variable x, namely that it is greater
than or equal to zero. The first formula does not have any free variables, so it
asserts something about truth in the domain of discourse.

Unique readability and induction on formulas. Similarly to the situation
for propositional formulas, first-order terms and first-order formulas satisfy the
unique readability property. Namely, every term can be uniquely written in one
of the forms

(a) A constant symbol c,

(b) A variable symbol xi, or

(c) A compound term f(t1, . . . , tk) for f a function symbol and t1, . . . , tk
terms.

In addition, every atomic subformula can be uniquely written as t1 = t2 or
P (t1, . . . , tk) where P is a k-ary predicate and the ti’s are terms. Finally, every
formula can be written uniquely in one of the form

(a) As an atomic formula,

(b) As ¬B, or B ∧C, B ∨C, B → C or B ↔ C,

(c) As ∀xiB or ∃xiB.

The inductive definitions of terms and formulas mean that we can use induc-
tion on the complexity of terms or formulas. The unique readability properties
mean that we can also give recursive definitions of new functions based on the
complexity of terms and formulas. In fact, Definition III.7 already used re-
cursion on the complexity of formulas to define the notions of free and bound
variables, and Definition III.8 implicitly used the unique readability of formulas.

The unique readability properties can be proved by induction on the com-
plexity of formulas. As with propositional formulas (see Exercise I.38), the
basic idea is that there are sufficient parentheses included to make the order of
precedence of operations unambiguous.

Almost as important as unique readability is that there are efficient algo-
rithms to parse terms and formulas. These algorithms can decide which of the
forms (a)-(c) above apply to a term or a formula, and can even express the term
or formula as a parse tree.
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III.3 Structures and the Definition of Truth

III.3.1 Structures

The definition of truth is considerably more complicated for first-order logic
than for propositional logic. In propositional logic, formulas contain the logical
symbols ¬,∨,∧,→,↔ that have fixed meanings and variables pi that range over
only two possible values. To define a truth value for a propositional formula, all
that was necessary was to start with a truth assignment φ that gives true/false
values to the variables. In contrast, first-order formulas use the logical symbols
¬,∨,∧,→,↔,∀,∃ and the equality symbol = that have fixed meanings. They
also use variables xi that range over some domain of objects as well as constant,
function, and predicate symbols. Before a first-order formula can be given a
value, it is necessary to specify a domain of objects, to specify which objects are
denoted by the constant symbols, and to specify the values of all the functions
and predicates for all inputs from the domain. All this information is called an
“interpretation” or a “structure”. If there are free variables in the formula, it is
also necessary to specify which objects are denoted by the free variables. This
information is called an “object assignment”.

The original definition of truth for first-order formulas in a general setting
was given by A. Tarski in 1933. Perhaps surprisingly, this was well after first-
order languages and proofs were well-developed. The definition of truth given
below is quite close to Tarski’s original conception. It proceeds in three stages.
First, it is necessary to define the values of terms as objects in the domain of
individuals. This uses the interpretations of functions and the values assigned
to variables and constant symbols. Second, it is necessary to define the truth of
atomic formulas. This uses the interpretations of predicate symbols. Finally, a
recursive definition defines the truth of an arbitrary formula by using the usual
meanings of the logical connectives ¬,∨,∧,→,↔,∀,∃.

But first, we must define the notion of “interpretation” or “structure”. (The
two terms are synonymous.) Interpretations or structures are also sometimes
called “models”. It is common to use a variety of different symbols to denote
structures, including A, B, C (the Fraktur letters “A”, “B”, and “C”) orM, N
(“M” stands for “model”) or I, J (“I” stands for “interpretation”). We work
with a fixed language L.

Definition III.12. Fix a first-order language L. An L-structure A consists of
the following items:

(a) A non-empty set called the domain or universe of A. This set is de-
noted ∣A∣. This is the set of objects that variables can range over.

(b) For each constant symbol c in L, a member of the universe ∣A∣. This
member is denoted cA and is called the interpretation of c in A.

(c) For each k-ary predicate symbol P in L, a subset of ∣A∣k; that is, a set of
k-tuples of members of ∣A∣. This subset is denoted PA and is called the
interpretation of P in A.
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(d) For each k-ary function symbol f in L, a subset of ∣A∣k+1 that is the graph
of a function f ∶ ∣A∣k → ∣A∣. This subset is denoted fA and is called the
interpretation of f in A.
What it means for fA to be “the graph of a function” is that fA is a set of
(k + 1)-tuples, and that for every sequence a1, . . . , ak of k members of ∣A∣,
there is a unique ak+1 such that ⟨a1, . . . , ak, ak+1⟩ ∈ fA.
The notation fA is used to denote both the graph of a function and the
function itself. In particular, we write

fA(a1, . . . , ak)
to denote the unique value ak+1 such that ⟨a1, . . . , ak, ak+1⟩ ∈ fA.

The L-structure thus consists of the specifications of ∣A∣ and of all the values
of cA, P ∣, and fA. The intuition is that the constant symbol c denotes the
object cA in ∣A∣. Likewise, the intuition is that PA is the set of tuples for which
P (a1, . . . , ak) is true in A. Or, informally,7

P (a1, . . . , ak) is true for A if and only if ⟨a1, . . . , ak⟩ ∈ PA.

Finally, the intuition is that

ak+1 = f(a1, . . . , ak) is true for A if and only if ⟨a1, . . . , ak, ak+1⟩ ∈ fA,

namely, that f(a1, . . . , ak) is equal to fA(a1, . . . , ak). These informal intuitions
will be made formal below in the definition of truth.

Example III.13. Consider the language of arithmetic, LPA, with non-logical
symbols 0, S,+, ⋅, as defined in Example III.2. We give two possible LPA-
structures. The first one, denoted N corresponds to the nonnegative integers.
The universe ∣N ∣ of N is the set of nonnegative integers, S is interpreted as
the “increment by 1” function, and the symbols 0, + and ⋅ have their usual
interpretations. Formally, we let

∣N ∣ = N, i.e., the set of nonnegative integers.

0N = 0, i.e., the integer 0.

SN = {⟨i, j⟩ ∶ i, j ∈ N, j = i + 1}
+N = {⟨i, j, k⟩ ∶ i, j, k ∈ N, i + j = k}
⋅N = {⟨i, j, k⟩ ∶ i, j, k ∈ N, i ⋅ j = k}

Example III.14. The second LPA-structure is the set Z of all integers with
the usual meanings for 0, + and ⋅. We denote this structure Z. Formally, we let

∣Z ∣ = Z, i.e., the set of all integers.

0Z = 0, i.e., the integer 0.

SZ = {⟨i, j⟩ ∶ i, j ∈ Z, j = i + 1}
+Z = {⟨i, j, k⟩ ∶ i, j, k ∈ Z, i + j = k}
⋅Z = {⟨i, j, k⟩ ∶ i, j, k ∈ Z, i ⋅ j = k}

7The notation ⟨a1, . . . , ak⟩ denotes a k-tuple of objects. When k = 1, the convention is that
⟨a1⟩ is the same object as a1 itself, so we can use “⟨a1⟩” and “a1” interchangeably.
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The structures N and Z are not isomorphic, and the truth of sentences and
formulas can be different in N and Z. For instance, the two sentences

∀x∃y (S(y) = x) and ∀x∃y (x + y = 0 ∧ y + x = 0)
are true in Z but false in N . The first sentence states that every object x is the
successor of some y; the second states that every object has an additive inverse.
Conversely, the negations of these two sentences are true in N and false in Z.

Example III.15. Let L be the language of groups with nonlogical symbols 1, ⋅
and −1. The integers with addition mod 3 can be viewed as an L-structure Z3.
For this, the universe is ∣Z3∣ = {0,1,2} and the group operations are given by:

⋅Z3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

(−1)Z3

0 0
1 2
2 1

The corresponding structure Z3 is formally specified as

1Z3 = 0 (the identity element for the group operation)

⋅Z3 = {⟨0,0,0⟩, ⟨0,1,1⟩, ⟨0,2,2⟩, ⟨1,0,1⟩, ⟨1,1,2⟩, ⟨1,2,0⟩,
⟨2,0,2⟩, ⟨2,1,0⟩, ⟨2,2,1⟩}

(−1)Z3 = {⟨0,0⟩, ⟨1,2⟩, ⟨2,1⟩}
The last example is potentially confusing since the language L uses multi-

plicative notation, but the structure is based on the group of order three which
is usually described as an additive group, namely addition mod 3. However, the
point is that the symbols of a language can stand for anything. That is, a k-ary
function symbol can be interpreted in a structure as any k-ary function on the
universe; a k-ary predicate symbol can be interpreted as any k-ary predicate on
the universe (a set of k-tuples), and a constant symbol can be interpreted as any
member of the universe. In the last example, the symbol ⋅ could be interpreted
as any binary operation on the universe, and then first-order statements can
express simple properties such as whether ⋅ is associative or commutative, etc.
This is similar in spirit to the abstract approach taken in group theory or more
generally in algebra.

The example chose the interpretation ⋅Z3 of the binary function symbol ⋅ to be
the usual addition operation on Z3, and the interpretation 1Z3 of the constant
symbol 1 to be the identity element 0 of Z3. This is potentially confusing
since “1” is being used in two ways: First, “1” is a symbol in the language L.
Second, “1” is an element (in the universe) of Z3. These are completely different
meanings for “1”, and the reader should be careful to distinguish between them.

III.3.2 Definition of truth

Object assignments. Our next goal is to define the truth of an L-formula or
an L-sentence in a structure. Suppose, for example, that we wish to determine
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whether the L-sentence
∀x∃y (x ⋅ y = x) (III.15)

is true in a given L-structure. Our definition of truth will use induction on the
complexity of the formula (III.15). For this reason, we must define the truth of
its subformula ∃y(x ⋅ y = x). But this is a formula, not a sentence, since it uses
the free variable x. In particular, the truth of ∃y(x ⋅ y = x) depends on which
object in the universe ∣A∣ is denoted by x. This will be specified by a function
called an “object assignment” that maps variables to objects in the universe:

Definition III.16. Let A be a structure. An object assignment for A is a
function σ with domain the set of variables x1, x2, x3, . . . and with range the
universe of A; namely,

σ ∶ {x1, x2, x3, . . .}→ ∣A∣.

The point of an object assignment σ is that σ(xi) specifies which member
of the universe is denoted by xi.

Denotation of terms. The first step in the definition of truth is to define
what objects are denoted by terms. We start with an object assignment σ and
extend it to have domain the set of L-terms. The idea is to use the interpreta-
tions of the constant symbols and function symbols as given by the structure A,
and use these to compute the value of a term in the most straightforward way
possible.

Definition III.17. Suppose σ is an object assignment for the L-structure A.
The function σ is extended to have domain the set of all L-terms t by defining
σ(t) by recursion as:

(a) If t is a constant symbol c ∈ L, then σ(t) = cA.

(b) If t is of the form f(t1, t2, . . . , tk) for a k-ary function symbol f ∈ L, then

σ(t) = fA(σ(t1), σ(t2), . . . , σ(tk)).

Example III.18. Let Z3 be the structure described in Example III.15. Con-
sider the term (x ⋅y)−1 ⋅x, and suppose σ(x) = 1 and σ(y) = 2. Then σ(x ⋅y) = 0,
and σ((x ⋅ y)−1) = 0, and σ((x ⋅ y)−1 ⋅ x) = 1.

The value of σ(t) depends on the structure A in addition to σ and t. However,
we will generally be working with a particular A, so there will usually be no
confusion in suppressing A in the notation and writing just “σ(t)”.

Note that the value of σ(t) depends only on the values of σ(xi) for the
variables xi that actually appear in t. This should be obvious of course and can
be proved by induction on the complexity of terms. If t is a closed term, then
σ(t) is independent of the choice of σ, it only depends on A. In that case, we
write tA instead of σ(t):

Definition III.19. If t is a closed term, then tA denotes σ(A) where σ is an
arbitrary object assignment.
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Definition of truth for atomic formulas. The definition of truth for gen-
eral L-formulas starts with the definition of truth for atomic formulas. We use
the notation A ⊧ A[σ] to indicate that A is true in the structure with the object
assignment σ.

Definition III.20. Let A be an L-structure, σ be an object assignment, and
A be an atomic L-formula. We define A is true in A with object assignment σ,
written A ⊧ A[σ] , as follows:

(a) If A is s = t, where s and t are L-terms then,

A ⊧ A[σ] if and only if σ(s) = σ(t).

(b) If A is P (t1, . . . tk) where P is a k-ary predicate and the ti’s are L-terms,
then

A ⊧ A[σ] if and only if ⟨σ(t1), . . . , σ(tk)⟩ ∈ PA.

Definition of truth for general first-order formulas. We are almost
ready to give the definition of truth for general formulas A. We will continue
to write A ⊧ A[σ] to denote that A is true in A with object assignment σ.
First, however, we need to define the notion of an “xi-variant” of an object
assignment.

Definition III.21. Let σ be an object assignment. An xi-variant of σ is an
object assignment τ such that τ(xj) = σ(xj) for all j ≠ i.

An xi-variant is allowed to have τ(xi) be any member of the universe ∣A∣.
Note that it is permitted that τ(xi) is equal to σ(xi); in this case, τ and σ are
identical.

We use xi-variants to handle the definition of truth for quantifiers. To mo-
tivate this, let A be the formula ∀xi (xj ≤ xi) and suppose we wish to define
A ⊧ A[σ], namely the truth of A in a structure A with object assignment σ. The
variable xj is free in A, so the value of σ(xj) is needed when defining A ⊧ A[σ].
However, xi is not free in σ, and thus σ(xi) will have no bearing on whether
A ⊧ A[σ] holds. The recursive definition of truth will define A ⊧ A[σ] in terms
of A ⊧ A[τ] where τ ranges over all xi-variants of σ. In other words, the value
τ(xj) is kept fixed and equals σ(xj), but all possible values for τ(xi) must be
considered. The point is that since A starts with quantifier ∀xi, it is necessary
to consider all possible values for τ(xi) to evaluate the truth of A.

The condition A ⊧ A[σ] is defined inductively, using recursion on the com-
plexity of A. The case base is when A is atomic, and the inductive steps handle
the propositional connectives ¬,∧,∨,→,↔ and the quantifiers ∀,∃.

We write A ⊭ A[σ] to denote that A ⊧ A[σ] is false.

Definition III.22. Let A be an L-structure, σ be an object assignment, and
A be an atomic L-formula. If A is atomic, A ⊧ A[σ] has already been defined.
For non-atomic A, we recursively define A is true in A with object assignment σ,
written A ⊧ A[σ], as follows:
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(a) If A is ¬B, then A ⊧ A[σ] holds if and only if

A ⊭ B[σ].

(b) If A is (B ∨C), then A ⊧ A[σ] holds if and only if

A ⊧ B[σ] or A ⊧ C[σ].

(c) If A is (B ∧C), then A ⊧ A[σ] holds if and only if

A ⊧ B[σ] and A ⊧ C[σ].

(d) If A is (B → C), then A ⊧ A[σ] holds if and only if

A ⊭ B[σ] or A ⊧ C[σ]

(e) If A is (B ↔ C), then A ⊧ A[σ] holds if and only if

A ⊧ B[σ] and A ⊧ C[σ] are both true or both false.

(f) If A is ∃xiB, then A ⊧ A[σ] holds if and only if

for some xi-variant τ of σ, A ⊧ B[τ].

(g) If A is ∀xiB, then A ⊧ A[σ] holds if and only if

for every xi-variant τ of σ, A ⊧ B[τ].

The definition of truth for the propositional connectives in (a)-(e) is identical
to the way Definition I.4 defined the truth of propositional variables. Cases (f)
and (g) handle the truth of quantified formulas by using xi-variants τ of σ. As
already discussed, these xi-variants change the object assignment σ to map xi

to an arbitrary member of ∣A∣.
The truth of A ⊧ A[σ] depends only the values of σ(xi) for those variables xi

that appear free in A; it does not depend on the values σ(xi) for variables xi

that do not appear free in A. Informally, this is because the xi-variants used to
handle quantifiers ∀xi and ∃xi “overwrite” the value of σ(xi). It also reflects
our informal understanding that bound variables could be renamed arbitrarily
and not affect the truth of A ⊧ A[σ]; that is, bound variables can be renamed
arbitrarily as long as there is no clash between variables. For a precise statement
of this, see Theorem III.64 later in this chapter.

The next theorem formalizes the idea that the truth of A ⊧ A[σ] depends
only the values of σ(xi) for xi’s that appear free in A.

Theorem III.23. Let σ and τ be object assignments such that σ(xi) = τ(xi) for
every variable xi that appears free in A. Then A ⊧ A[σ] if and only if A ⊧ A[τ].

The proof of Theorem III.23 is left to the reader. The first stage of the proof
uses induction on terms to prove that, for all σ, the value of σ(t) depends only
on the values σ(xi) for variables xi that actually appear in t. The theorem is
then proved by induction on the complexity of A.

Recall that a sentence is a formula with no free occurrences of variables.
Theorem III.23 immediately gives:
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Corollary III.24. If A is a sentence, then the truth of A ⊧ A[σ] does not
depend on the choice of σ.

The corollary justifies the next definition; namely, we can omit using an
object assignment σ when discussing the truth of a sentence.

Definition III.25. Let A be an L-sentence and A an L-structure. The A is true
in A, written A ⊧ A, if and only if A is true in A under any object assignment σ.

Example III.26. This example and the next example work with the group Z3

of Example III.15. First, we consider the following sentence A:

∃x1 ∀x2 (x1 ⋅ x2 = x2). (III.16)

Note that this asserts the existence of a left identity. We claim that Z3 ⊧ A[σ]
for every object assignment σ. Since A is a sentence, we can also write this as
Z3 ⊧ A, without needing to mention the object assignment σ. To prove this, we
must show that

Z3 ⊧ ∀x2 (x1 ⋅ x2 = x2)[τ] (III.17)

is true for some x1-variant τ of σ. There are three x1-variants that might be
considered, as we can have τ(x1) = 0 or τ(x1) = 1 or τ(x1) = 2. Since are trying
to show that (III.16) is true, and since x1 is existentially quantified, it is enough
to work with only one x1-variant τ , namely the one that makes (III.17) true.
We of course take τ(x1) equal to 0 since this is the identity element.

We now need to show that (III.17) holds for this τ . Since x2 is universally
quantified, we must consider all three x2-variants π of τ , and show that

Z3 ⊧ (x1 ⋅ x2 = x2)[π] (III.18)

holds for all three. For instance, we can set π(x2) = 1. To evaluate the truth
of (III.18), we find that π(x1 ⋅x2) = 1 and π(x2) = 1. Therefore, by the definition
of truth for the atomic formula x1 ⋅ x2 = x2, we have that (III.18) is true when
π(x2) = 1. Similar arguments work when π(x2) = 0 and π(x2) = 2.

Example III.27. Now consider the sentence B equal to ∃x1 ∀x2 (x1 ⋅x2 = x1).
We claim that

Z3 ⊭ ∃x1 ∀x2 (x1 ⋅ x2 = x1)[σ]
for any object assignment σ. Since B is a sentence, we can also write this as
Z3 ⊭ B, without needing to mention σ. To prove this, we must show that

Z3 ⊭ ∀x2 (x1 ⋅ x2 = x1)[τ] (III.19)

is false for every x1-variant τ of σ. There are three x1-variants that must be
considered, namely with τ(x1) = 0, τ(x1) = 1 and τ(x1) = 2. We do just
τ(x1) = 0; the other two cases are similar.

To prove that (III.19) is false for this τ , we must find a x2-variant π of τ
such that

Z3 ⊧ (x1 ⋅ x2 = x1)[π] (III.20)
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is false. It is enough to find one such π since x2 is universally quantified. We
can take π(x2) = 1 for instance. Now, π(x1 ⋅x2) = 1 and π(x1) = 0. Therefore, by
the definition of truth for the atomic formula x1 ⋅ x2 = x1, we have that (III.18)
is false, as desired.

III.4 Satisfaction and Logical Implication

The definition of truth for first-order formulas was just given in the previous
section. This lets us define the notions of “satisfiability”, “logical validity” and
“logical implication”. We start with validity.

Validity of first-order formulas. We assume that a language L has been
fixed, and all formulas are L-formulas and structures are L-structures.

Definition III.28. Let A be a first-order formula. We say A is logically valid, or
just valid for short, and write ⊧ A, provided A ⊧ A[σ] holds for all structures A
and object assignments σ.

If A is a first-order sentence, we equivalently have that A is valid, written
⊧ A provided that for all structures A, we have A ⊧ A.

Example III.29. Let L contain the binary predicate P and the unary func-
tion f . Then

⊧ ∀x(x = x)
⊧ ∀x∃y(x = y)
⊧ ∀x∀y(x = y ∧ P (x, z)→ P (y, z))
⊧ ∀x∀y(f(x) = f(y))→ ∀x(f(x) = f(f(x))).

All these examples are about properties of equality. Note that the first, sec-
ond, and fourth formulas are sentences, whereas the third one contains the free
variable z and thus is not a sentence. One could equivalently write

⊧ ∀z∀x∀y(x = y ∧ P (x, z)→ P (y, z)).

As we define next, this is called a “generalization” of ∀x∀y (x = y∧P (x, z)→ P (y, z)).
Definition III.30. Suppose A is a formula and xi1 , . . . , xik is a sequence of
variables, with k ≥ 0. The formula

∀xi1 ∀xi2 ⋯∀xikA (III.21)

is called a generalization of A. If the variables xi1 , . . . , xik are distinct and enu-
merate the variables that appear free in A, then (III.21) is called the universal
closure of A.8

8Strictly speaking, it should be called a universal closure of A, since there can be multiple
ways to order the variables xi1 , . . . , xik . However, it is more common to call it the universal
closure. At any rate, no matter how the variables are ordered, the universal closures are all
logically equivalent to each other. If necessary, the definition of universal closure could be
disambiguated by requiring i1 < i2 < ⋯ < ik.
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Theorem III.31. Let A be a formula and xi be a variable. Then ⊧ A holds if
and only if ⊧ ∀xiA. Therefore, if B is a generalization of A, then ⊧ A holds if
and only if ⊧ B holds.

Proof. Let B be ∀xiA. Then ⊧ B holds if and only if for all structures A, and
all xi-variants τ of all object assignments σ, we have A ⊧ A[τ]. And ⊧ A holds if
and only if, for all structures A and all objects assignments τ , we have A ⊧ A[τ].
But these two ways of selecting τ give the same possibilities for τ . Therefore
⊧ B is equivalent to ⊧ A.

The second part of the theorem is proved by induction on the number k of
quantifiers added to A in the generalization.

Theorem III.31 means that the question of whether a formula A is valid can
be reduced to the question of whether the universal closure of A is valid. The
universal closure of A is of course a sentence. We will next discuss the notion of
implication between sentences, and only afterward define implication between
formulas.

Logical implication from first-order sentences. Let Γ be a set of sen-
tences, and A be either a sentence or a general formula. We shall define Γ
“logically implies” A whenever the truth of Γ implies the truth of A. This is
denoted Γ ⊧ A using the same notation as was used for tautological implication.
However, logical implication is a much more powerful notion than tautological
implication. We continue to work with a fixed language L. First, we define the
crucial notion of a “model” of Γ.

Definition III.32. Let Γ be a set of sentences and A a structure. Then A is
called a model of Γ, written A ⊧ Γ if, for every sentence B ∈ Γ, we have A ⊧ B.

When this holds, we say that Γ is satisfied by A. We also say that Γ is
satisfiable.

Definition III.33. Let Γ be a set of sentences and A be a sentence. Then Γ
logically implies A provided that for every structure A, if A ⊧ Γ, then A ⊧ A.

More generally, suppose Γ is a set of sentences and A is a formula. Then
Then Γ logically implies A provided that for every structure A, if A ⊧ Γ, then
A ⊧ A[σ] for every object assignment σ. In this case, we also say that A is a
logical consequence of Γ.

We use the double turnstile notation Γ ⊧ A to denote that Γ logically im-
plies A.

Note that the double turnstile sign, ⊧ is being used in two different (closely
related) ways. The first way, A ⊧ Γ or A ⊧ A, indicates what is true in the
single structure A. The second way, Γ ⊧ A, indicates that A follows from Γ
in all structures that satisfy Γ. That is, the first way is a statement about a
single structure A; the second way is a statement about all possible models of Γ.
These two different usages are well-established but potentially confusing. It is
important to watch out for the distinction between the two meanings.
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Just as was done in propositional logic, it is common to take liberties in
notation by omitting set brackets, and writing things like A,B ⊧ C and Γ,A ⊧ B
instead of {A,B} ⊧ C and Γ ∪ {A} ⊧ B.

Definition III.34. Let A and B be sentences. We say A and B are logically
equivalent provided that both A ⊧ B and B ⊧ A hold. We write A ⊧) B to
denote that A and B are logically equivalent.

We use the notation Γ ⊭ A to indicate that Γ does not logically imply A.

Example III.35. Let L contain the binary predicate P and the unary func-
tion f . Then

(a) ∀x∀y P (x, y) ⊧ P (x, f(x)),
(b) ∀x∀y P (x, y) ⊧ ∀xP (x,x),
(c) ∀x∀y P (x, y) ⊧ ∀xP (x, f(x)),
(d) ∀x∀y P (x, y) ⊧) ∀y∀xP (x, y),
(e) ∃y∀xP (x, y) ⊧ ∀x∃y P (x, y), and
(f) ∀x∃y P (x, y) ⊭ ∃y∀xP (x, y).

It is left to the reader to check that these logical implications are correct. The
non-implication of item (f) will be discussed again in Example III.54.

As mentioned earlier, “∀x” has the same meaning as “¬∃x¬”. This is formal-
ized by the next theorem; a slight variation is proved later as Theorem III.52.

Theorem III.36. Let A be a formula.
(a) ∀xA ⊧) ¬∃x¬A.
(b) ∃xA ⊧) ¬∀x¬A.

Proof. We prove (b); the proof of (a) is similar. We must show that A ⊧ ∃xA
holds if and only if A ⊧ ¬∀x¬A holds. This is proved as follows.

A ⊧ ¬∀x¬A[σ] ⇔ A ⊭ ∀x¬A[σ]
⇔ It is not true that A ⊧ ∀x¬A[σ]
⇔ It is not true that for all x-variants τ of σ, A ⊧ ¬A[τ]
⇔ A ⊭ ¬A[τ], for some x-variant τ of σ
⇔ A ⊧ A[τ], for some x-variant τ of σ
⇔ A ⊧ ∃xA[σ].

Theorem III.31 also applies to logical implication from a set of sentences:

Theorem III.37. Suppose Γ is a set of sentences, A is a formula, and Γ ⊧ A.
Let B be a generalization of A. Then Γ ⊧ B.

The proof of this is essentially identical to the proof of Theorem III.31, and
is left to the reader.

Definition III.38. Let Γ and ∆ be sets of sentences. Then Γ ⊧∆ means that
Γ ⊧ A for every A ∈∆. And, Γ ⊧) ∆ means that Γ ⊧∆ and ∆ ⊧ Γ

The same notations can be used when Γ and ∆ are sets of formulas; this
depends on the next definitions.
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Logical implication from first-order formulas. Now we define what it
means for Γ to logically imply A when Γ is a set of formulas (instead of a
set of sentences). This is definition is somewhat fraught because there are two
different conventions that might be adopted. The definition we adopt is the
following.

Definition III.39. Let Γ be a set of formulas. Further let A a structure and
σ be an object assignment. Then the pair (A, σ) satisfies Γ, written A ⊧ Γ[σ]
if, for every formula B ∈ Γ, we have A ⊧ B[σ].

When this holds, we say that Γ is satisfied by (A, σ). We also say that Γ is
satisfiable.

Definition III.40. Let Γ be a set of formulas and A be a formula. Then
Γ logically implies A, written Γ ⊧ A, if and only if for every structure A and
every object assignment σ, if A ⊧ Γ[σ] then A ⊧ A[σ]. In other words, Γ ⊧ A
holds provided that, for every pair (A, σ) satisfying Γ, we have A ⊧ A[σ]. When
Γ ⊧ A holds, we also say that A is a logical consequence of Γ.

When Γ is a set of sentences, there are two definitions of logical implication
(Γ ⊧ A). The first was given in Definition III.32; the second just given in in
Definition III.40 since Γ is also a set of formulas. (A sentence is always a formula,
but not necessarily vice-versa.) It is easy to see that the two definitions coincide
for Γ a set of sentences since the truth of A ⊧ Γ[σ] does not depend on σ.

Example III.41. Let P be a unary predicate symbol. Some simple examples
of logical implication and non-implication include:

(a) x = y ⊧ P (x)↔ P (y).
This holds, since if A ⊧ (x = y)[σ], then σ(x) = σ(y), so of course
σ(x) ∈ PA if and only if σ(y) ∈ PA.

(b) P (x) ⊭ P (y).
This is because there are (A, σ) such that σ(x) ≠ σ(y), and A ⊧ P (x)[σ]
and A ⊧ ¬P (y)[σ]. (See also Example III.57 below.)

(c) P (x) ⊭ ∀xP (x).
This holds for similar reasons as (b).

(d) P (x) ⊧ ∃xP (x).
If A ⊧ P (x)[σ], then the definition of truth implies that A ⊧ ∃xP (x)[σ].
(And, in fact, since ∃xP (x) is a sentence, we have A ⊧ ∃xP (x).)

(e) x = y ⊧ y = x.
This follows from the definition of truth for the formulas x = y and y = x.

Example III.42. Here is a less simple example that will be useful later. Sup-
pose A and C are formulas and that the variable x does not appear free in C.
Then

∀x (C → A) ⊧) C → ∀xA. (provided x is not free in C)

To prove this, let A be a structure and σ be an object assignment. We must
prove that A ⊧ ∀x (C → A)[σ] holds if and only if A ⊧ (C → ∀xA)[σ] holds.
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The proof splits into two cases. First, assume that A ⊭ C[σ]. By the
definition of truth, A ⊧ (C → ∀xA)[σ] holds. Furthermore, since x is not free
in C, A ⊭ C[τ] for every x-variant τ of σ. Therefore, A ⊧ (C → A)[τ] for every x-
variant of σ. Therefore, once again by the definition of truth, A ⊧ ∀x (C → A)[σ]
holds. That proves the first case.

Second, assume A ⊧ C[σ]. Since x is not free C, A ⊧ C[τ], for all x-
variants τ of σ. By the definition of truth, A ⊧ (C → ∀xA)[σ] holds if and
only if A ⊧ (∀xA)[σ]. Similarly, for every x-variant τ of σ, A ⊧ (C → A)[τ]
if and only if A ⊧ A[τ]. Using the definition of truth twice, this means that
A ⊧ ∀x (C → A)[σ] holds if and only if A ⊧ ∀xA[σ]. That completes the second
case.

This example is one of the results that will support the conversion of formulas
to prenex form. For related results, see Lemma III.80 later in this chapter.

The next theorem gives some simple observations about logical implication.

Theorem III.43. Let Γ and Π be sets of formulas such that Γ ⊆ Π.
(a) If Π contains only sentences and A ⊧ Π, then A ⊧ Γ.
(b) If (A, σ) satisfies Π, then it also satisfies Γ.
(c) If Π is satisfiable, then Γ is satisfiable.
(d) If Γ ⊧ A, then Π ⊧ A.

Theorem III.43 is immediate from the definitions.

The semantic deduction theorem. We now state the semantic version of
the Deduction Theorem for first-order logic. This is analogous to the Semantic
Deduction Theorem for propositional logic that was proved earlier as Theo-
rem I.16. It is the semantic version of the actual Deduction Theorem, which
will be discussed in Section IV.2.3. (That Deduction Theorem, however, will
require that A is a sentence.)

Theorem III.44 (Semantic Deduction Theorem). Let Γ be a set of formulas
and A and B be formulas. Then Γ ⊧ A→ B holds if and only if Γ,A ⊧ B holds.

Note that the theorem also holds for Γ a set of sentences by the remark after
Definition III.40.

Proof. By the definitions of truth and logical implication, both Γ ⊧ A→ B and
Γ,A ⊧ B are equivalent to the condition that for any structure A and object
assignment σ, if A ⊧ Γ[σ] and A ⊧ A[σ] then A ⊧ B[σ].

Duality between satisfiability and validity. Theorems I.20 and I.21 estab-
lished a duality between tautological validity and satisfiability for propositional
formulas. The same kind of duality holds for logical validity and satisfiability
of first-order formulas.

Theorem III.45. Let Γ be a set of formulas and let A be a formula.
(a) ⊧ A holds if and only if {¬A} is unsatisfiable.
(b) Γ ⊧ A holds if and only if Γ ∪ {¬A} is unsatisfiable.
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Proof. Part (a) is the special case of (b) with Γ = ∅, so we need only to prove
part (b). Note that Γ ⊧ A means that for any pair (A, σ), if A ⊧ B[σ] for every
B ∈ Γ then A ⊧ A[σ]. Also, {Γ,¬A} is unsatisfiable means that there is no
pair (A, σ) such that A ⊧ ¬A[σ] and such that A ⊧ B[σ] for all B ∈ Γ. By the
definition of truth for ¬A, these two conditions are clearly equivalent.

Theorem III.45 is the semantic version of the proof by contradiction prin-
ciples that will be established later in Section IV.2.3 for first-order provability
and inconsistency. The difference, however, is that the proof by contradiction
principle of Section IV.2.3 will require that A is a sentence.

Tautologies in first-order logic. We have just defined the notions of logical
validity and logical implication. The adjective “logical” means that the validity
of the implication holds because of the combined meanings of the propositional
connectives (¬,∧,∨,→,↔) and the quantifiers (∀,∃). We can also talk about
“tautological” validity and “tautological” implication for first-order formulas;
loosely speaking, the adjective “tautological” means that the validity or the
implication holds just because of the meanings of the propositional connectives.
For example, ∀xP (x) ∧ ∀xQ(x) tautologically implies ∀xQ(x) ∧ ∀xP (x), just
because of the meaning of the connective ∧.

For the next definition, recall the definition of substitution of formulas for
propositional formulas in Section I.10. The notation A(B1, . . . ,Bk/p1, . . . , pk)
means the formula obtained by replacing each occurrence of pi in A with Bi.

Definition III.46. Let C be a propositional tautology, and suppose C involves
only the propositional variables p1, . . . , pk. Let B1, . . . ,Bk be arbitrary first-
order formulas. Then C(B1, . . . ,Bk/p1, . . . , pk) is called a tautology.

Definition III.47. Let Γ be a set {A1, . . . ,Ak} of first-order formulas and B
be a first-order formula. Then Γ tautologically implies B if

A1 → A2 → ⋯→ Ak → B

is a tautology.

If Γ is an infinite set, then Γ tautologically implies A if some finite subset
of Γ tautologically implies A.9

Example III.48. A few examples of tautological implication include

(a) x = y ∧ y = z tautologically implies y = z ∧ x = y.

(b) x = y ∧ y = z does not tautologically imply y = x.

(c) P (x) ∨Q(x) tautologically implies Q(x) ∨ P (x).
(d) ∀x (P (x) ∨Q(x)) does not tautologically imply ∀x (Q(x) ∨ P (x)).

9The Compactness Theorem for propositional logic allows us to define tautological impli-
cation for infinite sets Γ in this way.
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In (b) the order of the equality is reversed from x = y to y = x; for this reason,
it is not tautologically implied. Of course, x = y logically implies y = x, but it
does not tautologically imply it.

In (d), the subformula P (x) ∨Q(x) is replaced by the tautologically equiv-
alent Q(x) ∨ P (x). However, the whole formula ∀x (P (x) ∨Q(x)) is not tau-
tologically equivalent to ∀x (Q(x) ∨ P (x)). This is because the tautological
equivalence is inside the scope of the quantifier ∀x.

Of course, ∀x (P (x)∨Q(x)) is logically equivalent to ∀x (Q(x)∨P (x)). This
is a topic we will take up again in Example III.51.

Theorem III.49. Let Γ be a (finite) set of first-order formulas, and A be a
first-order formula.

(a) If A is a tautology, then ⊧ A.
(b) If Γ tautologically implies A, then Γ ⊧ A.

Proof. To prove (a), suppose that A is a structure and σ is an object assign-
ment. We must show that A ⊧ A[σ]. Since A is a tautology, A is equal to
C(B1, . . . ,Bk/p1, . . . , pk) for some propositional tautology C and first-order for-
mulas B1, . . . ,Bk. Let φ be the (propositional) truth assignment defined by
letting

φ(pi) = { T if A ⊧ Bi[σ]
F if A ⊭ Bi[σ]

We claim that for every subformula D of C, we have

φ(D) = T if and only if A ⊧D(B1, . . . ,Bk/p1, . . . , pk)[σ].

This claim is proved by induction on the complexity of subformulas D of C. The
base case is where D is a single variable pi: the claim holds for these D’s by
the definition of φ. The argument for the induction step breaks into separate
cases depending on whether the outermost connective of D is a ¬, ∨, ∧, →
or ↔. But in all five cases, the argument is trivial since the induction definition
of truth for propositional formulas exactly parallels the recursive definition of
truth for first-order formulas when the outermost connective is a propositional
connective. We leave the details of the induction step to the reader.

Taking D to be the formula C, the claim implies that φ(C) = T if and only
if A ⊧ C[σ]. Since C is a tautology, we certainly have φ(C) = T. Therefore, the
claim gives A ⊧ C[σ]. That completes the proof of part (a).

For part (b), suppose Γ contains the formulas B1,B2, . . . ,Bk and

B1 → ⋯→ Bk → A

is a tautology. By part (a), ⊧ B1 → ⋯→ Bk → A. So by the Semantic Deduction
Theorem III.44, B1 . . . ,Bk ⊧ A. Since B1, . . . ,Bk are in Γ, we thus have Γ ⊧ A
as desired.
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Substitution of logically equivalent subformulas. The next theorem states
the meaning of a formula does not change if a subformula is replaced with a
logically equivalent formula.

Theorem III.50. Let A be a formula and B be a subformula of A. Let C be
a formula that is logically equivalent to B, i.e., B ⊧) C. Let A∗ be the formula
obtained by replacing its subformula B with C. Then A and A∗ are logically
equivalent, i.e., A ⊧) A∗.

Example III.51. Example III.48 noted that P (x) ∨ Q(x) and Q(x) ∨ P (x)
are tautologically equivalent; therefore they are also logically equivalent (by
Theorem III.49). Thus, ∀x(P (x) ∨ Q(x)) and ∀x(Q(x) ∨ P (x)) are logically
equivalent.

Proof of Theorem III.50. The proof will use induction on the complexity of A,
ignoring the complexity of B. Suppose D is a subformula of A that has B as a
subformula; this includes the cases where D is one of A or B. Define D∗ to be
the subformula that results after replacing the subformula B in D with C. On
the other hand, suppose D is a subformula of A that neither is a subformula
of B nor contains B as a subformula; then let D∗ be D.

We claim that D ⊧) D∗ for any subformula D of A that is not a proper
subformula of the subformula B in A. This is proved by induction on the
complexity of the formula D. There are two base cases to consider. The first
base case is where D is the same as B, so D∗ is C. Thus D ⊧) D∗ since B ⊧) C.
The second base case is where D∗ is the same as D; then of course D ⊧) D∗. In
the induction steps, D is a formula ¬D1 or D1 ○D2 or ∀xiD1 or ∃xiD1, and D∗

is the corresponding formula ¬D∗
1 or D∗

1 ○D∗
2 or ∀xiD

∗
1 or ∃xiD

∗
1 . The induction

hypotheses states that D1 ⊧) D∗
1 and (when appropriate) D2 ⊧) D∗

2 . From
the definition of truth, the truth value of A ⊧ D[σ] depends only on the truth
values of A ⊧ Di[τ], where τ ranges over all xi-variants of σ. By the induction
hypothesis, the truth values of A ⊧ Di[τ] are the same as the truth values of
A ⊧ D∗

i [τ]. Therefore, A ⊧ D[σ] if and only if A ⊧ D∗[σ]. Since this holds for
all structures A and object assignments σ, we have proved D ⊧) D∗.

As a simple corollary, Theorem III.36 on quantifiers and negations can be
restated as:

Theorem III.52. Let A be a formula.

(a) ¬∀xA ⊧) ∃x¬A.
(b) ¬∃xA ⊧) ∀x¬A.

Proof. Since A and ¬¬A, are tautologically equivalent, and hence logically
equivalent, Theorem III.50 tells us that ¬∀xA ⊧) ¬∀x¬¬A. And by Theo-
rem III.36, ¬∀x¬¬A is logically equivalent to ∃x¬A. That proves (a); the proof
of (b) is similar.
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III.5 Counterexamples to Validity and Implica-
tion

This section gives examples of some very simple finite structures; we use them
to show that formulas are not valid, or that logical implications do not hold.
Another way to view these constructions is that they give structures that show
the satisfiability of formulas.

Example III.53. We show that

⊭ ∀x1(P (x1)→ ∀x2P (x2)), (III.22)

or, equivalently, that ¬∀x1(P (x1) → ∀x2P (x2)) is satisfiable. The first-order
language is L1 = {P}; it contains only the unary predicate symbol P .10 Define
the structure A1 to have universe ∣A1∣ = {0,1}, and PA1 = {0}.

We claim that A1 ⊭ ∀x1 (P (x1) → ∀x2P (x2)). To see this, suppose σ is an
object assignment with σ(x) = 0. Then A1 ⊧ P (x)[σ] since σ(x) = 0 ∈ PA1 . Sup-
pose τ is an object assignment such that τ(x2) = 1. Then A1 ⊭ P (x2)[τ] since
1 ∉ PA

1 . Therefore, A1 ⊭ ∀x2P (x2)[π] for an arbitrary object assignment π
(since τ can be taken as an x2-variant of π). We thus have A1 ⊧ P (x)[σ]
and A1 ⊭ ∀x2P (x2)[σ]. Applying the definition of truth, we get first that
A1 ⊭ (P (x1)→ ∀x2P (x2))[σ], and second that A1 ⊭ ∀x1 (P (x1)→ ∀x2P (x2))[σ].

Therefore ∀x1(P (x1)→ ∀x2P (x2)) is not logically valid, and (III.22) holds.

Example III.54. We show that

∀x∃y P (x, y) ⊭ ∃y∀xP (x, y), (III.23)

or, equivalently, that {∀x∃y P (x, y),¬∃y∀xP (x, y)} is satisfiable. Now the
language is L = {P} with P a binary predicate symbol.

Consider the structure A2 defined with ∣A2∣ = {0,1} and PA2 = {⟨0,0⟩, ⟨1,1⟩}.
Then (III.23) follows from the facts that A2 ⊧ ∀x∃y P (x, y), but A2 ⊭ ∃y∀xP (x, y).
These two facts can be easily checked using the definition of truth.

Example III.55. We show that

∀x (P (x) ∨Q(x)) ⊭ ∀xP (x) ∨ ∀xQ(x), (III.24)

or, equivalently, that {∀x (P (x) ∨Q(x)), ¬(∀xP (x) ∨ ∀xQ(x))} is satisfiable.
The language contains two unary predicate symbols P and Q.

Let A3 be the structure with ∣A3∣ = {0,1}, with PA3 = {0} and QA3 = {1}.
It is easy to check that A3 ⊧ ∀x (P (x) ∨Q(x)) and A3 ⊭ ∀xP (x) ∨ ∀xQ(x).
Thus, (III.24) holds.

In the above example, we wrote PA3 = {0} and QA3 = {1} instead of PA3 =
{⟨0⟩} and QA3 = {⟨1⟩}. This is because we identify a 1-tuple with the object in
the 1-tuple. For instance, “⟨0⟩” is the same as “0”.

10Unless otherwise specified, all languages are presumed to include the equality sign =.
However, this makes no difference in the present case since the formula (III.22) does not use
the equality sign.
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Example III.56. Working with the same language as the previous example,

∃xP (x) ∧ ∃xQ(x) ⊭ ∃x (P (x) ∧Q(x)). (III.25)

or, equivalently, that {∃xP (x)∧∃xQ(x), ¬∃x (P (x)∧Q(x))} is satisfiable. Let
A3 be the same structure as in the previous example. It is easy to check that
A3 ⊧ ∃xP (x) ∧ ∃xQ(x) and A3 ⊭ ∃x (P (x) ∧Q(x)). Thus (III.25) holds.

Example III.57. This is a redo of III.41(b). Working with the same language
again,

P (x) ⊭ P (y),

or, equivalently, {P (x), ¬P (y)} is satisfiable. Since P (x) and P (y) have free
occurrences of variables, a counterexample must involve an object assignment.
Let A3 be the same structure as in the previous examples. Let σ be an object
assignment such that σ(x) = 0 and σ(y) = 1. By the definition of truth for
atomic formulas, A3 ⊧ P (x)[σ] and A3 ⊭ P (y)[σ]. Therefore P (x) ⊭ P (y).

III.6 Substitution of Terms for Variables

III.6.1 Substitution and substitutability

Substitution is used to replace free variables in formulas with terms; it is one
of the important ways to modify and reuse formulas. For example, let A be the
formula

∃x2 (x2 + x2 = x1)

that can be used to express that “x1 is even”. To express that x1 ⋅ x1 + x3 + 1 is
even, the free occurrence of x1 in A is replaced with x1 ⋅ x1 + x3 + 1. This gives
the formula

∃x2 (x2 + x2 = x1 ⋅ x1 + x3 + 1) (III.26)

which indeed does state that x1 ⋅ x1 + x3 + 1 is even.
On the other hand, if we wish to express x1 +x2 is even and try substituting

x1 + x2 for x1 in A, the resulting formula is

∃x2 (x2 + x2 = x1 + x2). (III.27)

This does not express that x1+x2 is even; instead, it is a logically valid formula.
The problem is that the “x2” in the term “x1+x2” was “captured” or “bound” by
the quantifier ∃x2. As will be defined momentarily, this problem arises because
x1 +x2 is not “substitutable” for x1 in A. The fix for this problem is to form an
“alphabetic variant” of A by renaming the bound variable x2 to, say, x3 before
substituting x1 + x2 for x1.

We write A(t/x) to denote the formula obtained by substituting the term t
for each free occurrence of x in A. In other words, each free occurrence of x is re-
placed with the expression t. For example, with A as above, the formula (III.26)
will be denoted A(x1 ⋅x1+x3+1/x1) and (III.27) will be denoted A(x1+x2/x1).
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More generally, for t1, . . . , tℓ terms and xi1 , . . . , xiℓ distinct variables, the
formula A(t1, . . . , tℓ/xi1 , . . . , xiℓ) is obtained by replacing, for each i, every free
occurrence of xi in A with ti. The notation A(t1, . . . , tℓ/xi1 , . . . , xiℓ) indicates
that the substitutions are done “in parallel”, namely replacing all free occur-
rences of the xij ’s at once. The formal definition by recursion is as follows.

Definition III.58 (Substitution into terms). Let s be a term, xi1 . . . , xiℓ be dis-
tinct variables and t1, . . . , tℓ be terms. Then the substitution s(t1, . . . , tℓ/xi1 , . . . , xiℓ)
is the term recursively defined by:

Base case #1: If s is xij , 1 ≤ j ≤ ℓ, then s(t1, . . . , tℓ/xi1 , . . . , xiℓ) is tj .

Base case #2: If s is either a constant symbol or a variable xi with i ∉ {i1, . . . , iℓ},
then s(t1, . . . , tℓ/xi1 , . . . , xiℓ) is equal to s.

Recursive step: If s is f(r1, . . . , rk) where f is a k-ary function symbol then
s(t1, . . . , tℓ/xi1 , . . . , xiℓ) is equal to s(r′1, . . . , r′k), where each r′i is ri(t1, . . . , tℓ/xi1 , . . . , xiℓ).

Definition III.59 (Substitution into formulas). Let A be a formula, xi1 . . . , xiℓ

be distinct variables and t1, . . . , tℓ be terms. Then the substitutionA(t1, . . . , tℓ/xi1 , . . . , xiℓ)
is recursively defined by:

Base case: Suppose A is an atomic formula P (r1, . . . , rk) or r1 = r2, respec-
tively. Let each r′i be ri(t1, . . . , tℓ/xi1 , . . . , xiℓ). Then A(t1, . . . , tℓ/xi1 , . . . , xiℓ)
is equal to P (r′1, . . . , r′k) or r′1 = r′2, respectively.

Recursive step, case #1: Suppose A is ¬B. Then A(t1, . . . , tℓ/xi1 , . . . , xiℓ)
is equal to ¬B′ where B′ is B(t1, . . . , tℓ/xi1 , . . . , xiℓ).

Recursive step, case #2: Suppose A is B ○ C, where ○ is one of ∧,∨,→,↔.
Then A(t1, . . . , tℓ/xi1 , . . . , xiℓ) is equal to B′○C ′ where B′ is B(t1, . . . , tℓ/xi1 , . . . , xiℓ)
and C ′ is C(t1, . . . , tℓ/xi1 , . . . , xiℓ)

Recursive step, case #3: Suppose A is QxiB where Qxi denotes either ∀xi

or ∃xi. Also suppose i ∉ {i1, . . . , iℓ}. Then A(t1, . . . , tℓ/xi1 , . . . , xiℓ) is equal
to QxiB(t1, . . . , tℓ/xi1 , . . . , xiℓ).

Recursive step, case #4: Suppose A is Qxij B. Let B′ equal

B(t1, . . . , tj−1, tj+1, . . . , tℓ/xi1 , . . . , xij−1 , xij+1 , . . . , xiℓ). (III.28)

(Note the entries with subscript j are skipped.) Then A(t1, . . . , tℓ/xi1 , . . . , xiℓ)
is equal to Qxij B

′.

The just-given definition of substitution did not pay attention to whether
any free variables were “captured” by the substitution. To rule this out, we
require that each tj is “substitutable” for xij . Informally, this means that there
is no variable xk appearing in tj such that there is a free occurrence of xij in A
which is in the scope of a quantifier Qxk.
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Definition III.60 (Substitutable). Let A be a formula, xi be a variable, and
t be a term. Then t is substitutable for xi in A is defined recursively as follows:

● If A is atomic, then t is substitutable for xi in A.

● If A is ¬B, then t is substitutable for xi in A if and only if t is substitutable
for xi in B.

● If A is B ○C where ○ is a binary propositional connective, then t is sub-
stitutable for xi in A if and only if t is substitutable for xi in both B
and C.

● If A is QxiB, then t is substitutable for xi in A.

● If A is Qxj B with j ≠ i, then t is substitutable for xi in A if and only if
either (i) xi is not free in B or (ii) the variable xj does not appear in t.

The next theorem states the main property needed for substitution.

Theorem III.61. Let t1, . . . , tℓ be terms and xi1 , . . . , xiℓ be distinct variables.
We write t⃗ and x⃗ as shorthand notations for t1, . . . , tℓ and xi1 , . . . , xiℓ .

(a) Let s be a term. Then

⊧
ℓ

⋀
j=1

xij = tj → s = s(t⃗/x⃗).

(b) Let A be a formula and suppose that each tj is substitutable for xij in A.
Then

⊧
ℓ

⋀
j=1

xij = tj → [A↔ A(t⃗/x⃗)]. (III.29)

Theorem III.61 will be proved by induction on the complexity of terms and
formulas. As preparation for this proof, the next lemma gives some special cases
of the theorem.

Lemma III.62.

(a) Let P be a k-ary predicate symbol, and s1, . . . , sk and t1, . . . , tk be terms.
Then

⊧
k

⋀
i=1

si = ti → [P (s1, . . . , sk)↔ P (t1, . . . tk)]. (III.30)

(b) Let f be a k-ary function symbol, and s1, . . . , sk and t1, . . . , tk be terms.
Then

⊧
k

⋀
i=1

si = ti → f(s1, . . . , sk) = f(t1, . . . tk). (III.31)

Proof of Lemma III.62. Let A be a structure and σ an object assignment. The
only way that the formula (III.30) can fail to be satisfied by the pair (A, σ) is
if σ(si) = σ(ti) for all i. But in that case, clearly ⟨σ(s1), . . . , σ(sk)⟩ ∈ PA if and
only if ⟨σ(t1), . . . , σ(tk)⟩ ∈ PA, and hence A ⊧ P (s⃗) ↔ P (t⃗)[σ]. That proves
part (a). Part (b) is proved similarly.
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Another simple but useful lemma states that if xi is not free in A then a
substitution for xi has no effect.

Lemma III.63.
(a) If xi does not appear free in A, Then A(t/xi) is equal to A.
(b) If xij does not appear free in A, then A(t1, . . . , tk/xi1 , . . . , xik) is equal to

A(t1, . . . , tj−1, tj+1, . . . , tℓ/xi1 , . . . , xij−1 , xij+1 , . . . , xiℓ).

Proof of Lemma III.63. It is enough to prove (b), since (a) is a special case.
First, it necessary to prove that if xij does not appear in a term s, then
s(t1, . . . , tk/xi1 , . . . , xik) is equal to

s(t1, . . . , tj−1, tj+1, . . . , tℓ/xi1 , . . . , xij−1 , xij+1 , . . . , xiℓ).

This is readily proved by induction on the complexity of s. From this, the
lemma holds for atomic formulas A. For general formulas A the proof proceeds
by induction on the complexity of A. The induction steps corresponding to the
first three recursion cases of the definition are trivial, since in the recursive steps
#1-#3, xi has a free occurrence in A if and only if it has a free occurrence in B
(or C). For recursion step #4, the lemma clearly holds since, in light of (III.28),
A(t1, . . . , tk/xi1 , . . . , xik) is equal to

A(t1, . . . , tj−1, tj+1, . . . , tℓ/xi1 , . . . , xij−1 , xij+1 , . . . , xiℓ).

Proof of Theorem III.61. Part (a) is proved readily by induction on the com-
plexity of the term s. The base cases where s is a variable xj and s is a
constant symbol are trivial. The induction step is immediate with the aid of
Lemma III.62(b). The details are left to the reader.

Part (b) is proved induction on the complexity of the formula A. The base
case where A is an atomic formula P (⋯), is the same as part (a) of Lemma III.62
and has already been proved. The base case where A has the form xℓ = xk is
trivial, and left to the reader.

The induction step splits into cases depending on how the formula A is
formed. By Lemma III.63, we can assume without loss of generality that each
xij occurs free in A.

If A is ¬B or B ○C, the induction hypotheses state that

ℓ

⋀
i=1

xij = tj → [B ↔ B(t⃗/x⃗)] and
ℓ

⋀
i=1

xij = tj → [C ↔ C(t⃗/x⃗)]

are logically valid. (Only the first one is needed for the case where A is ¬B).
These formulas tautologically imply the desired formula (III.29).

The second case of the induction step is when A has the form ∀xk B. The
induction hypothesis is that

⊧
ℓ

⋀
i=1

xij = tj → [B ↔ B(t⃗/x⃗)]. (III.32)
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Theorem III.31 states that the following generalization is valid:

⊧ ∀xk (
ℓ

⋀
i=1

xij = tj → [B ↔ B(t⃗/x⃗)]).

By the assumption that each xij appears free in A, the variable xk is distinct
from all the xij ’s. Since each xij appears free in A and since tj is substitutable
for xij in A, the variable xk does not appear in tj . Therefore the variable xk

does not appear in the conjunction on the lefthand side of (III.32). Thus the
equivalence established in Example III.42 on page 89 gives

⊧
ℓ

⋀
i=1

xij = tj → ∀xk [B ↔ B(t⃗/x⃗)].

It is a general principle that ∀x (C ↔ D) ⊧ (∀xC ↔ ∀xD) for arbitrary for-
mulas C and D. Exercise III.18 asks for a proof of this. Thus we get

⊧
ℓ

⋀
i=1

xij = tj → [∀xk B ↔ ∀xk B(t⃗/x⃗)].

That finishes the inductive step for A of the form ∀xk B.
The final induction step is for A of the form ∃xk B. This case can be reduced

to the earlier cases since A ⊧) ¬∀xk ¬B. The arguments for the above induction
cases (used twice for the ¬’s and once for the ∀xk) give

⊧
ℓ

⋀
i=1

xij = tj → ¬∀xk ¬B ↔ ¬∀xk ¬B(t⃗/x⃗)].

This is logically equivalent to (III.29), and finishes the proof of the induction
case for A of the form ∃xk B.

III.6.2 Alphabetic variants (renaming of bound variables).

A alphabetic variant of a formula A means any formula obtained by renaming
the bound variables of A in a consistent way. In general, any alphabetic variants
of A are logically equivalent to A. For example, if A is the formula ∃x2 (x2+x2 =
x1), then ∃x3 (x3 +x3 = x1) is an alphabetic variant B. Both formulas A and B
assert that x1 is even when they are interpreted over the integers. The advantage
of the alphabetic variant arises when a term t is not substitutable for x1 in A,
but we nonetheless want to use A to assert that t is even. Renaming the bound
variables can allow t to be substituted into an alphabetic variant. For instance,
we can use the formula B(x2/x1), namely ∃x3 (x3 + x3 = x2) to assert that x2

is even — this works even though x2 is not substitutable in A.
The next theorem gives the technical conditions that allow the use of alpha-

betic variants.

Theorem III.64. Let xi and xj be distinct variables and let A be a formula of
the form ∃xiB or ∀xiB. Suppose that there is no free occurrence of xj in B
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and that xj is substitutable for xi in B. Let C be B(xj/xi), and let D be ∃xj C
or ∀xj C, respectively. Then A and D are logically equivalent, A ⊧) D. That
is,

∃xiB ⊧) ∃xj B(xj/xi) and ∀xiB ⊧) ∀xj B(xj/xi).

Proof. We first prove the theorem for the case where A is ∃xiB and D is ∃xj C.
From Theorem III.61, we have

⊧ xi = xj → [B ↔ B(xj/xi)]. (III.33)

Suppose A is a structure and σ an object assignment. We need to show that
A ⊧ ∃xiB[σ] holds if and only if A ⊧ ∃xj B(xj/xi) holds. By the definition of
truth,

A ⊧ ∃xiB[σ] ⇔ A ⊧ B[τ] for some xi-variant τ of σ. (III.34)

Let’s define an {x, y}-variant of σ to be a y-variant of an x-variant of σ. In other
words, a {x, y}-variant of σ is an object assignment π which differs from σ on at
most the values it assigns to x and y. Since xj does not have a free occurrence
in B (or in A), the truth of A ⊧ B[τ] does not depend on the value of τ(xj).
Therefore, from (III.34),

A ⊧ ∃xiB[σ] ⇔ A ⊧ B[π], for some {xi, xj}-variant π of σ
such that π(xi) = π(xj)

.

Similar reasoning, using the fact that xi does not appear free in B(xj/xi), shows
that

A ⊧ ∃xj B(xj/xi)[σ] ⇔ A ⊧ B(xj/xi)[π, ] for some {xi, xj}-variant π of σ
such that π(xi) = π(xj)

.

Finally, the validity of (III.33) implies that if π(xi) = π(xj), then A ⊧ B[π] if
and only A ⊧ B(xj/xi)[π]. It follows that A ⊧ ∃xiB[σ] is true if and only if
A ⊧ ∃xj B(xj/xi)[σ] is true.

The proof for the case of a universal quantifier can be reduced to the
case of an existential quantifier. By Theorem III.36 or III.52, and the defi-
nition of truth for ¬, we have that ∀xiB ⊧) ∀xj B(xj/xi) holds if and only if
∃xi ¬B ⊧) ∃xj ¬B(xj/xi). The latter holds by the already-proved first part of
the theorem.

Example III.65. We earlier used the following formula (III.8), called Prime,

x ≠ S(0) ∧ ∀y (∃z (y ⋅ z = x)→ y = S(0) ∨ y = x).

to express the condition that x is prime. Let A denote its alphabetic variant

x ≠ S(0) ∧ ∀u (∃v (y ⋅ v = x)→ u = S(0) ∨ u = x).

For instance, we can use A(y + z/x) to express that y + z is prime even though
y + z is not substitutable for x in Prime.
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We can show that Prime ⊧) A by using Theorem III.64 twice. First, the
theorem shows that ∃z (y ⋅ z = x) and ∃v (y ⋅ v = x) are logically equivalent.
Then by Theorem III.50 on replacing a subformula with a logically equivalent
subformula, ∀y (∃v (y ⋅ v = x) → y = S(0) ∨ y = x) is logically equivalent to
∀y (∃v (y ⋅ v = x)→ y = S(0)∨ y = x). Applying Theorem III.64 again to rename
y to u in the latter formula, and using Theorem III.50 again, gives that Prime
and A are logically equivalent.

III.6.3 Universal instantiation and existential introduc-
tion.

The principle of universal instantiation states that if ∀xA is true, then A(t/x)
is true for any t which is substitutable for x. Contrapositively, the principle of
existential introduction states that if A(t/x) is true, then ∃xA is true, again
assuming t is substitutable for x in A.

The universal instantiation formulas will be used as axioms for the Hilbert-
style proof system FO for first-order logic in the next chapter.

Theorem III.66 (Universal Instantiation). Suppose t is substitutable for x
in A. Then

⊧ ∀xA→ A(t/x).

Proof. Without loss of generality, the variable x does not appear in t (since
otherwise, by Theorem III.64, the bound variable x could be replaced by a
different variable). Suppose A ⊧ ∀xA[σ]; we must show that A ⊧ A(t/x)[σ].
Let τ be the x-variant of σ such that τ(x) = σ(t). By the definition of truth,
A ⊧ A[τ].

By Theorem III.61(b), x = t∧A→ A(t/x) is valid. Therefore, A ⊧ A(t/x)[τ].
Since x does not appear in A(t), and since τ is an x-variant of σ. Theorem III.23
implies that A ⊢ A(t/x)[σ] holds, as desired.

Corollary III.67 (Existential Introduction). Suppose t is substitutable for x
in A. Then

⊧ A(t/x)→ ∃xA.

The corollary follows immediately from Theorem III.66 using the logical
equivalence between ∃xA and ¬∀x¬A.

Example III.68. The formula ∀x∃y (x+y = 0)→ ∃y (S(S(0))+y = 0) and the
formula ∃y (S(S(0)) + y = 0)→ ∃x∃y (x + y = 0) are both logically valid.

Corollary III.69. For any formula A, ∀xA→ ∃xA is logically valid.

This corollary follows by tautological implication from the previous corollary
and theorem, taking t to be a variable that is not quantified in A. .

Corollary III.70. If ⊧ A and t is substitutable for x in A, then ⊧ A(t/x). More
generally, if ⊧ A and each term ti is substitutable for xi,j in A, then ⊧ A(t⃗/x⃗).

This corollary is immediate frem Theorems III.31 and III.66.
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III.6.4 Relaxed notations for substitution.

The notation “A(t/x)” for substitution is somewhat cumbersome to work with,
and it is common to use the more relaxed, user-friendly notations “A(x)” and
“A(t)” instead. In addition, when working with a structure A, if b is an object
in ∣A∣, it is convenient to write A ⊧ A(b) to mean that b satisfies the prop-
erty of A(x) in A. This latter notation avoids needing to mention an object
assignment σ that maps x to b.

Let’s make these more relaxed notations precise. When using relaxed no-
tation for substitution, a formula A will be introduced with the name “A(x)”
where x is a variable. Common terminology would be “Let A(x) be a formula”,
or “Let A = A(x) be a formula”. This means that A(x) is a synonym for A
and that terms will be substituted for the variable x. Thereafter, if t is a term,
the notation “A(t)” is used to denote the formula A(t/x) provided that t is
substitutable for x in A. If t is not substitutable for x in A(x), then there are
two possible conventions. The first possible convention is that A(t) is unde-
fined when t is not substitutable for x in A. This is the convention that is used
in this textbook. The second possible convention is that a suitable alphabetic
variant A′ of A is picked so that t is substitutable for x in A. By Theorem III.64
on alphabetic variants, A(x) ⊧) A′(x). Then A(t) denotes A′(t/x). The latter
convention is somewhat ambiguous since there are many choices for the alpha-
betic variant A′, but in practice, the ambiguity causes no problems.

Example III.71. Let A(x) be the formula ∀yQ(x, y). Then A(f(0) + z) is
the formula ∀yQ(f(0)+z, q). The formula A(y) is either undefined (in the first
convention), or is a formula such as ∀wQ(y,w) (under the second convention)
where the new variable w is picked so as to not appear in Q.

The next example is a little more subtle. It shows the importance of how a
formula is first introduced.

Example III.72. Let A(y) be the formula ∃z (x + z = y). Then A(x) is
∃z (x + z = x) and A(0) is ∃z (x + z = 0).

Now let B(x) be the formula ∃z (x + z = x). Then B(0) is ∃z (0 + z = 0).

In the second example, A(x) and B(x) are the same formula, but A(0)
and B(0) are different formulas. The point is that A was first introduced in
the form A(y), and therefore the substitutions into A are based on replacing
the variable y. This illustrates the importance of being careful with relaxed
notations for substitution.

Relaxed notation for substitution can also be used for substituting multiple
terms in parallel. In this case, we introduce a formula as A = A(xi1 , . . . , xik)
then write A(t1, . . . , tk) to denote A(t⃗/x⃗). We will use this notation only if each
tj is substitutable for xij in A.

It is important to note that the relaxed notation introducing a formula as
A = A(x) or A = A(xi1 , . . . , xik) allows there to be other free variables in A
beyond the variable x or the variables, xi1 , . . . , xik . Example III.72 already
showed an example of this, with x free in A(y).
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Some of the above theorems can be restated with the relaxed substitution
notation as follows. Notice how the relaxed notation makes the results substan-
tially easier to understand.

Theorem III.73.
(a) (Restatement of Theorem III.64 on alphabetic variants.)

Suppose y does not appear free in B(x) and that y is substitutable for x
in B(x). Then

∃xB(x) ⊧) ∃yB(y) and ∀xB(x) ⊧) ∀yB(y).

(b) (Restatements of Theorem III.66 and Corollary III.67 on universal instan-
tiation and existential introduction.) Suppose that t is substitutable for x
in A(x).

⊧ ∀xA(x)→ A(t) and ⊧ A(t)→ ∃xA(x).

Relaxed substitution notation for objects. A related relaxed notation
allows us to avoid using object assignments. Suppose that A is a structure,
A(x) is a formula with no free variables other than x, and b ∈ ∣A∣. Then, the
notation A ⊧ A(b) is shorthand notation indicating that A ⊧ A[σ] holds for
any σ such that σ(x) = b.

More generally, suppose A = A(xi1 , . . . , xik) is a formula with no vari-
ables appearing free in A other than the xij ’s. Let b1, . . . , bk ∈ ∣A∣. Then
A ⊧ A(b1, . . . , bk) means that A ⊧ A[σ] for any σ such that σ(xij) = bj for
all j.

The next simple theorem illustrates how the relaxed notation is used:

Theorem III.74. Suppose A(x1, . . . , x1) contains only x1, . . . xk as free vari-
ables. Let A be a structure and σ be an object assignment. Set bi = σ(ti) so
each bi ∈ ∣A∣. Then

A ⊧ A(b1, . . . , bk) ⇔ A(t1, . . . , tk)[σ].

Proof. (Sketch) This follows from the logical validity of

k

⋀
i=1

bi = ti → (A(b1, . . . , bk)↔ A(t1, . . . tk)),

which follows from Theorem III.61(b).

III.7 Principles of Equality

We now discuss several principles of equality. The basic underlying philosophy
is that if objects are equal, then they should satisfy the same properties. The
first principles are that equality (=) defines an equivalence relation.
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Theorem III.75. Let r, s and t be terms.
(a) ⊧ t = t. (Reflexivity)
(b) ⊧ s = t→ t = s. (Symmetry)
(c) ⊧ r = s→ s = t→ r = t. (Transitivity)

Proof. These logical validities follow immediately from the definition of truth.
For instance, transitivity follows from the fact that if an object assignment σ
satisfies σ(r) = σ(s) and σ(s) = σ(t), then σ(r) = σ(t).

The second principles are that predicate and function symbols respect equal-
ity. These were already stated and proved in Lemma III.62, and are restated
here for convenience:

⊧
k

⋀
i=1

si = ti → [P (s1, . . . , sk)↔ P (t1, . . . tk)].

and

⊧
k

⋀
i=1

si = ti → f(s1, . . . , sk) = f(t1, . . . tk).

A more general version of the equality principle holds for arbitrary formulas A
in place of a predicate P :

Theorem III.76. Let A(xi1 , . . . , xik) be a formula and let s1, . . . , sk and t1, . . . , tk
be terms. Suppose that each sj and tj is substitutable for xij in A. Then

⊧
k

⋀
i=1

si = ti → [A(s1, . . . , sk)↔ A(t1, . . . tk)]. (III.35)

Proof. Without loss of generality, the variables xi1 . . . , xik do not appear in the
terms s1, . . . , sk and t1, . . . , tk, since otherwise the variables xij can be renamed
in A. Equation (III.29) of Theorem III.61 gives

⊧
ℓ

⋀
i=1

xij = tj → [A(x⃗)↔ A(t⃗)].

From this, Corollary III.70 gives (III.35) as desired.

III.8 Prenex Formulas

A “prenex formula” is a formula in which all quantifiers are at the front of the
formula. For example, ∀x∃y∀z (A∧B) is a prenex formula, but ∀x∃y (A∧∀z B)
is not. It turns out that every first-order formula can be reexpressed in prenex
form.

Definition III.77. The prenex formulas are inductively defined by:
(a) If A is quantifier-free, i.e., if A contains no quantifiers, then A is a prenex

formula.
(b) If A is a prenex formula and xi is a variable, then ∀xiA and ∃xiA are

prenex formulas.
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An alternative definition of prenex formulas can be given in terms of not
having a quantifier in the scope of a propositional connective. Definition III.8
already defined the scope of a quantifier. The scope of a propositional connective
is defined similarly:

Definition III.78. Let A be a formula. Let B be a subformula of the form ¬C.
The scope of this negation sign is the subformula C. Now let B be a subformula
of the form C ○D with ○ a binary propositional connective (∧, ∨, →, or↔). The
scope of this connective ○ is the two subformulas C and D.

Clearly, a formula A is prenex if and only if no quantifier occurs in A in the
scope of a propositional connective.

Theorem III.79. Every formula A is logically equivalent to a prenex formula.

The next lemma is a crucial ingredient in the proof Theorem III.79.

Lemma III.80. Let A and C be formulas, and assume x is not free in C. Then

(a) C ∧ ∃xA ⊧) ∃x (C ∧A)
(b) C ∧ ∀xA ⊧) ∀x (C ∧A)
(c) C ∨ ∀xA ⊧) ∀x (C ∨A)
(d) C ∨ ∃xA ⊧) ∃x (C ∨A)
(e) C → ∀xA ⊧) ∀x (C → A)
(f) C → ∃xA ⊧) ∃x (C → A)
(g) (∀xA)→ C ⊧) ∃x (A→ C)
(h) (∃xA)→ C ⊧) ∀x (A→ C)

Proof of Lemma III.80. We will sketch the proof, and leave some of the details
to the exercises. First, part (e) was already proved in Example III.42. We
claim that parts (a), (c), and (h) are essentially equivalent to part (e). For in-
stance, to prove part (h), we note that (∃xA) → C is tautologically equivalent
to ¬C → ¬∃xA. The latter is logically equivalent to ¬C → ∀x¬A by Theo-
rem III.52. That in turn is logically equivalent to ∀x (¬C → ¬A) since part (e)
holds in general. This last formula is logically equivalent to ∀x (A → C), and
thus part (h) is proved. Similar arguments prove parts (a) and (c) from (e) by
expressing ∧ and ∨ in terms of → and ¬.

Now let’s prove part (d). As is proved in Exercise III.15, ∃x (C ∨ A) is
logically equivalent to ∃xC∨∃xA.11 And since x is not free in C, Exercise III.16
states that ∃xC is logically equivalent to C. It follows that ∃x (C∨A) is logically
equivalent to C ∨ ∃xA, so (d) is proved. Parts (b), (f), and (g) are essentially
equivalent to part (b), analogously to the way that parts (a), (c), (e), and (h)
were essentially equivalent to each other.

Theorem III.79 is now proved by using the lemma; the main new thing is
that we have to handle the case where x is free in C by using alphabetic variants.

11The application of Exercise III.15 does not need the assumption that x is not free in C.
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Proof of Theorem III.79 on prenex formulas. Without loss of generality, A does
not contain the symbol ↔ since any subformula B ↔ C can replaced by the
tautologically equivalent (B → C) ∧ (C → B).

We modify A step-by-step by moving quantifiers in front of propositional
connectives. Each step will reduce the number of pairs of occurrences of propo-
sitional connectives (¬ or ○) and quantifiers Qx such that Qx lies the scope of
the propositional connective. If A is not in prenex form, then there must be at
least one subformula of the form ¬QxB or QxB ○C or C ○QxC.

Suppose A has a subformula ¬QxB where Qx denotes either ∀x or ∃x. Let
Qx denote the dual quantifier ∃x or ∀x, respectively. Then ¬QxB is logically
equivalent to Qx¬. Replacing ¬QxB in A with Qx¬B yields a formula that is
logically equivalent to A and has one less pair of occurrences of propositional
connectives and quantifiers with the quantifier in the scope of the propositional
connective.

Now suppose A has a subformula (QxB) ∨ C. If x does not appear free
in C, then replace this subformula with the logically equivalent Qx (B ∨C); the
logical equivalence follows from part (c) or (d) of Lemma III.80. On the other
hand, if x does appear free in C, choose a new variable y that does not appear
anywhere in A. Then QyB(y/x) is an alphabetic variant of QxB and thus is
logically equivalent to QxB. Since y was chosen to be a variable that is not used
at all in A, it clearly has no free occurrence in C. Therefore, Qy (B(y/x)∨C) is
logically equivalent to (QxB)∨C. Replacing (QxB)∨C with Qy (B(y/x)∨C)
in A yields a logically equivalent formula. It also reduces the number of pairs
of propositional connectives and quantifiers with the quantifier inside the scope
of the logical connective.

The remaining cases where A has a subformula of the form ((QxB) ○C or
(C ○ (QxB) are similar. These are proved using the other logical equivalences
from Lemma III.80.

We leave the rest of the details of the proof to the reader.

Example III.81. Let A be the formula ∀xP (x) ∨ ∃yQ(z, y). Using prenex
operations we have the tautological equivalences

∀xP (x) ∨ ∃yQ(z, y) ⊧) ∀x (P (x) ∨ ∃yQ(z, y)) ⊧) ∀x∃y (P (x) ∨Q(z, y)).

Thus A is logically equivalent to the prenex formula ∀x∃y (P (x) ∨Q(x, y)).
It is possible to pull out the quantifiers in a different order:

∀xP (x) ∨ ∃yQ(z, y) ⊧) ∃y (∀xP (x) ∨Q(z, y)) ⊧) ∃y∀x (P (x) ∨Q(z, y)).

So A is also logically equivalent to the prenex formula ∃y∀x (P (x) ∨Q(x, y).
Of course, these two prenex forms of A are logically equivalent to each other as
well.

Example III.82. Now let A be the formula ∀xP (x, y) → ∀x∃yQ(x, y). The
variable x is quantified twice, and the variable y has both free and bound occur-
rences. Accordingly, we must work with alphabetic variants to convert A into
prenex form. This can be done step-by-step as:
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∀xP (x, y)→ ∀x∃yQ(x, y)
⊧) ∃x (P (x, y)→ ∀x∃yQ(x, y) Lemma III.80(g)
⊧) ∃x (P (x, y)→ ∀x′ ∃yQ(x′, y) Alphabetic variant
⊧) ∃x∀x′ (P (x, y)→ ∃yQ(x′, y) Lemma III.80(e)
⊧) ∃x∀x′ (P (x, y)→ ∃y′Q(x′, y′) Alphabetic variant
⊧) ∃x∀x′ ∃y′ (P (x, y)→ Q(x′, y′) Lemma III.80(f)

Just as in the previous example, it would be possible to pull the quantifiers out
in a different order. Indeed, the initial block of quantifiers could also end up as
“∀x′ ∃x∃y′” or “∀x′ ∃y′ ∃x”.

III.9 Examples of Logical Principles

This section collects together some logical equivalences and logical implications
that pertain to quantifiers. Some of the results below have been proven already.
For many of the others, see Exercises III.15-III.17.

Some logical equivalences for quantifiers.

∀x∀yA ⊧) ∀y∀xA - Quantifier exchange
∃x∃yA ⊧) ∃y ∃xA - Quantifier exchange

∀x (A ∧B) ⊧) ∀xA ∧ ∀xB - Distributing ∀ over ∧
∃x (A ∨B) ⊧) ∃xA ∨ ∃xB - Distributing ∃ over ∨
∃x (A→ B) ⊧) ∀xA→ ∃xB - Distributing ∃ over →

Some logical implications for quantifiers.

⊧ ∀xA→ ∃xA - Corollary III.69
⊧ ∃x∀yA→ ∀y ∃xA
⊧ ∀xA→ A
⊧ ∀xA→ A(t/x) - If t is substitutable for x in A
⊧ A→ ∃xA
⊧ A(t/x)→ ∃xA - If t is substitutable for x in A
⊧ ∀x (A→ B)→ ∃xA→ ∃xB
⊧ ∀x (A→ B)→ ∀xA→ ∀xB
⊧ ∀x∀yA→ ∀xA(x/y) - If x is substitutable for y in A.

The final logical validity may be a little confusing; it can be expressed more
clearly with the relaxed notation for substitution as

⊧ ∀x∀yA(x, y)→ ∀xA(x,x).

The implications above in general do not reverse; for instance, ⊧ A → ∀xA is
not true in general. They do reverse in some special cases, notably when the
quantifiers are “vacuous” and do not actually bind any variables. For instance,
the next two equivalences follow from Exercise III.16.

⊧ A↔ ∀xA - If x does not occur free in A
⊧ ∃xA↔ A - If x does not occur free in A
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Logical equivalences supporting prenex form. In all of the below formu-
las, it is assumed that x does not have any free occurrences in C. Other than
the first four equivalences, these are stated in Lemma III.80.

∀xA ⊧) ¬∃x¬A - Theorem III.36
∃xA ⊧) ¬∀x¬A - ′′

¬∀xA ⊧) ∃x¬A - Theorem III.52
¬∃xA ⊧) ∀x¬A - ′′

C ∧ ∃xA ⊧) ∃x (C ∧A)
C ∧ ∀xA ⊧) ∀x (C ∧A)
C ∨ ∀xA ⊧) ∀x (C ∨A)
C ∨ ∃xA ⊧) ∃x (C ∨A)
C → ∀xA ⊧) ∀x (C → A) - Example III.42
C → ∃xA ⊧) ∃x (C → A)

(∀xA)→ C ⊧) ∃x (A→ C)
(∃xA)→ C ⊧) ∀x (A→ C)

To reiterate: it is assumed that x is not free in C in the above logical equiva-
lences.

III.10 Semantic Theorems on Constants

A common method of constructing informal proofs is to introduce a new name
for some unnamed object. For instance, if we are trying to prove a universal
statement ∀xA(x), we might introduce a new name “c” to represent an arbitrary
fixed value of x. If we then succeed in proving that A(c) holds then, since c
was arbitrary, we can conclude that ∀xA(x) holds. Dually, if we are given an
existential statement ∃xA(x) as a hypothesis, we might introduce a new name
“c” for an arbitrary object representing an x such that A(x). We then are
justified in adding A(c) as a new hypothesis.

These two informal reasoning methods are made formal by the next theorem
and corollary.

Theorem III.83. Let A(x) be a formula and Γ be a set of formulas. Suppose
that the constant symbol c does not appear in A(x) or in any formula in Γ.
Then

Γ ∪ {∃xA(x)} is satisfiable if and only if Γ ∪ {A(c)} is satisfiable.

If in addition B is a formula that does not contain c, then

Γ, ∃xA(x) ⊧ B if and only if Γ, A(c) ⊧ B.

Corollary III.84. Let A(x) be a formula. Let Γ be a set of formulas such that
the constant symbol c does not appear in A(x) or any formula in Γ. Suppose
Γ ⊧ A(c). Then Γ ⊧ ∀xA(x).
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The corollary is proved by applying the theorem to the formula ¬A and using
the proof by contradiction principle of Theorem III.45. The basic idea for the
proof of the first part of Theorem III.83 is rather simple: if we have a model for
∃xA(x), we can enlarge the language to include c as a new constant symbol,
and let the interpretation of c be some object that makes A(c) true. Such an
object is guaranteed to exist if and only if ∃xA(x) is true. Making this intuition
formal takes a little work and we start with a rather general definition that will
be useful later too.

Definition III.85. Let L and L′ be languages with L ⊆ L′. Suppose A is an
L-structure and B is an L′-structure. We say that B is an expansion of A, and
that A is a restriction of B provided that

• They have the same universe: ∣A∣ = ∣B∣, and
• The interpretations of the symbols in L are the same in A and B. In other

words, cA = cB and PA = PB and fA = fB for all symbols c,P, f ∈ L.

Example III.86. N ′ = (N,0, S,+, ⋅,<) is an expansion of N = (N,0, S,+, ⋅).

As hinted at in the example, any definable predicate, object, or function of
a structure A can be used to form an extension of A. Much more general con-
structions can be used for expansions of course. A basic property of expansions
is that the truth of an L-sentence is the same in A and B.

Theorem III.87. Let L, L′, A and B be as above with B an expansion of A.
Let σ be any object assignment. (Note that although A and B have different
languages, they have the same object assignments by virtue of having the same
universe.)

(a) For any formula A, A ⊧ A[σ] if and only if B ⊧ A[σ].
(b) For any sentence A, A ⊧ A if and only if B ⊧ A.

A formal proof of Theorem III.87 would use induction on the complexity of
the formula A. However, we omit the proof, since it should be completely clear
that the theorem must hold: Examining the definition of truth, the truth of a
formula in a structure depends only on the universe and on the interpretations
of the non-logical symbols that appear in the formula. And, the formula A uses
only non-logical symbols from L, which have the same interpretations in A as
in B.

Proof of Theorem III.83. Let L be the language containing the non-logical sym-
bols that appear in A and Γ. Let L′ be L∪{c} where c ∉ L is a constant symbol.
The first part of the theorem states that Γ ∪ {∃xA(x)} is satisfied by some
L-structure A if and only if Γ ∪ {A(c)} is satisfied by some L′-structure B.

First suppose that an L′-structure B with object assignment σ satisfies
Γ ∪ {A(c)}, namely B ⊧ A(c)[σ]. Then certainly B ⊧ ∃xA(x)[σ]. Letting
A be the restriction of B to the language L, Theorem III.87 implies that
A ⊧ (Γ ∪ {∃xA(x)})[σ].

Second, suppose that (A, σ) satisfies Γ ∪ {∃xA(x)}. By the definition of
truth, there is a a ∈ ∣A∣ such that A ⊧ A(x)[τ] where τ is the x-variant of σ with
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τ(x) = a. Let B be the expansion of A to the language L′ obtained by letting
cB = a. By Theorem III.61(b),

B ⊧ (x = c→ (A(x)↔ A(c))[τ].
Since τ(x) = cB and B ⊧ A(x)[τ], we have B ⊧ A(c)[τ]. Since τ is an x-variant
of σ, B ⊧ A(c)[σ]. Finally, B ⊧ Γ[σ] by Theorem III.87 since A ⊧ Γ[σ]. That
proves the first part of the theorem.

The second part of the theorem follows immediately since Γ,∃xA(x) ⊧ B
holds if and only Γ,¬B,∃xA(x) is unsatisfiable and since Γ,A(c) ⊧ B holds if
and only Γ,¬B,A(c) is unsatisfiable.

The next theorem lets us reexpress a logical implication Γ ⊧ A involving
formulas as a logical implication involving only sentences. The general idea is
to replace free variables in Γ and A with new constant symbols. To illustrate
this, consider the fact that P (x, y) ⊧ ¬¬P (x, y). We wish to reexpress this using
sentences instead of the formulas involving the free variables x and y. For this,
we introduce two new constant symbols, say c and d. Then P (x, y) ⊧ ¬¬P (x, y)
is equivalent to P (c, d) ⊧ ¬¬P (c, d).

To formalize this generally, we start with an L-formula A and a set Γ of
L-formulas. We let L′ be L ∪ {d1, d2, d3, . . .} with infinitely many new constant
symbols. We write A(d⃗/x⃗) and Γ(d⃗/x⃗) to denote the result of replacing every
free occurrence of every xi with di. Thus, A(d⃗/x⃗) is an L′-sentence and Γ(d⃗/x⃗)
is a set of L′-sentences.12

Theorem III.88. Let L, L′ and d1, d2, d3, . . . be as above. Let Γ be a set of
L-formulas, and A be an L-formula. (So the constant symbols di do not appear
in Γ or A.)

(a) Γ is satisfiable if and only if Γ(d⃗/x⃗) is satisfiable.

(b) Γ ⊧ A if and only if Γ(d⃗/x⃗) ⊧ A(d⃗/x⃗).
Proof. To state (a) more precisely, it states that there is an L-structure A and
an object assignment σ so that (A, σ) satisfies Γ if and only if there is a L′-
structure B which satisfies Γ(d⃗/x⃗). The relationship between A and B is that
B is the expansion of A to the language L′ with dBi = σ(xi). Reasoning as in
the proof of Theorem III.83 proves the desired equivalence.

Part (b) is an immediate consequence of part (a).

III.11 Definability

III.11.1 Definability of structures

Many mathematical notions such as groups, rings, fields, integral domains,
graphs, partial orders, total orderings, lattices, Boolean algebras, etc. can be

12The notation here assumes that the language L is countable, and hence the number
of formulas in Γ and, in particular, the number of free variables in Γ is countable. The
construction works, however, also for uncountable languages where Γ might use uncountably
many variables.
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defined with first-order axioms. The example of groups was discussed in Sec-
tion III.1. Letting L = {1, ⋅, ()−1}, where 1 is a constant symbol, ⋅ is a binary
function symbol, and ()−1 is a unary function symbol, then the class of all
groups can be characterized as being the class of L-structures that satisfy the
three (first-order) axioms for groups given in Equations (III.6).13 Because there
are only finitely many axioms for groups, we call the class of groups an “ele-
mentary class”.14

Definition III.89. Let L be a language. If Γ is a set of L-sentences, then
Mod Γ, the models of Γ is the class of L-structures which are models of Γ. If
A is a sentence, then ModA denotes the class of L-structures which satisfy A,
namely Mod{A}.

Definition III.90. Let L be a language and S be a class of L-structures.
The class S is an elementary class (EC) if there is an L-sentence A such that
S =ModA. The class S is an elementary class in the wide sense (EC∆) if there
is a set of L-sentences Γ such that S =Mod Γ.

If Γ is finite, then we can let A be the sentence ⋀Γ, the conjunction of the
members of Γ. Therefore, for a finite set Γ, Mod Γ =ModA is EC. For instance,
the class of groups is EC.

The torsion-free groups is an example of an elementary class in the wide
sense, namely an EC∆ class. Recall that Tk was defined to be the sentence
∀x(x ≠ 1 → xk ≠ 1). Letting Γ be the set of sentences consisting of the three
group axioms and the sentences Tk for k ≥ 2, the class of torsion-free groups is
equal to Mod Γ and thus is EC∆. On the other, it will be a consequence of the
Compactness Theorem in Section IV.5 that the class of torsion-free groups is
not EC and that the class of groups that are not torsion-free is not even EC∆.

Example III.91. We show that directed graphs and also undirected graphs
are elementary classes. Let the language be L = {E} for E a binary connective.
For directed graphs, we view E(x, y) as meaning there is an edge from vertex x
to vertex y. Let A be the sentence ∀x (¬E(x,x)); this expresses the property
that there are no loops in the directed graph. Then the class of directed graphs
(without loops) is equal to ModA, and hence it is EC.

The class of undirected graphs uses the same language L. In an undirected
graph, the edge relation must be symmetric. This can be expressed by the
sentence B equal to ∀x∀y (E(x, y) ↔ E(y, x)). Since the class of undirected
graphs has two axioms A and B, it is EC.

Exercise III.27 asks you to prove that the class of infinite graphs and the
class of cycle-free graphs are elementary in the wide sense (EC∆). These two
classes are not EC.

Example III.92. A linear order is a structure over the language L = {<} which
satisfies the following three sentences (axioms):

13For readers familiar with set theory: We call it the class of groups instead of the set of
all groups, because the class of all groups is not a set.

14In this context, the term “elementary” means “first-order”.
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(a) ∀x (¬x < x). Irreflexivity.

(b) ∀x∀y∀z (x < y ∧ y < z → x < z). Transitivity.

(c) ∀x∀y (x = y ∨ x < y ∨ y < x). Strong connectivity.

A linear order is dense if it additionally satisfies the axiom

(d) ∀x∀y (x < y → ∃z (x < z ∧ z < y)).
That is, a linear order is dense if, for every two distinct objects x and y, there
is an object z strictly between x and y. Clearly, the class of strict linear orders
and the class of dense linear orders (DLO’s) are both EC.

Example III.93. A field is a structure over the language 0,1,+, ⋅ where 0 and 1
are constant symbols and + and ⋅ are binary function symbols. The usual axioms
for fields are the sentences:

(a) ∀x∀y (x + y = y + x). Addition is commutative.15

(b) ∀x∀y (x + (y + z) = (x + y) + z). Addition is associative.

(c) ∀x (x + 0 = x ∧ 0 + x = x). Additive identity.

(d) ∀x∃y (x + y = 0 ∧ y + x = 0). Additive inverses.

(e) ∀x∀y (x ⋅ y = y ⋅ x). Multiplication is commutative.

(f) ∀x∀y (x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z). Multiplication is associative.

(g) ∀x (x ⋅ 1 = x ∧ 1 ⋅ x = x). Multiplicative identity.

(h) ∀x (x ≠ 0→ ∃y (x ⋅ y = 1 ∧ y ⋅ x = 1)). Multiplicative inverses.

(i) ∀x∀y∀z ((x + y) ⋅ z = (x ⋅ z) + (y ⋅ z)). Distributivity.

(j) 0 ≠ 1.

Thus the class of fields is EC.

Example III.94. An ordered field is a field that has a strict linear order that is
compatible with the field operations. The language of ordered fields is 0,1,+, ⋅,<.
The axioms for ordered fields consist of the axioms (a)-(c) of strict linear orders
from Example III.92, axioms (a)-(j) for fields from Example III.93, plus the
following two axioms that connect the order < to the field operations.

(a) ∀x∀y∀z (x < y → x + z < y + z).
(b) ∀x∀y (0 < x ∧ 0 < y → 0 < x ⋅ y).

Thus the class of ordered fields is EC.

Example III.95. A real closed field is an ordered field that satisfies exactly
the same first-order properties as the field R = (R,0,1,+, ⋅,<) of real numbers.
The axioms for real closed fields include all the axioms for ordered fields, plus
the following infinite set of axioms:

15The commutativity of addition follows from (i.e., is logically implied by) the other nine
axioms. Thus, this axiom could be omitted.
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(a) Every positive field element has a square root:

∀x (0 < x→ ∃y (y ⋅ y = x)).

(b) Every odd degree polynomial has a root: namely, if n is odd:

∀a0 ∀a1⋯∀an (an ≠ 0→ ∃x (an ⋅ xn + an−1 ⋅ xn−1 +⋯ + a1x + a0 = 0)).

Here xk, for k ∈ N, means the k-fold product of x with itself. (The expo-
nential function is not part of the language for real closed fields.)

There are infinitely many axioms for real closed fields of type (b), namely one
for each odd n ≥ 3. Hence the class of real closed fields is EC∆. (It can be
shown that the class of real closed fields is not EC.)

The most prominent example of a model of the axioms of real closed fields
is the field R = (R,0,1,+, ⋅,<) of the real numbers. It is straightforward to see
that all the axioms of real closed fields are satisfied by R. More than this is
true: the above axioms for real closed fields are sufficient to logically imply all
sentences that are true in R. The next definitions make this precise.

Definition III.96. A theory over a language L is set T of L-sentences which
is closed under logical consequence. In other words, if A is an L-sentence and
T ⊧ A, then A ∈ T .

Example III.97. The theory of groups is the set of sentences that are true in
all groups. Equivalently, the theory of groups is the set of logical consequences
of the three axioms for groups that were given earlier in (III.6).

The theory DLO of dense linear orders is the set of logical consequences of
the axioms (a)-(d) given in Example (III.92).

The theory RCF of real closed fields is the set of logical consequences of the
axioms for real closed fields presented across Examples (III.92)-(III.95).

The example of RCF is particularly interesting because it turns out that the
axioms for RCF completely characterize what is true in the structure R of real
numbers. Indeed, for any sentence A in the language of RCF either RCF ⊧ A or
RCF ⊧ ¬A.16 Since RCF is closed under logical consequence this means that,
for every sentence A, either A ∈ RCF or ¬A ∈ RCF. That is to say, RCF is
“complete”:

Definition III.98. A theory T (over the language L) is complete if, for every
L-sentence A, either A ∈ T or ¬A ∈ T .

Definition III.99. Let A be an L-structure. The theory of A is denoted ThA
and is the set of L-sentences

ThA = {A ∶ A is an L-sentence and A ⊧ A}.
16This important result was proved by Tarski [19], but its proof is too complex for us to

present it.
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Note that ThA must be complete. This is because any sentence A will be
either true or false in A, and thus one of A or ¬A will be in ThA.

Definition III.100. Two L-structures A and B are elementarily equivalent
if ThA and ThB are equal. We write A ≡ B to denote that A and B are
elementarily equivalent.

Unwinding the definitions, A and B are elementarily equivalent if and only
if they satisfy exactly the same L-sentences. The adverb “elementarily” is used
since “elementary” is sometimes used to mean “first-order”.

It is also useful to talk about the theory of a class of structures:

Definition III.101. Let S be a class of L-structures. The theory of S is denoted
ThS and is the set of L-sentences true in all members of S.

ThS = {A ∶ A is an L-sentence and A ⊧ A for all A ∈ S}.

For example, if S is the class of all groups, then ThS is the theory of groups,
namely the set of sentences true in all groups. In general, ThS may not be
complete. For single structure A, ThA is the same as Th{A} and is complete.

Example III.102. ThR is equal to RCF. Any two models of RCF are elemen-
tarily equivalent. This follows immediate from the fact that RCF is complete
and that R ⊧ RCF so RCF ⊆ ThR. (The proof of these assertions is beyond
the scope of this book.)

Example III.103. The theory of groups is not complete. For example, some
groups are order two and satisfy ∀x (x ⋅ x = 1), whereas other groups do not
satisfy this.

Example III.104. The theory DLO of dense linear orders is not complete.
For example, consider the following sentence which asserts that there is no least
member of the order (i.e., there is no “left endpoint”)

∀x∃y (y < x). (III.36)

This sentence is true in some models of DLO; for instance in the structure (Q,<)
of the usual ordering on the rational numbers. On the other hand, it is false
in other models of DLO. An example is (Q≥0,<) of the usual ordering on the
nonnegative rational numbers. It is easy to check that both (Q,<) and (Q≥0,<)
satisfy all the axioms for dense linear order.

Example III.105. The theory of dense linear order (DLO) without endpoints
is axiomatized as DLO plus two axioms asserting there is no minimum or max-
imum element:

∀x∃y (y < x) and ∀x∃y (x < y).
The first of these was already given in Equation (III.36). The set of rationals
(Q,<) is an example of a model of this theory. It can be shown that the theory
of DLO without endpoints is complete. In fact, any countable model of the
theory DLO without endpoints is isomorphic to (Q,<).
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The theory of arrays. The theory of arrays is rather different from the
above examples; instead of defining a conventional mathematical structure, it
defines a dynamic construction used in computer programming. As such, the
theory of arrays might be a small part of a theory for proving the correctness
of programs. Indeed, the theory of arrays can be incorporated into widely used
software verification theorem provers.

The theory of arrays deals with three sorts of objects: arrays, indices, and
values. When writing an informal expression a[i] = x, the “a” is an array,
“i” is an index, and “x” is a value. The most natural way to deal with these three
sorts of objects is to use a “sorted” logic where variables are labeled explicitly
as being of different “sorts” or “types” and as ranging over an appropriate
(sub)universe of objects. In other words, a sorted logic uses a separate universe
for each sort of object. To formalize sorts within our (non-sorted) first-order
logic, we introduce three unary predicates Array , Index and Value and let the
formulas

Array(z), Index(z) and Value(z)

denote that z is an array, an index, or a value, respectively. We could optionally
include an axiom that states that every object z satisfies exactly one of the three
predicates, but it is not strictly speaking necessary.

The theory of arrays uses two function symbols Read and Write. The Read
function takes two inputs: an array a and an index i. It returns a value x,
which is intended to be the value stored in the array a at the location specified
by the index i. The function Write(a, i, x) takes three inputs: an array a, an
index i and a value x. It returns an array b which is the array obtained from a
by changing the value at the location indexed by i to the value y. Note that
the intuitive action of the function Write is that it makes a copy of the array a,
updates its value at location i to equal x, and returns the new updated array.
This differs somewhat from the way software programs update an array value
without making a copy of the array, but it still allows reasoning about the action
of read and write operations.

In the literature, the axioms for arrays would typically be expressed by using
(something similar to) the following implications:

a ∶ Array ; i ∶ Index ⇒ Read(a, i) ∶ Value
a ∶ Array ; i ∶ Index ;x ∶ Value ⇒Write(a, i, x) ∶ Array

a ∶ Array ; i ∶ Index ;x ∶ Value ⇒ Read(Write(a, i, x), i) = x
a ∶ Array ; i, j ∶ Index ;x ∶ Value ⇒ i ≠ j → Read(Write(a, i, x), j) = Read(a, j)

a, b ∶ Array ⇒ ∀i ∶ Index(Read(a, i) = Read(b, i))→ a = b

A notation such as “a ∶ Array” means that a is a variable that ranges over objects
of type “array”. Similarly, “Read(a, i) ∶ Value” means that that Read(a, i)
is an object of type “value”. The variables in the implications are implicitly
universally quantified. The semicolons to the expression before the “⇒” act as
if they are conjunctions. We do not adopt these notations; instead, the above
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axioms can be reexpressed in the syntax of first-order logic as:

∀a∀i [Array(a) ∧ Index(i)→ Value(Read(a, i))]
∀a∀i∀x [Array(a) ∧ Index(i) ∧Value(x)→ Array(Write(a, i, x))]
∀a∀i∀x [Array(a) ∧ Index(i) ∧Value(x)→ Read(Write(a, i, x), i) = x]
∀a∀i∀j ∀x [Array(a) ∧ Index(i) ∧ Index(j) ∧Value(x) ∧ i ≠ j

→ Read(Write(a, i, x), j) = Read(a, j)]
∀a∀b (Array(a) ∧Array(b)→ [∀i(Index(i)→ Read(a, i) = Read(b, i))→ a = b]

Array , Index , and Value are unary predicates; Read is a binary function symbol,
and Write is a 3-ary function symbol. The first two axioms specify the sorts of
the functions Read and Write. The third axiom states that if one writes x to
location i of an array, and reads from the same location, one gets the value x
back. The fourth axiom states that if one writes x to location i, it does not
change the value stored at any different location j.

The fifth axiom is called the axiom of extensionality. It states that if two
arrays have exactly the same contents, then they are actually the same array. By
equality principle of Theorem III.76 the converse implication will automatically
hold; namely, if a = b then ∀i (Read(a, i) = Read(b, i)) holds. Thus, the axiom
of extensionality actually states that ∀i(Index(i)→ Read(a, i) = Read(b, i)) can
be taken as the definition of equality.

III.11.2 Definability in structures

We discussed above how a set of axioms can define a theory T , and thus a class
of structures ModT . For a different notion of first-order definability, we work
with a fixed structure A and discuss how objects, relations, or functions over A
can be defined using first-order formulas. First, a formula with k free variables
defines a k-ary relation in the natural way:

Definition III.106 (Definability of a relation in A). Let A be a structure, and
let B = B(x1, . . . , xk) be a first-order formula containing only x1, . . . , xk free.
Then B defines the k-ary relation on ∣A∣ equal to

{⟨a1, . . . , ak⟩ ∶ a1, . . . , ak ∈ ∣A∣ and A ⊧ B(a1, . . . , ak)}.

This relation is said to be definable in A.

For example, we earlier discussed that the center of a group can be defined
by the formula ∀x2 (x1 ⋅ x2 = x2 ⋅ x1). As another example, the earlier-discussed
formula Prime(x1) defines the set of primes in the structure N of nonnegative
integers.

A related notion is the definability of a particular object in A. This is the
same as defining a unary relation that has a single member:

Definition III.107 (Definability of an individual in A). Let A be a structure
and let a ∈ ∣A∣. The object a is definable in A if there is a formula B(x1) with
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x1 the only variable free in B so that a is the unique member of ∣A∣ such that
A ⊧ B(a). In this case, we say that B defines the object a in A.

For example, in N = (N,0, S,+, ⋅), the object 1 is defined by x1 = S(0) and
also by ∀x2 (x1 ⋅ x2 = x2).

Definition III.108. Let B(x) be a formula. We write ∃!xB, namely “there
exists a unique x such that B holds”, as an abbreviation for the formula

∃x [B(x) ∧ ∀y (B(y)→ y = x)].

Thus, B(x) defines an object in A if and only if A ⊧ ∃!xB(x). Finally, a
function is said to be definable in A if and only if its graph is definable in A:

Definition III.109 (Definability of a function in A). Let A be a structure, and
let B = B(x1, . . . , xk, xk+1) be a first-order formula containing only x1, . . . , xk+1
free. Suppose that

A ⊧ ∀x1 . . .∀xk ∃!xk+1B(x1, . . . , xk, xk+1).

Then B defines the k-ary function f on ∣A∣ such that, for a1, . . . , ak ∈ ∣A∣, we have
f(a1, . . . , ak) is equal to the (unique) ak+1 in ∣A∣ such that A ⊧ B(a1, . . . , ak, ak+1)
holds. When this holds, we say that f is definable in A.

Example III.110. Let A be a linear order. Thus A is an L-structure for the
language L = {<}. A non-strict ordering ≤ can be defined for A with the formula

x1 < x2 ∨ x1 = x2.

Example III.111. As usual, let N be the nonnegative integers with the lan-
guage 0, S,+, ⋅. The binary relation ≤ can be defined by

∃x3 (x1 + x3 = x2).

This is verified by noting that the condition is indeed equivalent to x1 ≤ x2. The
relation < can be defined by ∃x3 (x1 + S(x3) = x2).

The integer square root function x↦ ⌊√x⌋ can be defined in N by

x2 ⋅ x2 ≤ x1 ∧ x1 < S(x2) ⋅ S(x2).

This last example illustrates an important principle: if a function, predicate,
or object is definable in an L-structure A, then we can effectively augment the
language L to include that definable function or predicate or object. Thus,
it was permissible to claim that the square root function ⌊√x⌋ is definable by
defining with a formula using < and ≤, since the definable symbols < and ≤ could
be replaced with the use of formulas over the original language (0, S,+, ⋅). In
particular, ⌊√x⌋ is defined by

∃x3 (x2 ⋅ x2 + x3 = x1) ∧ ∃x3 (x1 + S(x3) = S(x2) ⋅ S(x2)).
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It is easy to replace defined predicate symbols with their definition. It is
a little more difficult to replace defined objects or defined functions with their
definitions. The next section will describe formally how to remove defined ob-
jects and functions; in the meantime, the next example illustrates the general
principle.

Example III.112. Let A be an L-structure. Suppose that, in A, an object a
is defined by the formula Ba(x1), a unary function f is defined by the formula
Bf(x1, x2), and a binary function g is defined by Bg(x1, x2, x3). Let P be a
unary predicate symbol in L. Then P (g(f(x), a) is can be expressed in A by
the formula

∃u∃v ∃w (Ba(u) ∧Bf(x, v) ∧Bg(v, u,w) ∧ P (w)).

Note that Ba(u) enforces that u = a, and Bf(x, v) enforces that f(x) = v, and
finally Bg(v, u,w) enforces that w = g(v, u) = g(f(x), a).

The above definitions were about definability in a structure; The next sec-
tion will define the notion of definability in a theory using essentially the same
constructions.

III.12 Extensions by Definitions

Section III.11 defined what it means for predicates, constants, and functions to
be definable in a structure. We now discuss how the same constructions can
be used to define and introduce new predicate symbols, constant symbols, or
function symbols in a theory. We shall see that adding new defined symbols is
“conservative” in that does not increase the power of the theory.

For the rest of this section, let T be a fixed L-theory. Symbols such as Q,
f , c are presumed to be new non-logical symbols that are not in L.

Definition III.113. Any formula B(x1, . . . , xn) with no free variables other
than x1, . . . , xn defines an n-ary predicate Q in T ; the defining axiom for Q is
the sentence Def Q:

∀x1⋯∀xn [Q(x1, . . . , xn)↔ B(x1, . . . , xn)].

Definition III.114. Let L′ ⊇ L. Suppose Γ is an set of L-sentences and ∆ is
a set of L′-sentences. We say that ∆ is a conservative extension of Γ provided
that ∆ ⊧ Γ and that, for every L-sentence A, if ∆ ⊧ A then Γ ⊧ A. We write
Γ ≼∆ to denote that ∆ is a conservative extension of Γ.

Thus, if ∆ is a conservative extension Γ then Γ and ∆ have the same L-
consequences. This is useful when we want to augment Γ with L′-sentences
without changing the L-consquences.
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Theorem III.115. Let T be a theory. Let the n-ary predicate Q be defined
by B(x1, . . . , xn). Let L′ = L∪ {Q} and T ′ be the theory with axioms T +Def Q.
Then

(a) T ′ is a conservative extension of T .
(b) For every L′-formula A there is an L-formula A∗ such that T ′ ⊧ A↔ A∗.

The theorem states that when the defined predicate Q is added to T , the
resulting theory T ′ cannot prove any new L-sentence that T could not already
prove. Furthermore, anything that can be expressed with the new symbol Q
can already be expressed without it.

Proof. We first prove (a). Clearly T ′ ⊧ T . Suppose A is an L-sentence such
that T ⊭ A. We’ll show that T ′ ⊭ A to prove the conservativity. Since T ⊭ A,
there is a model A of T ∪ {¬A}. Expand A to a L′-model B by choosing the
interpretation of Q to be

QB = {⟨a1, . . . , an⟩ ∶ A ⊧ B(a1, . . . , an), a1, . . . , an ∈ ∣A∣}.

Since B is an expansion of A, exactly the same L-sentences are true in A as are
true in B (by Theorem III.87). By choice of QB, we have B ⊧ Def Q. Therefore
T ′ ∪ {¬A} is satisfied by B. Hence T ′ ⊭ A.

The proof of (b) is almost trivial. To form A∗, replace every subformula in A
of the form Q(t1, . . . , tn) with the subformula B(t1, . . . , tn), using an alphabetic
variant of B if necessary to avoid clashes with bound variables. Certainly,
Def Q ⊧ Q(t⃗)↔ B(t⃗). Therefore, by Theorem III.50, Def Q ⊧ A↔ A∗, and thus
T ′ ⊧ A↔ A∗.

Similar constructions work for introducing defined function symbols and
predicate symbols. The added complication is that the theory T needs to prove
the uniqueness and totality conditions for a function or a constant before that
function or constant can be introduced as a defined function symbol. The
totality condition is crucial; the uniqueness condition can be omitted but then
a less faithful extension is obtained.

We’ll show how this works for functions. After that, the definability of
constants can be viewed as the same as introducing a 0-ary function.

Definition III.116. Let T and L be as above. Let B(x1, . . . , xn, xn+1) be an
L-formula with no free variables other than x1, . . . , xn+1.

(a) The formula B defines a function f in T if

T ⊧ ∀x1⋯∀xn ∃!xn+1B(x1, . . . , xn, xn+1). (III.37)

(b) The formula B ambiguously defines a function f in T if

T ⊧ ∀x1⋯∀xn ∃xn+1B(x1, . . . , xn, xn+1). (III.38)

In either case, the defining axiom for f is the sentence Def f :

∀x1⋯∀xn ∀xn+1 [f(x1, . . . , xn) = xn+1 → B(x1, . . . , xn, xn+1)].
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When B (unambiguously) defines f , the uniqueness condition in Equa-
tion (III.37) means that the defining axiom Def f is equivalent (provably in T )
to

∀x1⋯∀xn ∀xn+1 [f(x1, . . . , xn) = xn+1 ↔ B(x1, . . . , xn, xn+1)].
The next theorem states that adding an (ambiguously) defined function sym-

bol does not add any new L-consequences.

Theorem III.117. Let the n-ary function f be definable or ambiguously defin-
able by B(x1, . . . , xn+1) in T . Let L′ = L∪{f} and T ′ be the theory with axioms
T +Def f . Then T ′ is a conservative extension of T .

Proof. The proof is similar to the proof of Theorem III.115(a). Suppose T ⊭ A
where A is an L-sentence. Let A be an L-model of T ∪ {¬A}. The sen-
tence (III.38) is true in A. Therefore for every a1, . . . , an ∈ ∣A∣, there is at
least one b ∈ ∣A∣ such that A ⊧ B(a1, . . . , an, b); pick one and denote it ba1,...,an .
(This uses the Axiom of Choice if f is only ambiguously defined.) Then expand
A to a L′-structure B by letting the interpretation of f satisfy

fB(a1, . . . , an) = ba1,...,an .

Since B is an expansion of A, the structures A and B satisfy the same L-
sentences. Thus B ⊧ T ∪ {¬A}. Finally, by choice of fB, we have B ⊧ Def f .
Therefore T,Def f ⊭ A.

The next theorem is for defined function symbols, not ambiguously defined
function symbols. It states that formulas using the defined function symbol
can be rewritten as provably equivalent formulas that do not use the defined
function symbol.

Theorem III.118. Let the n-ary function f be definable by B(x1, . . . , xn, xn+1)
in T . Let L′ = L ∪ {f} and T ′ be the theory with axioms T +Def f . Then, for
every L′-formula A, there is an L-formula A∗ such that T ′ ⊧ A↔ A∗.

This is very similar to Theorem III.115(b), but its proof is more complicated.
The problem is that we have to indirectly replace uses of f and that terms may
include multiple, nested occurrences of f .

Example III.119. To understand the idea behind the proof of the theorem,
consider the example of a binary function f which is defined in T by a formula
B(x1, x2, x3). Suppose A is the formula ∀xQ(a + f(x, f(x, a)) where Q is a
predicate symbol, a is a constant symbol, and + of course is a binary function
symbol. To form A∗ such that T ⊧ A↔ A∗, we let A∗ be

∀x∃y ∃z [B(x, a, y) ∧B(x, y, z) ∧Q(a + z)].

Let Uniqf be the sentence from (III.37) expressing unique existence. Then
{Uniqf ,Def f} logically implies the sentences

∀x [Q(a + f(x, f(x, a)))↔ ∃y (B(x, a, y) ∧Q(a + f(x, y)))].
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and
∀x∀y [Q(a + f(x, y))↔ ∃z (B(x, y, z) ∧Q(a + z))].

Putting these together, a little work shows that Uniqf ,Def f ⊧ A↔ A∗. Hence
T ⊧ A↔ A∗.

Proof of Theorem III.118. Suppose A has k occurrences of the symbol f . We
will construct a sentence A′ with only k−1 occurrences of f such that Uniqf ,Def f ⊧ A↔ A′.
Iterating this k times yields the desired A∗. Choose an occurrence of a term
f(t1, . . . , tk) in A such that f does not appear in any of its arguments ti. For
shorter notation, we write t⃗ instead of t1, . . . , tk. Let C(f(t⃗)) denote the atomic
subformula of A where f(t⃗) occurs. In this notation, C = C(y) is an atomic
formula in which there is a single occurrence of y. Let C ′ be the formula

∃z (B(t⃗, z) ∧C(z))

where z is a variable that does not appear in C(f(t⃗)). Then Uniqf ,Def f ⊧
C ↔ C ′. Form A′ by replacing the subformula C(f(t⃗)) of A with C ′. Then
Uniqf ,Def f ⊧ A↔ A′.

III.13 A Game-Theoretic Definition of Truth

The Tarskian definition of truth for first-order formulas, as given in Defini-
tion III.22, defined the meanings of “∀” and “∃” in terms of the English “for
all” and “for some”. This section presents another way of thinking about the
meanings of first-order formulas in terms of game semantics. This gives a more
dynamic and more intuitive way of visualizing truth, namely in terms of the
existence of winning strategies for games played by two players.

We first describe how the game semantics works to characterize the truth
of prenex formulas. The game is played by two players, somewhat whimsically
named “Alice” and “Eve”. Alice and Eve are presented with a L-structure A
and a L-formula B(y1, . . . , yℓ) and members a1, . . . , aℓ ∈ A. There are no other
variables appearing free in B other than y1, . . . , yℓ. Eve is attempting to prove
that B(a1, . . . , aℓ) is true in A; conversely, Alice is attempting to prove that it
is false in A. Eve will act by giving values for existentially quantified variables;
Alice will act by giving values for universally quantified variables. (The names
“Alice” and “Eve” are chosen to have initials “A” and “E” for “∀” and “∃”.)
The game halts when presented with a quantifier-free formula, at which point
Eve wins if A ⊧ B(a⃗) and Alice wins if A ⊭ B(a⃗).

The structure A stays the same throughout the game. The formula B(y1, . . . , yℓ)
and the objects a1, . . . , aℓ change after each step. For each move in the game,
there are three possible situations;

∃-move: Suppose B(a1, . . . , aℓ) begins with an existential quantifier, and thus
has the form ∃yℓ+1C(a1, . . . , aℓ, yℓ+1). Then it is Eve’s turn to move and, as
her move, she selects an object aℓ+1. The next round of the game considers
C(a1, . . . , aℓ, aℓ+1) in place of B(a1, . . . , aℓ).
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∀-move: Suppose B(a1, . . . , aℓ) begins with a universal quantifier and thus has
the form ∀yℓ+1C(a1, . . . , aℓ, yℓ+1). Then it is Alice’s turn to move and, as
her move, she selects an object aℓ+1. The next round of the game considers
C(a1, . . . , aℓ, aℓ+1).

Quantifier-free: If B(a1, . . . , aℓ) is quantifier-free, the game ends. Eve wins the
game if B(a1, . . . , aℓ) is true in A. Otherwise, Alice wins.

Example III.120. This and the next example are based on the structure shown
in Figure III.3. The language consists of a binary relation E and equality (=).
The universe is equal to {0,1,2,3,4,5,6,7}. We consider two ways to write
formulas Dist4(x, y) that state there is a path of length exactly 4 between objects
a and b.

(a) First let Dist(x, y) be the formula

∃z1 ∃z2 ∃z3 [E(x, z1) ∧E(z1, z2) ∧E(z2, z3) ∧E(z3, y)].

With x and y equal to 0 and 4, Alice and Eve play the game on Dist(0,4).
This formula is true in the structure A. Since the quantifiers are all ex-
istential, Eve makes all the moves. Her winning strategy is to set a1 = 1,
a2 = 2, and a3 = 3. Then, since

E(0,1) ∧E(1,2) ∧E(2,3) ∧E(3,4)

is true, Eve wins the game. On the other hand, Eve does not have a
winning strategies for the games on Dist(0,3) and Dist0,5), reflecting the
fact that these are false.
The formula Dist4 is a straightforward way to express that there is a path
of length 4. It has the disadvantage, however, that when generalizing this
to form a formula Distℓ about having a path of length ℓ > 4, a total of ℓ−1
quantifiers.

(b) Now consider another formula that expresses the same property as Dist4(x, y):

∃z2 ∀u∃z′ [(u = x→ E(x, z′) ∧E(z′, z2)) ∧ (u ≠ x→ E(z2, z′) ∧E(z′, y))].

When there is a length 4 path from x to y, Eve’s winning strategy is to
start by picking z2 to be the midpoint of such a path. Alice can then
either choose u to equal x to challenge the fact there is path from x to z2
of length 2 or choose u to equal z2 to challenge the fact there is a path
from z2 to y of length 2. Eve replies by setting z′ to be either the midpoint
of the first length 2 subpath (if Alice selected x) or the midpoint of the
second length 2 subpage (if Alice selected z2.17

17Our analysis omitted considering the case where z2 is equal to x, but the formula and the
corresponding game still work in that case too.
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0 1 2 3 4 5 6 7

Figure III.3: The structure A for Examples III.120 and III.121 is a directed
graph on eight vertices. The directed edges from i to i+1 indicate that E(i, i+1)
is true.

Example III.121. (a) Continuing the previous example, here is a formula
Dist8(x, y) that expresses there is path of length exactly 8 from x to y:

∃z4 ∀u∃z′ ∀u′ ∃z′′ [(u = x ∧ u′ = x→ E(x, z′′) ∧E(z′′, z′))∧
(u = x ∧ u′ ≠ x→ E(z′, z′′) ∧E(z′′, z4)) ∧
(u ≠ x ∧ u′ = x→ E(z4, z′′) ∧E(z′′, z′)) ∧
(u ≠ x ∧ u′ ≠ x→ E(z′, z′′) ∧E(z′′, y)) ].

The idea is that Eve chooses z4 to be the midpoint of a length 8 path from
x to y. Then Alice either chooses u to be x to indicate there is no length 4
path from x to z4 or chooses u ≠ x to indicate there is no length 4 path
from z4 to y. Then Eve picks the midpoint z′ of the length 4 path that
was challenged by Alice, either from x to z4 or from z4 to y. Next, Alice
picks u′ to be equal to x to challenge the existence of the first subpath of
length 2, or to be unequal to z to challenge the existence of the second
claimed subpage of length 2. Finally, Eves chooses the middle vertex of
that subpath of length 2.
This example generalizes to formulas for Distℓ that require only O(log ℓ)
quantifiers. However, these still require O(ℓ log ℓ) size formulas overall.

(b) Here is yet another construction that gives formulas equivalent to Distℓ of
size only O(ℓ). For the ℓ = 8, the example is

∃z4 ∀u∃x′ ∃z′ ∃y′∀u′ ∃x′′ ∃z′′ ∃y′′

( [(u = x→ x′ = x ∧ y′ = z4) ∧ (u ≠ x→ x′ = z4 ∧ y′ = y)]
∧ [(u = x′ → x′′ = x′ ∧ y′ = z′)→ (u ≠ x′ → x′′ = z′ ∧ y′′ = y′)]
∧E(x′′, z′′) ∧E(z′′, y′′) ).

The idea for this construction is that Eve’s winning strategy (if any) is
based on choosing values so that there is a length 4 path from x′ to y′ with
midpoint z′ and there is a length 2 path from x′′ to y′′ with midpoint z′′.

Game semantics are frequently as a tool to show that certain concepts are
not expressible by first-order formulas, especially in the study of Finite Model
Theory. Many of these constructions are based on “Ehrenfeucht-Fräıssé” games
and its variants.
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Exercises

Exercise III.1. Using the predicates and function symbols from Section III.1,
express the following statements in first-order logic.

(a) “John has not read any books.”
(b) “John’s mother has not read any books.”
(c) “Every book has been read by at least one person.”
(d) “There is a book that no one has read.”
(e) “No one likes every book they have read.”
(f) “John likes every book that his mother likes.”

Exercise III.2. Continuing to use the predicates and function symbols from
Section III.1, express the following statements in first-order logic.

(a) “Everyone has a read a book that no one else has.”
(b) “Someone has read a book that no one else has.”
(c) “John has read exactly one book.”
(d) “John has read exactly two books.”
(e) “John has read every book that has ever been read (by anybody).” Equiv-

alently, “If John hasn’t read a book, then no one has read it.”

Exercise III.3. Express the following as first-order formulas. Use the first-
order language with unary predicates Jazz(x) and Kpop(x), the binary pred-
icates Likes(x, y) and Knows(x, y), the constant symbols Joan and John, and
the equality sign =. Jazz(x) means “x is a jazz musician”, Kpop(x) means “x is
a K-pop musician”, Likes(x, y) means “x likes y”, and Knows(x, y) means “x
knows y”. Variables range over the universe of people.

(a) Jazz musicians do not like K-pop musicians.
(b) Joan knows a jazz musician who likes every K-pop musician.
(c) John likes everyone he knows.
(d) There is no one whom John and Joan both like.
(e) One of John and Joan is a jazz musician, and the other is a K-pop musician.
(f) Everyone that John likes knows a jazz musician.
(g) Every K-pop musician knows a jazz musician who does not like any K-pop

musicians.

Exercise III.4. A quote that is sometimes (mis?)attributed to Abraham Lin-
coln is: “You can fool some of the people all of the time. You can fool all of the
people some of the time. But you cannot fool all of the people all of the time.”
Let these three assertions be:

(a) You can fool some of the people all of the time.
(b) You can fool all of the people some of the time.
(c) You cannot fool all of the people all of the time.

Express these three sentences in first-order logic. Let variables range over the
universe that includes all people and all times. Let Person(x) mean x is a
person, and Time(x) mean x is a time. Let F (x, t) mean you can fool person
x at time t.

Sentences (a) and (b) each have two possible translations to first-order logic
that are not logically equivalent. Give both translations for these two. Explain
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how the two translations differ in meaning. Also, give a translation of (c) to
first-order logic. (This exercise is taken from the textbooks of Enderton [5] and
Mendelsohn [13].)

Exercise III.5. Let P be a unary predicate, Q a binary predicate, f a unary
function, g a binary function, and c a constant symbol. Answer questions (i)-(iii)
about the following expressions:

(a) c
(b) x3

(c) g(c, x3)
(d) g(c, x3) =
(e) c = g(f(x2), x3)
(f) g(f(x1), c) = g(f(x1))

(g) P (c = g(f(x2), x3))
(h) f(c) = ¬g(x1, x1)
(i) Q(c, x1) = P (c)
(j) ∀x1 (P (x1)→ Q(x1, x1))
(k) ∀x1∈P (x1)Q(x1, x1)
(l) ∀x1 (Q(x1, x1) ∧ x1 = c)

(i) Which of these are syntactically correct terms?
(ii) Which of these are syntactically correct atomic formulas?

(iii) Which of these are syntactically correct formulas? (For the purposes of this
exercise, a formula still counts as syntactically correct if some parentheses
are omitted or extra parentheses are added.)

Exercise III.6. Express the following about least common multiples and great-
est common divisors in LPA, over the nonnegative integers.

(a) If x and y are non-zero, there is a least non-zero value z which is a multiple
of both x and y.

(b) If x and y are not both zero, there is a greatest common divisor z of x
and y and this common divisor is ≥ 1.

Exercise III.7. Let c be a constant symbol and f be a unary function symbol.
Give an example of a structure A which satisfies

Γ = {∀x∀y (x ≠ y → f(x) ≠ f(y)), ∀xf(x) ≠ c}.
In this and subsequent exercises, describe the universe of structure and the
interpretations of the non-logical symbols explicitly using set notation.

Exercise III.8. Let E be a binary predicate symbol. Give a structure B such
that B ⊧ ∀x∀y (E(x, y)→ ¬E(y, x)).
Exercise III.9. Let f be a unary function symbol. Give a structure C such
that C ⊧ ∀x (x ≠ f(x) ∧ x ≠ f(f(x)).
Exercise III.10. Let Γ be the set of formulas {x1 ≠ x2, P (x1) → ∀x3 P (x3)}.
Give an example of a structure A and an object assignment σ that illustrates
that Γ ⊭ ¬P (x1).
Exercise III.11. Work in the language with a unary predicate P (x) and (as
usual) the equality sign =. Express the following as first-order sentences.

(a) There is a unique x satisfying P (x).
(b) There are at least two objects x that satisfy P (x).
(c) There are at least three objects x that satisfy P (x).
(d) There are exactly two objects x that satisfy P (x).
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Exercise III.12. Work in the same language as the previous exercise. For
k ≥ 0, let AtMostk, AtLeastk and Exactlyk be the assertions that there are
at most k, at least k, and exactly k (respectively) many objects x satisfying
property P (x).

(a) Give general constructions, for arbitrary fixed k, of first-order sentences
that express the assertions AtMostk, AtLeastk and Exactlyk.

(b) Analyze the sizes of the sentences you constructed for AtMostk, AtLeastk
and Exactlyk. Do they use O(k2) many symbols? Do they use O(k) many
symbols?18

(The most straightforward constructions use O(k2) many symbols, but it is not
too hard to express them using only O(k) many symbols. To construct formulas
that require only O(k) many symbols, the suggestion is to start with AtMostk.)

Exercise III.13. Work in the language L with the symbol = and no non-logical
symbols. Γ said to have a model of cardinality n if there is a structure A so that
A ⊧ Γ and its universe ∣A∣ has size n. Give an example of a set Γ of L-sentences
which has models of cardinality 2n for all integers n > 0, but does not have any
model of cardinality 2n+ 1 for any integer n ≥ 0. Call this the “even cardinality
finite models” property.

Exercise III.14. Give a language L′ and a finite set Π of L′-sentences so
that the “even cardinality finite models” property of the previous exercise holds
for Π. Explain why your example works. (In contrast to the previous exercise,
you can choose a language L′ but you must use a finite set Π.)

Exercise III.15. Let A and B be formulas.

(a) Prove that ∃x (A ∨B) ⊧) ∃xA ∨ ∃xB.
(b) Prove that ∀x (A ∧B) ⊧) ∀xA ∧ ∀xB.

[Hint: These are fairly easy to prove using the definition of truth. Part (b) can
be proved as a consequence of part (a), or vice-versa; by expressing ∧ in terms
of ∨ and ∀ in terms in of ∃. Part (a) was used in the proof of Lemma III.80.]

Exercise III.16. Suppose x does not have a free occurrence in the formula A.
Prove that A ⊧) ∃xA and A ⊧) ∀xA. (The first part, A ⊧) ∃xA, was used in
the proof of Lemma III.80.)

Exercise III.17. Prove the following by using the definition of truth.

(a) ⊧ ∀x (A→ B)→ ∃xA→ ∃xB.
(b) ⊧ ∀x (A→ B)→ ∀xA→ ∀xB.

Exercise III.18. Prove (a)-(d). A and B are formulas; P and Q are unary
predicate symbols. Prove (a) using the definition of truth. Prove (b)-(d) by
giving a structure that illustrates the non-implication. (Part (a) was used in

18O(k) and O(k2) are “big-Oh notation”. O(k) means having size bounded by c ⋅k for some
constant c. O(k2) means having size bounded by c ⋅ k2 for some constant c.
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the proof of Theorem III.61.)
(a) ∀x (A↔ B) ⊧ ∀xA↔ ∀xB.
(b) ∀xP (x)↔ ∀xQ(x) ⊭ ∀x (P (x)↔ Q(x)).
(c) ∃x (P (x)↔ Q(x)) ⊭ ∃xP (x)↔ ∃xQ(x).
(d) ∃xP (x)↔ ∃xQ(x) ⊭ ∃x (P (x)↔ Q(x)).

Exercise III.19. Suppose x, y, z, u, v are distinct variables. Let A be the for-
mula

∃x [x ≤ y ∧ ∀y (P (y, z)→ ∃z(y ≤ z))].

(a) Write out the formula A and label which occurrences of variables are free
occurrences and which are bound occurrences.

(b) What is A(g(0, u)/z)?
(c) What is A(f(v), g(0, u)/y, z)?
(d) What is A(g(w,0), f(v), g(0, u)/x, y, z)?
(e) Give an alphabetic variant B of A so that h(x, y, z) is substitutable for y

in B. Rename as few bound variables as possible.
(f) Give an alphabetic variant C of A so that h(x, y, z) is substitutable for z

in C. Rename as few bound variables as possible.

Exercise III.20. Carry out the following substitutions by giving the term or
formula that results from the substitution.

(a) Let t be the term f(g(g(0, z), y + z)). What is t(0/z)?
(b) For the same term t, what is t(f(0),0/x, z)?
(c) Let A be ∀x [y = x→ ∃y (P (x, y)→ x = z ∨ y = z)]. What is A(g(0, u)/z)?
(d) For the same A, what is A(f(v), g(0, u)/y, z)?
(e) For the same A, what is A(g(w,0), f(v), g(0, u)/x, y, z)?

Exercise III.21. Let A be the same formula as in the previous exercise. Give
an example of an alphabetic variant B of A such that x + y + z is substitutable
for z in B.

Exercise III.22. For each of the following statements, state whether it is true
for all formulas A or not. If not true, give a counterexample.

(a) The term 0 is substitutable for x1 in A. (0 is a constant symbol.)
(b) The term x1 is substitutable for x1 in A.
(c) The term x2 is substitutable for x1 in A.
(d) If the term x2 is substitutable for x1 in A, then the term x1 is substitutable

for x2 in A(x2/x1).

Exercise III.23. For each of the following statements, state whether it is true
for all formulas A, terms t, and variables x. If not true, give a counterexample.

(a) If t is a closed term, then t is substitutable for x in A.
(b) The term f(x,x) is substitutable for x in A.
(c) The formula x = x is substitutable for x in A.
(d) If t is substitutable for x in A, then A(t/x) is a formula.
(e) If t is not substitutable for x in A, then A(t/x) is a formula.
(f) If A(t/x) is a formula, then t is substitutable for x in A.
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Exercise III.24. Show that the principle of universal instantiation needs the
assumption that t is substitutable for x in A. To do this, give an example of a
formula A and a term t such that ∀xA→ A(t/x) is not logically valid.

Exercise III.25. For each of the following, give a logically equivalent prenex
formula.

(a) ∃xP (x)→ ∃xQ(x,x).
(b) ∃xP (x)↔ ∃xQ(x,x).
(c) ∀x∃y P (x, y)→ ∃x∀y P (x, y).
(d) ¬∀y [∃u (g(u) ≤ y)→ ∀x (y < x→ ∃y (f(x) ≤ y))].

Exercise III.26. Give an example of formulas A and B such that

∃xA ∧B ⊭ ∃x (A ∧B). (III.39)

Justify your answer by giving a structure A and an object assignment σ showing
that (III.39) holds.

Exercise III.27. Show the following.

(a) The class of infinite undirected graphs is an elementary class in the wide
sense (EC∆).

(b) The class of undirected graphs that do not contain a cycle is an elementary
class in the wide sense (EC∆).

Exercise III.28. Prove the following statements.

(a) The intersection of two elementary classes is an elementary class.
(b) The union of two elementary classes is an elementary class.
(c) The intersection of two EC∆ classes is EC∆.
(d) The intersection of an arbitrary collection of EC∆ classes is EC∆.
(e) The union of two EC∆ classes is EC∆.

Exercise III.29. (For readers with some knowledge of field theory. Compare
with Exercise IV.21.) Show that, for a fixed prime p, the class of fields of char-
acteristic p is an elementary class. Show that the class of fields of characteristic
zero is EC∆.

Exercise III.30. The truncated subtraction function � is defined on the non-
negative integers by x�y =max{x−y,0}. Prove that � is definable in N . Also,
prove that the excess over a square function, x�⌊√x⌋ is definable in N by giving
a formula over the language 0, S,+, ⋅ that defines it.

Exercise III.31. Work in the language L = {S, ⋅} where S is the successor
function and ⋅ is integer multiplication. Let the structure NS,⋅ = (N, S, ⋅) be
the nonnegative integers with the usual successor and multiplication functions.
Show that the function + is definable in N S,⋅. [Hint: First show that, for c > 0,
a+ b = c is true if and only if (xz +1)(yz +1) = z2(xy+1)+1.] This result is due
to Julia Robinson [1949].
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Exercise III.32. Let Q = (Q,0,+, ⋅) be the structure of the rationals.
(a) Show that the object 1 is definable in Q.
(b) Show that the function x↦ −x is definable in Q.
(c) Let f(x, y) = x/y if y ≠ 0 and let f(x,0) = 0. Show that f is definable

in Q.
(d) Show that the set of positive rational numbers is definable in Q. [Hint:

You may use the Lagrange four square theorem, which states that any
positive integer is the sum of four integer squares.]

Exercise III.33. Show that the following two formulas are logical consequences
of the theory of arrays.

(a) ∀a∀i [Array(a) ∧ Index(i)→ a =Write(a, i,Read(a, i))].
(b) ∀a∀i∀j ∀x∀y [Array(a)∧Index(i)∧Index(j)∧i ≠ j∧Value(x)∧Value(y)→

Write(Write(a, i, x), j, y) =Write(Write(a, j, y), i, x)].
Both of these need to use the axiom of extensionality.

Exercise III.34. Example III.119 constructed a formula A∗ such that {Uniqf ,Def f} ⊧
A↔ A∗. Here is an alternate construction. Let A∗∗ be the sentence

∀x∀y∀z [B(x, a, y) ∧B(x, y, z)→ Q(a + z)].

Prove that {Uniqf ,Def f} ⊧ A↔ A∗∗.

Exercise III.35. Work with a fixed language L. Let S,S1,S2 be classes of
structures. Let T,T1, T2 be theories. (Recall that a theory is a set of sentences
closed under logical consequence.)

(a) Prove that if T1 ⊆ T2 then ModT2 ⊆ModT1.
(b) Prove that if S1 ⊆ S2 then ThS2 ⊆ ThS1.
(c) Prove that T = Th ModT .
(d) Prove that ThS = Th Mod ThS.
(e) Give an example of S such that S ≠Mod ThS. Explain why your example

works.

Exercise III.36☀ A purely existential formula is a prenex formula in which
all the quantifiers are existential. Let P be a unary predicate symbol. Prove
that ∀xP (x) is not logically equivalent to any purely existential formula.

Exercise III.37☀ Let A be the formula Q(c)↔ ∀xP (x), where P and Q are
binary predicate symbols and c is a constant symbol. Prove

(a) There is no purely universal prenex formula B such that B ⊧) A.
(b) There is no purely existential prenex formula B such that B ⊧) A.

When forming prenex formulas, the first step was to eliminate any use of the ↔
symbol by replacing subformulas A ↔ B with (A → B) ∧ (B → A). The point
of this exercise is that it shows that something like this must be done. In other
words, it proves that there are no prenex equivalences for ↔ that are as simple
in form as the logical equivalences of Lemma III.80.

Exercise III.38. Examples III.120 and III.121 showed how to give first-order
formulas expressing that there is a path of length exactly ℓ for ℓ = 4 and ℓ = 8.
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Rework these examples to instead give formulas expressing that there is a path
from x to y of length at most ℓ, for ℓ = 4 and ℓ = 8.

Exercise III.39.
(a) Generalize the two constructions of Example III.121 arbitrary powers of

two ℓ.
(b) Generalize the two constructions of Example III.121 arbitrary values of ℓ

(not necessarily a power of two).

Exercise III.40☀ The two constructions of Example III.121 gave formulas for
Dist8 that used the equality symbol (=). Rework these examples to not use the
equality symbol. [Hint: This is not hard, but it is a little tricky.]



Chapter IV

First-Order Logic: Proofs

IV.1 Introduction to First-Order Proofs

This chapter introduces a Hilbert-style proof system for first-order logic called FO.
It will be built on the proof system PL for propositional logic but augmented
with axioms and rules of inference for equality and for quantifiers. FO-proofs
proceed in a step-by-step fashion starting with axioms or other hypotheses and
using Modus Ponens and Generalization as inference rules. The Modus Ponens
rule is identical to the Modus Ponens rule of propositional logic. The General-
ization rule will allow ∀xA(x) to be inferred from A(x). This reflects the fact
that if A(x) is valid, so is ∀xA(x). (The actual generalization rule (Gen), de-
fined on page 135, is a bit more general than this.) The upshot is that FO-proofs
can model (to a certain extent) how humans construct proofs.

The proof system FO enjoys both a Soundness Theorem and a Complete-
ness Theorem. The Soundness Theorem states that FO proves only formulas
that follow logically from a given set of hypotheses. The Completeness Theorem
states that FO can prove every formula that follows from a given set of hypothe-
ses. Having both Soundness and Completeness is a wonderful (and amazing!)
state of affairs. It means that the rather simple formal system, FO, can fully
capture all valid first-order reasoning.

There are a couple of serious catches or caveats though. First, Soundness
and Completeness concern logical validity and logical implication in arbitrary
structures not necessarily in particular structures. We are often interested in-
stead about truth in particular structures. A notable example is the struc-
ture N = (N,0, S,+, ⋅), the so-called “standard model” of the integers (see Ex-
ample III.13). Mathematicians are very interested in what properties, including
first-order properties, are true in N . Some non-trivial and deep assertions about
the structure N can be made in first-order logic. This includes famous open
problems such as the Riemann hypothesis and the P versus NP question. The
proof system FO is not capable of proving all true statements about N ; in-
stead, it can only prove all statements that follow from (say) the usual axioms
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for N . This is not just a limitation of the proof system FO with the usual
axioms of arithmetic; indeed, there is no effectively axiomatizable proof system
that exactly captures the true formulas of N . Nor is there any algorithm for
determining the truth of arbitrary first-order formulas in the structure N .

These limitations, the non-existence of a complete proof system for the true
formulas of N and the non-existence of an algorithm for determining the truth
or falsity of formulas in N , will be discussed—and formalized and proved—in
later chapters. For now, let us point out of some the (rather amazing!) good
properties of the proof system FO. (Compare this discussion to the properties
of PL mentioned at the beginning of Chapter II.)

(1) Algorithmic. FO-proofs are strings of symbols (also called “expressions”)
with specified syntactic properties. There is an algorithm, which given a
string w of symbols, determines whether w is a valid FO-proof, and if so,
what formula it proves, or what tautological implication(s) it proves.

(2) Soundness. A first-order formula A has an FO-proof only if it is a logi-
cally valid. Similarly, if A has an FO-proof from the hypotheses B1, . . . ,Bk

where B1, . . . ,Bk are sentences, then B1, . . . ,Bk ⊧ A.

(3) Completeness. Conversely, any logically valid first-order formula A has
an FO-proof. More generally, if B1, . . . ,Bk ⊧ A holds where the Bi’s are
sentences, then there is an FO-proof of A from the hypotheses B1, . . . ,Bk.1

Taken together, the soundness and completeness properties mean that
A has an FO-proof if and only if ⊧ A holds. The same holds as well for
logical consequences of sentences.

(4) User-friendly. This could also be called Human-centric. There are
several aspects to this. (i) FO can simulate human reasoning fairly effi-
ciently. (ii) In particular, FO permits reasoning using step-by-step infer-
ences. (iii) However, it is arguable, and the subject of present-day research
investigations, whether FO-proofs (or proofs in any suitably strong proof
system) can be reliably presented in a way the user-friendly for humans
to read and understand.

(5) Elegance. The system FO is mathematically elegant, without an exces-
sively large number of axioms or rules.

As for effectiveness, there is no effective, universal algorithm for deciding whether
a given formula is logically valid or, equivalently, has an FO proof. There are
of course algorithms for searching for proofs; these can be designed to always
succeed when an FO-proof exists. But these algorithms, in general, cannot de-
termine reliably whether a proof actually exists. These topics will be taken up
in detail starting in Chapter V and culminating in Chapter VII.

1Completeness is sometimes called “Adequacy”, but we follow here the common convention
and call it “completeness”.
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IV.2 The Proof System FO

This section defines the proof system FO for first-order logic. This is a so-called
“Hilbert-style” proof system.2 An FO-proof is used to show that a formula A is
logically valid, or that A is logically implied by a set Γ of sentences. We write
⊢ A to denote A has an FO-proof, in which case A is logically valid. We write
Γ ⊢ A to denote that A has a proof from Γ. The Soundness and Completeness
Theorems will imply that A has an FO-proof exactly when A is logically valid.
In other words, ⊢ A holds exactly when ⊧ A holds.

Likewise, when Γ is a set of sentences, then Γ ⊢ A is equivalent to Γ ⊧ A
by the Soundness and Completeness Theorems. Thus A is FO-provable from a
set Γ of sentences if and only if it is a logical consequence of Γ. However, if Γ is a
set of formulas, Γ ⊢ A and Γ ⊧ A are not equivalent. The reason for this is that
FO-proofs allow the Generalization rule and can derive ∀xA(x) from A(x). In
effect, this means we should think of A and the formulas in Γ as being implicitly
universally quantified. This means that Γ ⊢ A is equivalent to the statement
that the universal closure of A is provable from the set of universal closures of
formulas in Γ. For more on this, see the first part of Section IV.2.2 below, up
through the “Side remark”.

The proof system FO works exclusively with formulas that use only the log-
ical connectives ¬ (negation), → (implication) and ∀ (universal quantification).
This is analogous to the way that the propositional proof system PL worked
with {¬,→}-formulas. Other logical connectives are abbreviations for formulas
that use only the permitted connectives ¬,→,∀. Namely,

A ∨B is an abbreviation for ¬A→ B
A ∧B is an abbreviation for ¬(A→ ¬B)
A↔ B is an abbreviation for (A→ B) ∧ (B → A)
∃xA is an abbreviation for ¬∀x¬A

Throughout this chapter, the terminology “formula” means a first-order for-
mula that uses only the connectives ¬, → and ∀. As usual, we fix a first-order
language L of non-logical symbols; so “formula” means “L-formula”.

IV.2.1 The definition of the proof system FO

FO-proofs start with axioms or other hypotheses and infer new formulas with
the inference rules Modus Ponens and Generalization. The following types of
axioms are permitted in FO-proofs.

Propositional axioms. The propositional axioms are all formulas of the form

PL1: A→ (B → A)
PL2: [A→ (B → C)]→ [(A→ B)→ (A→ C)]
PL3: ¬A→ (A→ B)
2See the footnote on page 47.
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PL4: (¬A→ A)→ A

Here A, B and C may be any formulas.

Equality axioms. Nearly always, the language L includes the symbol = for
equality; if so, special equality axioms are needed. The first equality ax-
ioms state that = defines an equivalence relation. Letting x, y, z be arbitrary
variables, the first three equality axioms are

EQ1: x = x. (Reflexivity of =)
EQ2: x = y → y = x. (Symmetry of =)
EQ3: x = y → y = z → x = z. (Transitivity of =)

For each k-ary function symbol f in the language L, and letting y1, . . . , yk
and z1, . . . , zk be arbitrary variables, there are axioms stating that f respects
the equality relation:

EQf : y1 = z1 → y2 = z2 → ⋯→ yk = zk → f(y1, . . . , yk) = f(z1, . . . , zk).

For each k-ary predicate symbol P in the language L, and letting y1, . . . , yk
and z1, . . . , zk be arbitrary variables, there are axioms stating that P respects
the equality relation:

EQP : y1 = z1 → y2 = z2 → ⋯→ yk = zk → P (y1, . . . , yk)→ P (z1, . . . , zk).

The axioms for equality are stated with variables that are implicitly uni-
versally quantified. For instance, as we shall see, the axioms x = x and
x = y → y = x can be used to derive ∀x (x = x) and ∀x∀y (x = y → y = x).
So EQ1 and EQ2 really do state that equality is reflexive and symmetric.
Similarly, EQ3 really does state that equality is transitive.

The axiom EQP has the conclusion that P (y⃗)→ P (z⃗) instead of P (y⃗)↔ P (z⃗).
However, the symmetry of equality means that this implication holds in both
directions under the hypotheses that yi = zi for all i.

Axioms of universal instantiation. Suppose the term t is substitutable for
the variable x in the formula A. The corresponding universal instantiation
axiom is

UI: ∀xA→ A(t/x).

In keeping with our convention on relaxed notations for substitution, the UI
axiom can also be written as ∀xA(x)→ A(t).

FO admits two rules of inference, Modus Ponens and Generalization.

Modus Ponens inference rule. For arbitrary formulas A and B, the Modus
Ponens rule is

MP:
A A→ B

B
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Generalization inference rule. For A and C formulas, and x a variable such
that x does not appear free in C, the Generalization rule is

Gen:
C → A
C → ∀xA

The variable x is called the generalization variable or the eigenvariable for the
inference.

Example IV.1. Examples of the equality axioms for functions and predicates
include

x1 = x2 → x3 = x4 → f(x1, x3) = f(x2, x4)
x1 = x2 → x2 = x3 → f(x1, x2) = f(x2, x3)
x1 = x1 → x2 = x3 → P (x1, x2)→ P (x1, x3)

The last two illustrate that the variables y1, . . . , yk and z1, . . . , zk do not need
to be distinct. The formal definition of formulas allows only the use of variables
x1, x2, x3, . . .. However, we use variable names such as x, y, z or yj or zj as
informal designations of arbitrary variables xi.

Definition IV.2. Let Γ be a set of formulas and A formula. An FO-proof of A
from the hypotheses Γ is a sequence of formulas

B1, B2, B3, . . . ,Bk

such that Bk is A and such that, for each i = 1, . . . , k, (at least) one of the
following conditions holds:

(a) Bi is one of the above-listed FO-axioms: PL1, PL2, PL3, PL4, EQ1, EQ2,
EQ3, EQf , EQP , or UI;

(b) Bi is a member of Γ, namely Bi is a hypothesis (HYP);

(c) Bi is inferred by Modus Ponens (MP) from some Bj and Bk where j, k < i,
so w.l.o.g., Bk is Bj → Bi; or

(d) Bi is inferred by Generalization (Gen) from some Bj with j < i, so Bi has
the form C → ∀xD and Bj has the form C → D and x does not appear
free in C.

The final formula in the FO-proof is A and is called the conclusion of the proof.
We write Γ ⊢ A to denote that A has a proof from Γ. In this case, A is a theorem
of Γ.

Definition IV.3. If Γ = ∅ (so there are no hypotheses, we write ⊢ A to denote
that ∅ ⊢ A. In this case, we write ⊢ A and call A a (first-order) theorem.

FO-proofs are sometimes called FO-derivations. Similarly to what was
done with PL-derivations, we often abuse notation for sets of hypotheses and
write things like Γ,A ⊢ B and B1, . . . ,Bk ⊢ A instead of Γ ∪ {A} ⊢ B and
{B1, . . . ,Bk} ⊢ A.
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Example IV.4. Let’s show that ∀xA ⊢ A for A an arbitrary formula. The
complete FO-proof can be written out explicitly as the sequence of formulas

∀xA→ A Axiom UI, with x as the term t
∀xA Hypothesis (since Γ = {∀xA})
A Modus Ponens

Example IV.5. Now we show that ∀xA, ∀x (A → B) ⊢ ∀xB. Let y be any
variable that does not appear free in B. The FO-proof can be written out
explicitly as:

∀x (A→ B)→ (A→ B) Axiom UI
∀x (A→ B) Hypothesis
A→ B Modus Ponens
∀xA→ A Axiom UI
∀xA Hypothesis
A Modus Ponens
B Modus Ponens
B → y = y → B Axiom PL1
y = y → B Modus Ponens
y = y → ∀xB Generalization (since x is not free in y = y)
y = y Axiom EQ1
∀xB Modus Ponens

The last five lines derive ∀xB from B with the aid of Generalization. The only
purpose of the formula y = y is to serve as the hypothesis C for the Generalization
rule.

Example IV.6. We show that ⊢ y = z → f(x, y) = f(x, z). The FO proof is:

x = x→ y = z → f(x, y) = f(x, z) Axiom EQf

x = x Axiom EQ1
y = z → f(x, y) = f(x, z) Modus Ponens

Theorem IV.7. Let A be a formula. Then
(a) ∀xA ⊢ A
(b) A ⊢ ∀xA

Proof. Part (a) was already shown in Example IV.4. For part (b), let B be any
FO axiom such that x is not free in B. For instance, we can always take B to be
∀xA→ ∀xA→ ∀xA. Alternately, assuming that equality is in the language L,
we can let B be y = y as was done in Example IV.5. Then an FO-proof of ∀xA
from A is:

A Hypothesis
A→ B → A Axiom PL1
B → A Modus Ponens
B → ∀xA Generalization, since x is not free in B
B By choice of B as a axiom
∀xA Modus Ponens



IV.2.2. Generalization and tautological implication 137

Axioms and Inference Rules for FO-proofs

PL1: A→ B → A

PL2: (A→ B → C)→ (A→ B)→ (A→ C)
PL3: ¬A→ A→ B

PL4: (¬A→ A)→ A

EQ1: x = x
EQ2: x = y → y = x
EQ3: x = y → y = z → x = z
EQf : y1 = z1 → ⋯→ yk = zk → f(y1, . . . , yk) = f(z1, . . . , zk)
EQP : y1 = z1 → ⋯→ yk = zk → P (y1, . . . , yk)→ P (z1, . . . , zk)
Universal Instantiation (UI): ∀xA(x)→ A(t).

Modus Ponens:
A A→ B

B
.

Generalization (Gen):
C → A provided x not free in C

C → ∀xA
A ∨B, A ∧B, and ∃xA abbreviate ¬A→ B, ¬(A→ ¬B) and ¬∀x¬A.

Part (b) of the theorem means that a simplified form of the Generalization
rule can be used as a derived (admissible) rule of inference:

A Generalization (simplified version)∀xA (IV.1)

We thus have two possible forms of Generalization. The first is the original rule
of FO with the hypothesis C present; the second is the simplified version (IV.1).
The latter is a derived rule; it is not an actual FO inference rule, but it can be
simulated by multiple steps in an FO-proof.

Another useful derived rule of inference for FO is

∀xA(x)
Universal Instantiation (UI) Rule

A(t)

This inference can be simulated in FO using the UI axiom ∀xA(x)→ A(t) and
Modus Ponens.

Combining the Generalization rule (IV.1) and the UI rule gives the Substi-
tution rule:

A(x)
Substitution Rule

A(t)

This is also a derived rule of inference for FO.
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IV.2.2 Generalization and tautological implication

Generalization and the meaning of free variables. There is an important
difference between the logical implication Γ ⊧ A and FO-provabilty Γ ⊢ A in
the way that free variables in Γ are interpreted. Namely, for Γ ⊢ A, any free
variables that appear in Γ are interpreted as being universally quantified. On
the other hand, for Γ ⊧ A, the values of the free variables are interpreted as
being fixed by some object assignment.

An illustrative example is the meanings of P (x1) ⊧ P (x2) versus P (x1) ⊢ P (x2).
The logical implication P (x1) ⊧ P (x2) is false. For instance, we can choose A
and σ with ∣A∣ = {0,1}, PA = {0}, σ(x1) = 0 and σ(x2) = 1. On the other hand,
P (x1) ⊢ P (x2) is true, as shown by the following:

P (x1) ⊢ P (x1) Hypothesis
P (x1) ⊢ ∀x1 P (x1) Generalization (IV.1)
P (x1) ⊢ ∀x1 P (x1)→ P (x2) UI
P (x1) ⊢ P (x2) Modus Ponens

or even more succinctly by

P (x1) ⊢ P (x1) Hypothesis
P (x1) ⊢ P (x2) Substitution Rule

Recall from Definition III.30 that a generalization of A is formed by adding
universal quantifiers to the front of A. The universal closure of A is obtained
by adding universal quantifiers for those variables which appear free in A. We
let ∀(A) be the universal closure ∀x1, . . . , xik A as shown in Equation (III.21),
where xi1 , . . . , xik are the free variables of A taken (say) in order of increasing
subscripts. For Γ a set of formulas, we let ∀(Γ) denote the set of sentences
{∀(B) ∶ B ∈ Γ}.

Theorem IV.8. Let Γ be a set of formulas and A be a formula.
(a) Γ ⊢ A if and only if ∀(Γ) ⊢ A.
(b) Γ ⊢ A if and only if Γ ⊢ ∀(A).
(c) Γ ⊢ A if and only if ∀(Γ) ⊢ ∀(A).

Proof. Part (b) is immediate from Theorem IV.7. Part (a) follows almost as
easily from the same theorem. Namely, any formula in Γ can be derived with an
FO-proof from its universal closure in ∀(Γ); conversely, any sentence in ∀(Γ)
can be derived from the corresponding formula in Γ. It follows that Γ ⊢ A holds
if and only if ∀(Γ) ⊢ A holds.

Part (c) follows immediately from parts (a) and (b).

As a consequence of the last theorem, when we consider questions about
whether Γ ⊢ A, we may assume in general that Γ is a set of sentences. This
is because if Γ is not a set of sentences, then we may use ∀(Γ) in place of Γ,
and consider whether ∀(Γ) ⊢ A. Furthermore, the Soundness and Completeness
theorems below will state that if Γ is a set of sentences, then Γ ⊧ A holds exactly
when Γ ⊢ A holds.
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Side remark: The reader is warned that many introductory textbooks and
other expository texts define Γ ⊧ A and Γ ⊢ A to handle free variables dif-
ferently. It is fairly common, for instance in the textbooks of Shoenfield [18],
Mendelson [13] Manin [11], Monk [14], and Hodel [10] to define the logical im-
plication Γ ⊧ A differently than us; in effect treating free variables in Γ and A
as being universally quantified. They define a formula to be valid in a model A
provided it is satisfied by A with all possible truth assignments; they then define
Γ ⊧ A to mean that, for all A, if every member of Γ is valid in A, then A is valid
in A. Under this definition, Γ ⊧ A turns out to be equivalent to Γ ⊢ A (via the
Soundness and Completeness theorems). Other authors, such as Enderton [5],
instead define Γ ⊢ A differently from us; they treat free variables similarly to
constant symbols, and do not allow the Generalization rule.

Yet other authors, e.g., the model theory textbooks of Chang and Keisler [3],
Marker [12], and the Wikipedia entry for the Completeness Theorem3 sidestep
this issue by defining the notion of Γ ⊧ A only for the case where A is a sentence
and Γ is a set of sentences. Their versions of the Soundness and Completeness
Theorems for Γ ⊧ A and Γ ⊢ A are stated only for the case where A is a sentence
and Γ is a set of sentences.

On the other hand, the textbook of Hinman [9] uses the same conventions
about the meanings of Γ ⊧ A and Γ ⊢ A as we do, and states the Soundness
and Completeness Theorems in the same way. We adopt this convention since
it gives both “Γ ⊧ A” and “Γ ⊢ A” their most natural meanings; our versions
of the Soundness and Completeness Theorems state that Γ ⊧ A and Γ ⊢ A are
equivalent provided that Γ is a set of sentences.

Tautologies. First-order tautologies and first-order tautological implication
were defined in Definitions III.46 and III.47. Since FO contains the four axioms
PL1-PL4 for propositional logic, and since the propositional proof system PL is
complete and can prove all propositional tautologies, it follows that FO-proofs
can establish all first-order tautologies and first-order tautological implications:

Theorem IV.9. Let A be a formula, and Γ a set of formulas.
(a) If A is a tautology, then ⊢ A.
(b) If Γ tautologically implies A, then Γ ⊢ A.

Proof. Assume A is a tautology. This means that there is a tautological propo-
sitional formula B(p1, . . . , pℓ) and first-order formulas C1, . . . ,Cℓ so that A is
B(C1, . . . ,Cℓ/p1 . . . , pℓ). By the Completeness Theorem for propositional logic,
the tautology B has a PL-proof

D1, D2, . . . ,Dm,

where Dm is B of course. Substituting the formulas Ci for the variables pi yields
an FO-proof

D1(C⃗/p⃗), D2(C⃗/p⃗), . . . ,Dm(C⃗/p⃗)
3Gödel’s Completeness Theorem, Wikipedia, The Free Encyclopedia, Retrieved November

28, 2021, 15:23 UTC.
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of A, since A is the same as Dm(C⃗/p⃗), i.e., B(C⃗/p⃗). That proves (a).

For part (b), suppose Γ tautologically implies A. This means that there is a
finite subset {B1, . . . ,Bk} of Γ such that

B1 → B2 → ⋯→ Bk → A

is a tautology. By part (a), this has an FO-proof. Introducing the Bi’s as
hypotheses from Γ and using Modus Ponens k times, gives Γ ⊢ A.

Corollary IV.10. Modus Tollens, Hypothetical Syllogism, and the tautological
implication rule TAUT are admissible rules of inference for FO.

Example IV.11. We show that x = y → g(f(x), z)) = g(f(y), z) has an FO-
proof:

⊢ x = y → f(x) = f(y) Axiom EQf

⊢ u = v → z = z → g(u, z) = g(v, z) Axiom EQg

⊢ (f(x) = f(y)→ z = z → g(f(x), z) = g(f(y), z)) Substitution Rule (twice)
⊢ z = z Axiom EQ1
⊢ x = y → g(f(x), z)) = g(f(y), z) TAUT

The final step uses the TAUT rule based on the first, third, and fourth lines.

Example IV.12. Let A(x) be a formula.4 We claim that A(t)→ ∃xA(x) has
an FO-proof.

To prove this, recall that ∃xA(x) is an abbreviation for the formula ¬∀x¬A(x).
Thus, A(t) → ∃xA(x) is a shorthand notation for A(t) → ¬∀x¬A(x) This for-
mula is tautologically equivalent to the UI axiom ∀x¬A(x)→ ¬A(t). Thus, by
the TAUT rule (see Corollary IV.10), A(t)→ ∃xA(x) has an FO-proof.

This example gives another useful derived rule of inference for FO. Let A(x)
be a formula. The Existential Introduction rule (EI) is:

A(t)
Existential Introduction (EI) Rule∃xA(x)

IV.2.3 The Deduction theorem and (in)consistency

The Deduction Theorem formalizes the intuition that, when trying to prove an
implication A → B, it is sufficient to prove B under the assumption of A as
an additional hypothesis. However, it is not the the case that Γ,A ⊧ B always
implies Γ ⊧ A → B when A is a formula. It does work, however, when A is a
sentence.

4As a reminder, when we use the relaxed notation for substitution to discuss the formulas
A(x) and A(t), this means that A = A(x) is a formula, t is substitutable for x in A, and A(t)
is the formula A(t/x).
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Theorem IV.13 (Deduction Theorem for FO). Let A be a sentence, B be a
formula, and Γ be a set of sentences. Then

Γ,A ⊢ B if and only if Γ ⊢ A→ B.

The problem with A being a formula instead of a sentence is that a proof of
B from Γ∪{A} might use the Generalization rule (GEN) with a variable x that
is free in A. If we assume that there is no such use of Generalization, then the
Deduction Theorem can still hold:

Theorem IV.14 (Refined Deduction Theorem for FO). Let A and B be for-
mulas, and Γ be a set of formulas.

(a) If Γ ⊢ A→ B, then Γ,A ⊢ B.

(b) Suppose Γ,A ⊢ B so there is an FO-proof P of B from Γ ∪ {A}. Also,
suppose that no variable x that appears free in A is used as an eigenvariable
for a Generalization inference in the proof P . Then Γ ⊢ A→ B.

Proof. Since there are no free variables in a sentence A, Theorem IV.13 is a
special case of Theorem IV.14. The proof of part (a) of Theorem IV.14 is
immediate by Modus Ponens. To prove part (b), suppose that

C1, C2, C3, . . . , Cℓ

is an FO-proof of B from Γ,A so that Cℓ is the formula B. Each Ci is an
axiom, a member of Γ or the formula A, or is inferred by Modus Ponens or by
Generalization. We prove by induction on i that Γ ⊢ A → Ci for each i. The
proof by induction splits into four cases. (The first three cases are essentially
the same as in the proof of the propositional Deduction Theorem II.10; Case 4
is the only new case.)

Case 1: Suppose that Ci is either an axiom or a member of Γ. Then, certainly
Γ ⊢ Ci, and by TAUT, Γ ⊢ A→ Ci as desired.

Case 2: Suppose Ci is A so that A → Ci is the same as A → A. This is a
tautology and thus has an FO-proof.

Case 3: Suppose Ci is inferred from Modus Ponens from Cj and Ck with j, k < i
and with Ck equal to Cj → Ci. The two induction hypotheses give that
Γ ⊢ A → Cj and Γ ⊢ A → Cj → Ci. From these, Γ ⊢ A → Ci by the TAUT
rule.

Case 4: Suppose Ci is the formula D → ∀xB and was inferred by Generaliza-
tion from a formula Cj , j < i, which is equal to D → B with x not free in D.
The induction hypothesis is that Γ ⊢ A → Cj ; i.e., that Γ ⊢ A → (D → B).
By TAUT, this implies that Γ ⊢ A ∧D → B. Since neither A nor D contains
a free occurrence of x, an application of the Generalization Rule gives that
Γ ⊢ A ∧D → ∀xB. A final use of TAUT gives that Γ ⊢ A → D → ∀xB. In
other words, Γ ⊢ A→ Ci.
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That completes the proof by induction and the proof of the Deduction Theorem.

We next discuss consistency and inconsistency. Their definition and their
properties in first-order logic are almost identical to their properties in propo-
sitional logic.

Definition IV.15. A set Γ of formulas is inconsistent if any only if there is
some formula A such that Γ ⊢ A and Γ ⊢ ¬A.

First-order inconsistency (in FO) enjoys many of the properties that were es-
tablished early for propositional inconsistency (for PL). For example, Theorems
II.16 and II.18—and their proofs—hold also for FO:

Theorem IV.16. Let Γ be a set of formulas.

(a) Γ is inconsistent if and only if Γ ⊢ B for all formulas B.
(b) Γ is inconsistent if and only if there is a finite subset Γ0 of Γ which is

inconsistent.

The next two theorems are the analogues of Theorems II.19 and II.21 and
Corollary II.27 about proofs by contradiction and proofs by cases.

Theorem IV.17 (Proof by Contradiction for FO). Let A be a sentence and
Γ be a set of sentences.

(a) Γ ∪ {¬A} is inconsistent if and only if Γ ⊢ A.
(b) Γ ∪ {A} is inconsistent if and only if Γ ⊢ ¬A.

Theorem IV.18 (Proof-by-cases for FO). Let A be a sentence, B be a formula,
and Γ be a set of sentences. Suppose that Γ,A ⊢ B and Γ,¬A ⊢ B. Then Γ ⊢ B.

The proofs of Theorems IV.17 and IV.18 are identical, word-for-word, to the
proofs of Theorems II.19 and II.21 and Corollary II.27. The proofs do use the
Deduction Theorem for A and ¬A however, and thus we need the assumption
that A is a sentence.

Similarly, FO also satisfies the following theorem about finding a consistent
extension of Γ.

Theorem IV.19. Let Γ be a consistent set of formulas and let A be a sentence.
Then at least one of Γ ∪ {A} and Γ ∪ {¬A} is consistent.

The proof of Theorem IV.19 is identical to the proofs used for Theorem II.28
and Corollary II.29. Theorem IV.19 will be useful in the proof of Lindenbaum’s
theorem below when proving the Completeness Theorem.

One more simple, but useful, observation is that Γ is consistent if and only
∀(Γ) is consistent. This is an immediate consequence of Theorem IV.8.
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IV.2.4 Syntactic theorems on constants

The Generalization rule allows inferring ∀xA from A. There is also a form of
generalization that allows inferring ∀xA from A(c/x) where c is a constant. To
get some intuition for this, suppose we are trying to prove ∀xA(x) holds. A
common proof technique is to introduce a new name d for an object, letting d
denote an arbitrary object, and then prove that A(d) holds. Since d was an
arbitrary object, we conclude that ∀xA(x) holds.

A related intuition arises when trying to prove a formula B from a hypothesis
∃xA(x). A common proof technique for this is to introduce a new name d for
an object that makes A(d) true. Such an object d must exist if ∃xA(x) holds.
Then we prove B from the hypothesis that A(d) holds. From this, we conclude
that ∃xA(x) implies B.

These intuitions are formalized by parts (a) and (b.i) of the next theorem.

Theorem IV.20. (Theorem on Constants) Let Γ be a set of formulas and that
A(x) and B are formulas. Suppose that the constant symbol c does not appear
in A(x) or B or in any formula in Γ. Then

(a) Γ ⊢ A(c) if and only if Γ ⊢ ∀xA(x).
(b) Further suppose that x is the only free variable in A(x), so that ∃xA(x)

and A(c) are sentences. Then
(b.i) Γ ∪ {∃xA(x)} ⊢ B if and only if Γ ∪ {A(c)} ⊢ B.

(b.ii) Γ ∪ {∃xA(x)} is consistent if and only if Γ ∪ {A(c)} is consistent.

Proof. We prove (a) first. If Γ ⊢ ∀x(x)A, then Γ ⊢ A(c) follows by Modus
Ponens from the UI axiom ∀xA(x) → A(c). So suppose Γ ⊢ A(c); we need to
prove Γ ⊢ ∀xA(x). The proof of A(c) is a sequence of formulas B1,B2, . . . ,Bℓ.
Let xn be a variable that does not appear in A(x) or in any formula Bi in the
proof. For all i, let B′

i be the result of replacing every occurrence of c in Bi

with xn.
We claim that B′

1, . . . ,B
′
ℓ is an FO-proof of A(xn). Note that xn is sub-

stitutable for x in A(x), and B′
ℓ is equal to A(xn). (This is because xn does

not appear in Bℓ and of course is not quantified in Bℓ.) To show that each
B′

i is correctly introduced as an FO-axioms or as a hypothesis or with an FO
inference rule, we must show the following:

● If Bi ∈ Γ is a hypothesis, then B′
i is equal to Bi by the assumption that c

does not appear in any formula in Γ.
● Axioms PL1-PL4 remain correct PL1-PL4 axioms after replacing c with xn.
● The constant c is not even allowed to appear in an equality axiom. Thus

if Bi is an equality axiom, B′
i is equal to Bi.

● If Bi is a UI axiom, it has the form ∀xk D(xk) → D(t), with k ≠ n since
xn does not appear in Bi. Thus B′

i has the form ∀xk D
′(xk) → D′(t′)

where D′ and t′ are obtained from D and t by replacing each occurrence
of c with xn. In other words, B′

i is a UI axiom.
● If Bi is inferred by Modus Ponens from Bj and Bk, then clearly B′

i is
inferred by Modus Ponens from B′

j and B′
k.
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● Suppose Bi is inferred by the Generalization rule from Bj . Then Bj has
the form C →D, and Bi has the form C → ∀xk D, and k ≠ n. The formula
B′

j and B′
i have the forms C ′ →D′ and C ′ → ∀xk D

′ where C ′ and D′ are
obtained from C and D by replacing each occurrence of c with xn. Since
k ≠ n, this means B′

i is inferred from B′
j by a Generalization rule.

That shows that B′
1, . . . ,B

′
ℓ is a valid FO-proof of A(xn) from Γ. Then by

the simplified Generalization rule, Γ ⊢ ∀xnA(xn). If xn is the same as the
variable x, the proof of part (a) is complete. However, it may not be possible
to have picked xn to be the same as x, since x might appear in the Bi’s. In
this case, since Γ ⊢ ∀xnA(xn), the UI rule gives Γ ⊢ A(x). From this, by the
simplified Generalization rule again, Γ ⊢ ∀xA(x). That completes the proof of
part (a).

With the aid of Theorem IV.17, part (b.i) follows readily from part (a). By
Theorem IV.8 we can assume w.l.o.g. that B is a sentence, by replacing B with
its universal closure ∀(B). We have:

Γ ∪ {∃xA} ⊢ B
⇔ Γ ∪ {∃xA,¬B} is inconsistent Theorem IV.17(a)
⇔ Γ ∪ {¬∀x¬A,¬B} is inconsistent ∃x is an abbreviation for ¬∀x¬
⇔ Γ,¬B ⊢ ∀x¬A Theorem IV.17(a)
⇔ Γ,¬B ⊢ ¬A(c/x) Part (a)
⇔ Γ,A(c/x) ⊢ B Two uses of Theorem IV.17

Part (b.ii) follows immediately from part (b.i) by taking B to be the negation
of a FO axiom.

Example IV.21. We show that ∀x (A(x) → B(x)) ⊢ ∃xA(x) → ∃xB(x). By
the Deduction Theorem IV.14, it will suffice to give an FO-proof of

∃xA(x),∀x (A(x)→ B(x)) ⊢ ∃xB(x),

provided the FO-proof does not use any variable other than x as an eigenvariable
in any Generalization rule. (Note A and B are permitted to have free variables
other than x.) By Theorem IV.20, it suffices to prove that

A(c),∀x (A(x)→ B(x)) ⊢ ∃xB(x),

where c is a new constant symbol (i.e., c does not appear in A or B). We have

A(c),∀x (A(x)→ B(x)) ⊢ A(c)→ B(c) UI rule
A(c),∀x (A(x)→ B(x)) ⊢ B(c) Modus Ponens
A(c),∀x (A(x)→ B(x)) ⊢ ∃xB(x) Existential Introduction (EI)

The FO-proofs underlying the use of UI and EI rules did not use the Gener-
alization rule, so the condition that no free variable of ∃xA(x) is used as an
eigenvariable is trivially satisfied.
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Constructing FO-proofs

Derived rules:
Propositional rules: Modus Tollens, Hypothetical Syllogism and

more generally Tautological Implication (TAUT).

Generalization:
A(x)

∀xA(x)
EI Rule:

A(t)
∀xA(x)

UI Rule:
∀xA(x)
A(t)

Substitution:
A(x)
A(t)

For Deduction/Contradiction/Cases, A is a sentence.

Deduction Theorem: Γ ⊢ A→ B iff Γ,A ⊢ B.

Proof by Contradiction: Γ ⊢ A iff Γ ∪ {¬A} is inconsistent.

Γ ⊢ ¬A iff Γ ∪ {A} is inconsistent.

Proof by Cases: If Γ,A ⊢ B and Γ,¬A ⊢ B, then Γ ⊢ B.

Theorem on Constants. c is a new constant symbol not in Γ, A or B.

For A(x) a formula, Γ ⊢ ∀xA(x) iff Γ ⊢ A(c).
If ∃xA(x) is a sentence, Γ ∪ {∃xA(x)} ⊢ B iff Γ ∪ {A(c)} ⊢ B

IV.3 The Soundness and Completeness Theo-
rems

The Soundness and Completeness Theorems for first-order logic express the
fact that FO is a good proof system. The Soundness Theorem states that FO
is “sound” in the sense that any FO-theorem A is a logically valid formula.
Likewise, if A is provable using hypotheses from a set Γ of sentences, then Γ
logically implies A. This is really a basic property for any proof system for
first-order logic since we of course only want to have proofs of formulas that are
logically implied.

The Completeness Theorem states the converse, namely that FO is “com-
plete”. This means firstly that if A is logically valid, then A has an FO-proof.
And, secondly, that if A is a logical consequence of a set Γ of sentences, then
Γ ⊢ A. In other words, FO is strong enough to give proofs of all logical validities
and all logical implications. This is really remarkable!

We now state the Soundness and Completeness Theorems more carefully
and prove the Soundness Theorem. After that, Section IV.4 will present the
more difficult proof of the Completeness Theorem.

Theorem IV.22 (Soundness Theorem for FO). Let A be a formula and Γ be
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a set of sentences.

(a) If Γ is satisfiable, then Γ is consistent.
(b) If Γ ⊢ A, then Γ ⊧ A.

Theorem IV.23 (Completeness Theorem for FO). Let A be a formula and
Γ be a set of formulas.

(a) If Γ is consistent, then Γ is satisfiable.
(b) If Γ ⊧ A, then Γ ⊢ A.

Putting the Soundness and Completeness Theorems together gives

Corollary IV.24. Let A be a formula and Γ be a set of sentences.

(a) Γ is consistent if and only if Γ is satisfiable.
(b) Γ ⊧ A if and only if Γ ⊢ A.

When there are no hypotheses, so Γ = ∅, we have:

Corollary IV.25. Let A be a formula. Then ⊧ A if and only if ⊢ A.

Parts (a) and (b) of the Soundness Theorem are easily seen to be equivalent
to each other. Likewise, parts (a) and (b) of the Completeness Theorem are
easily seen to be equivalent to each other. To illustrate this, we first show that
part (b) of the Soundness Theorem implies part (a).

Choose B to be a formula which is both FO-provable and logically valid.
For instance, take B to be a a PL1 axiom. For Γ a set of sentences, we have

Γ is inconsistent
⇔ Γ ⊢ ¬B By choice of B and Theorem IV.16
⇒ Γ ⊧ ¬B By part (b) of the Soundness Theorem
⇔ Γ is unsatisfiable By choice of B as logically valid.

That proves that part (b) of the Soundness Theorem implies part (a). To prove
part (b) of the Completeness Theorem from part (a), recall that ∀(A) is the
universal closure of A and argue as follows:

Γ ⊧ A
⇔ Γ ⊧ ∀(A) By Theorem III.37(b)
⇔ Γ ∪ {¬∀(A)} is unsatisfiable Theorem III.45(b)
⇒ Γ ∪ {¬∀(A)} is inconsistent By part (a) of the Completeness Theorem
⇔ Γ ⊢ ∀(A) Theorem IV.17 (Proof by Contradiction)
⇔ Γ ⊢ A Theorem IV.8(b)

We still need to prove part (b) of the Soundness Theorem and part (a) of
the Completeness Theorem. These proofs will be presented in the next sections.
After that, Section IV.5 will state and prove the Compactness Theorem for FO
for the general case where Γ is a set of formulas.
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The proof of the Soundness Theorem. We already proved that part (b)
of the Soundness Theorem implies part (a). Now we prove part (b).

Proof of part (b) of the Soundness Theorem. Assume that Γ is a set of sentences
and Γ ⊢ A. We must show Γ ⊧ A. Let

B1, B2, . . . ,Bk

be an FO-proof of A from Γ. We will prove by induction on i that Γ ⊧ ∀(Bi).
More specifically, we fix a structure A such that A ⊧ Γ. Then we show by induc-
tion on i that A ⊧ Bi[σ] holds for every object assignment σ. It is important to
note that σ is not fixed; instead, the induction hypothesis holds for all object
assignments σ.

The proof breaks into cases depending on how Bi is inferred:

Case 1: Suppose Bi is a hypothesis, Bi ∈ Γ. By assumption, A ⊧ Bi, so this
case is trivial.

Case 2: Suppose Bi is axiom from PL1-PL4, and thus a tautology. Then, for
all σ, A ⊧ Bi[σ] by Theorem III.49(a).

Case 3: Suppose Bi is one of the equality axioms EQ1-EQ3. Since the defi-
nition of truth interprets = as true equality (see Theorem III.75), A ⊧ Bi[σ]
holds for all σ.

Case 4: Suppose Bi is one of the equality axioms EQf or EQP . By Lemma III.62,
A ⊧ Bi[σ] holds for all σ.

Case 5: Suppose Bi is a UI axiom ∀xC(x) → C(t). Then A ⊧ Bi[σ] holds by
Theorem III.66.

Case 6: Suppose Bi is introduced by Modus Ponens from Bj and Bk where
Bk is Bj → Bi. Fix an arbitrary object assignment σ. By the induction
hypotheses, A ⊧ Bj[σ] and A ⊧ (Bj → Bk)[σ]. The definition of truth for →,
yields that A ⊧ Bj[σ] holds.

Case 7: Suppose Bi is introduced by a Generalization (GEN) inference. Then
Bi has the form C → ∀xD and for some j < i, Bj has the form C → D
where x is not free in C. The induction hypothesis states that, for all σ,
A ⊧ (C → D)[σ]. Thus by the definition of truth, A ⊢ ∀x (C → D)[σ] for
all σ. Therefore, by Example III.42, A ⊢ (C → ∀xD)[σ] holds for all σ.

That completes the proof of the Soundness Theorem.

IV.4 Proof of the Completeness Theorem

We now prove the Completeness Theorem IV.23. For this, it suffices to prove
part (a), so we assume that Γ is a consistent set of formulas and need to prove
that Γ is satisfiable by constructing a structure A which satisfies Γ. The proof
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will use the same ideas as the proof of the Completeness Theorem for the propo-
sitional proof system PL; however, there are substantial additional ingredients
needed to handle quantifiers and to construct a model A of Γ. Very briefly the
proof requires the following steps: First, additional constant symbols are intro-
duced and Γ is extended to a set ∆ of sentences which is “strongly Henkin”.
Second, Lindenbaum’s Theorem is used to further extend Γ to to a set Π of
sentences which is complete and still consistent and strongly Henkin. Third, a
structure A is constructed that satisfies Π.

We will need to be careful at times about what language is being used. We
assume that Γ is a set of L-sentences. We also use a larger language L+ which
extends L with the addition of constant symbols di so that

L+ = L ∪ {d1, d2, d3, . . .}. (IV.2)

The constant symbols di are new and are not in L. The sets ∆ and Π will be sets
of L+-sentences. The structure A will be an L+-structure, but in the end, A will
be restricted to the language L so as to obtain an L-structure satisfying Γ.

Henkin and strongly Henkin. Recall that a closed term is a term that does
not contain any variables xi. For example, 0 + S(0) is a closed LPA-term, but
0 + x1 is not.

Definition IV.26. Let Γ be a set of L-sentences. The set Γ is Henkin if the
following holds: For any sentence ∃xA(x) such that Γ ⊢ ∃xA(x), there is a
closed L-term t such that Γ ⊢ A(t).

The point of being Henkin is that, for any provable sentence ∃xA(x) that
asserts the existence of an object, there is a closed term t that gives an example
of such an object. The closed term t, being variable-free, serves as a name for a
particular object; it can be considered to be “witness” for the truth of ∃xA(x).

The Henkin property was stated using ∃x. By convention, ∃x is an abbre-
viation for ¬∀x¬. Therefore, an equivalent way to state the Henkin property is
as follows: For any formula A, if Γ ⊢ ¬∀xA(x), then for some closed term t,
Γ ⊢ ¬A(t). The term t can be viewed as a “counterexample” that witnesses the
falsity of ∀xA(x).

Definition IV.27. Let Γ be a set of L-sentences. The set Γ is strongly Henkin if
the following holds: For any sentence ∀xA(x), there is a constant symbol c ∈ L
such that the sentence

A(c)→ ∀xA(x)
is a member of Γ.

Note that if Γ is strongly Henkin, then Γ is Henkin. This is because c is a
closed term and by the previous remark and Modus Tollens.

Given that Γ is consistent, we wish to form a larger set ∆ of sentences which
augments Γ to be both consistent and strongly Henkin. For this, we must
introduce new constant symbols. (Indeed, the language L may not have any
constant symbols at all, and thus there may not even be any closed L-terms.)
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Lemma IV.28. Suppose ∃xA(x) is an L-sentence and Γ is a consistent set of
L-sentences. Let c be a new constant symbol, so c ∉ L. Then

Γ ∪ {A(c)→ ∀xA(x)} is consistent.

Proof. Suppose the conclusion fails. Then, by the Proof by Contradiction The-
orem IV.17(b),

Γ ⊢ ¬[A(c)→ ∀xA(x)].

Therefore, by the TAUT rule, Γ ⊢ ¬∀xA(x) and Γ ⊢ A(c). From the latter,
since c is new, the Theorem on Constants IV.20 implies that Γ ⊢ ∀xA(x). This
contradicts the consistency of Γ.

Henceforth, we let d1, d2, d3, . . . be new constant symbols that do not ap-
pear in Γ, and let L+ be the language (IV.2) consisting of L plus the constant
symbols di.

Theorem IV.29. Suppose Γ is a consistent set of L-sentences. Then there is
a consistent and strongly Henkin set ∆ of L+-sentences such that ∆ ⊇ Γ.

Proof. We will form ∆ by adding sentences to Γ one at a time while preserving
consistency. Enumerate all L+-sentences that start with a universal quantifier
in an infinite sequence as

∀xk1A1(xk1), ∀xk2A2(xk2), ∀xk3A3(xk3), . . .

so that no constant symbol dj appears in any ∀xkiAi(xki) with i ≤ j.5 The
important point is that every sentence of the form ∀xA(x) appears in the
sequence at least once. It is OK if the same sentence appears multiple times in
the sequence.

Define Γ0 = Γ and for each i > 0, define

Γi = Γi−1 ∪ {Ai(di)→ ∀xki A(xki)}. (IV.3)

We claim that each Γi is consistent. This is readily proved by induction on i;
the induction step can use Lemma IV.28 since di does not appear in Γi−1 or in
A(xki).

The set ∆ is defined as ∆ = ⋃i Γi. Note Γi ⊃ Γi−1 for all i. If ∆ was inconsis-
tent, then since proofs are finite, some finite subset of ∆ would be inconsistent.
That would imply that some Γi is inconsistent. Therefore, ∆ must be consistent.
By construction, ∆ contains all sentences of the form Ai(di)→ ∀xki A(xki) and
thus is strongly Henkin.

5One way to do this is to enumerate the L+-sentences in arbitrary order, discarding the
ones that do not start with the symbol ∀. To ensure that the constant symbol dj does not
appear in the first j formulas, one can insert extra sentences into the sequence, say of the
form ∃x1 x1 = x1 (if the equality sign, =, is in L) or ∀x1 (P (x1, . . . , x1) ↔ P (x1, . . . , x1)).
These extra inserted sentences serve no purpose except to delay the appearance of a constant
symbol dj until after the j-th sentence.
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Lindenbaum’s theorem. Lindenbaum’s Theorem was earlier proved for the
propositional proof system PL. The same construction works also for sets of
first-order sentences.

Definition IV.30. A set Γ of sentences is complete if, for every sentence A,
either A ∈ Γ or ¬A ∈ Γ.

Theorem IV.31 (Lindenbaum’s Theorem). Suppose Γ is a consistent set of
sentences. Then there is a consistent, complete set Π of sentences such that
Γ ⊆ Π.

Proof. The proof is identical to the proof of Lindenbaum’s Theorem II.35 ex-
cept that now we are working with first-order sentences instead of propositional
formulas and that Theorem IV.19 is used instead of Corollary II.29.

So far, we have established that Γ can be extended to a complete and strongly
Henkin set of sentences.

Corollary IV.32. Suppose Γ is a consistent set of L-sentences. There there is
a consistent, complete, strongly Henkin set Π of L+-sentences such that Γ ⊂ Π.

Proof. First use Theorem IV.29 to form ∆ as a strongly Henkin, consistent set
of L+-sentences such that ∆ ⊃ Γ. Then apply Lindenbaum’s Theorem (IV.31)
to obtains a consistent, strongly Henkin, complete set Π of L+-sentences such
that Π ⊃∆.

Note that Lindenbaum’s Theorem is applied to ∆, not Γ. Namely, the
strongly Henkin construction is done before Lindenbaum’s Theorem is invoked.

Lemma IV.33. Let Π be a strongly Henkin, consistent, complete set of L+-
sentences as above. Suppose A, B and ∀xC(x) are L+-sentences.

(a) A ∈ Π if and only if ¬A ∉ Π.
(b) A→ B ∈ Π if and only if A ∉ Π or B ∈ Π.
(c) If Π ⊢ A, then A ∈ Π.
(d) ¬∀xC(x) ∈ Π if and only if, for some closed term t, ¬C(t) ∈ Π.
(e) ∀xC(x) ∈ Π if and only if, for all closed terms t, C(t) ∈ Π.

Proof. The proofs of parts (a) and (b) are identical to the proof of Lemma II.36
except that now A and B are first-order sentences instead of propositional for-
mulas. For part (c), suppose Π ⊢ A. Then ¬A cannot be in Π, since otherwise
Π would be inconsistent. Then, by (a), A ∈ Π.

For (d), first suppose ¬∀xC(x) ∈ Π. Since Π is strongly Henkin, it is also
Henkin; therefore Π ⊢ ¬C(t) for some closed term t. By (c), ¬C(t) is in Π.
Second suppose ¬C(t) ∈ Π. Since ¬C(t) ⊢ ¬∀xC(x), part (c) implies that
¬∀xC ∈ Γ. That proves (d).

Part (e) is immediate from parts (a) and (d).
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Construction of a Henkin model. The next step in the proof of the Com-
pleteness Theorem is to define an L+-structure A that will be shown to sat-
isfy Π. The intuition for constructing A is that the complete set Π will guide
the choice of what is true in A. This is analogous to what was done in the
proof of the Completeness Theorem II.33 for propositional logic (PL), where a
truth assignment was defined by letting φ(pi) = T if and only if pi ∈ Π. And,
indeed, the structure A will be defined so that PA(t1, . . . , tk) is true if and only
if P (t1, . . . , tk) ∈ Π.

But, since we are working in first-order logic, we also must define the uni-
verse ∣A∣ and give interpretations to the constant symbols and function symbols.
The solution to this is simultaneously ingenious and straightforward: the uni-
verse of A consists of (essentially) the closed L+-terms. If the equality sign is
not included in the language L, this idea works without modification. However,
if the equality sign, =, is part of the language L, then the universe of A consists
of the set of closed L+-terms, but identifying terms s and t such that s = t is
in Π. This identification is done by showing that “s = t ∈ Π” is an equivalence
relation ∼ on terms. We will write [s] to denote the equivalence class contain-
ing s. The universe ∣A∣ will be the set of equivalence classes [s], for s ranging
over the closed L+-terms.

Definition IV.34 (Definition of ∼). Let s and t be closed L+-terms.

(a) If = is not a symbol of L, then s ∼ t holds if s and t are the same term.
(In other words, ∼ is the identity relation.)

(b) If = is a symbol of L+, then s ∼ t holds if the sentence s = t is in Π.

Lemma IV.35. The relation ∼ is an equivalence relation.

Proof. By definition, ∼ is an equivalence relation if is reflexive, symmetric and
transistive. If = is not in the language, then ∼ is the identity relation and of
course is an equivalence relation. So suppose that the equality sign, =, is in L.

To show reflexivity, we must prove that s ∼ s by proving that s = s is in Π.
It is easy to check that Π ⊢ s = s (using an EQ1 axiom and the Substitution
rule). Hence, by Lemma IV.33(c), s = s ∈ Π.

To show symmetry, we must show that if s ∼ t then t ∼ s, or equivalently,
that if s = t ∈ Π then t = s ∈ Π. By EQ2 and the Substitution rule, ⊢ s = t→ t = s.
Suppose s = t ∈ Π. Then Π ⊢ t = s; thus t = s ∈ Π by Lemma IV.33(c).

Transitivity works similarly: we must show that if r ∼ s and s ∼ t, then
r ∼ t. Suppose r = s ∈ Π and s = t ∈ Π. It will suffice to show r = t ∈ Π. Now
⊢ r = s → s = t → r = t, as it is a substitution instance of an EQ3 axiom. Then,
using Modus Ponens twice, Γ ⊢ r = t, so r = t ∈ Γ.

Definition IV.36. The L+-structure ∣A∣ is defined by letting

∣A∣ = {[s] ∶ s is a closed L+-term}, (IV.4)



152 First-Order Logic: Proofs (Draft B.2.e)

and defining the interpretations of the non-logical symbols by

cA = [c]

fA = {⟨[s1], . . . , [sk], [f(s1, . . . , sk)]⟩ ∶ s1, . . . sk are closed L+-terms}

PA = {⟨[s1], . . . , [sk]⟩ ∶ P (s1, . . . , sk) ∈ Π}.

A more intuitive way to express the definition of the k-ary function fA is
that

fA([s1], . . . , [sk]) = [f(s1, . . . , sk)].
Note that each [si] is an object in ∣A∣. The function fA takes as input the
k objects [s1], . . . , [sk]; it outputs the object [f(s1, . . . , sk)]. Similarly, a more
intuitive way to write the definition of the k-ary predicate PA is that

PA([s1], . . . , [sk]) is true if and only if P (s1, . . . , sk) ∈ Π.

We still need to show that fA and PA are well-defined by the above defi-
nition. The issue is that fA([s1], . . . , [sk]) was defined in terms of particular
representatives s1, . . . , sk of equivalence classes. To show that fA has a well-
definition, we must show that, for all closed L+-terms s1, . . . , sk and r1, . . . , rk,

If ri ∼ si for all i, then f(r1, . . . , rk) ∼ f(s1, . . . , sk).

This is equivalent to showing that the definition of fA as a set of (k + 1)-tuples
defines the graph of a (single-valued) function.

Similarly to show that PA is well-defined, we must show that,

If ri ∼ si for all i, then P (r1, . . . , rk) ∈ Π iff P (s1, . . . , sk) ∈ Π.

Lemma IV.37. The functions fA and predicates PA are well-defined.

Proof. Suppose that ri ∼ si for i = 1, . . . , k. Thus ri = si ∈ Π for all i. In addition,
if f is a k-ary function symbol, then

⊢ r1 = s1 → r2 = s2 → ⋯→ rk = sk → f(r1, . . . , rk) = f(s1, . . . , sk),

since this is a substitution instance of an EQf axiom. Therefore, Π ⊢ f(r1, . . . , rk) = f(s1, . . . , sk),
so f(r1, . . . , rk) ∼ f(s1, . . . , sk). In addition, if P is a k-ary predicate symbol,

⊢ r1 = s1 → r2 = s2 → ⋯→ rk = sk → (P (r1, . . . , rk)↔ P (s1, . . . , sk)).

Thus, Π ⊢ P (r1, . . . , rk) if and only if Π ⊢ P (s1, . . . , sk). Thus P (r1, . . . , rk) ∈ Π
if and only if P (s1, . . . , sk).

Lemma IV.38. Let A be as defined above and let σ be an object assignment.
For all closed L+-terms t, we have σ(t) = [t]. Hence tA = [t].

Proof. This is proved by induction on t. The base case is where t is a constant
symbol. By the definition of truth, σ(c) = cA = [c].

The induction step is where t is f(s1, . . . , sk). The k many induction hy-
potheses state that σ(si) = [si]. Thus
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(f(s1, . . . , sk))A = σ(f(s1, . . . , sk)) Definition III.19
= fA(σ(s1), . . . σ(sk)) Definition of truth
= fA([s1], . . . , [sk]) Induction hypotheses
= [f(s1, . . . , sk)] Definition of fA

Final stage of the proof of the Completeness Theorem. We are now
ready to finish the proof of the Completeness Theorem. We have constructed a
consistent, complete, strongly Henkin set Π of sentences with Γ ⊂ Π. We have
also defined an L+-structure A. The remaining step is to show that A ⊧ Π. From
that, it follows that A ⊧ Γ. Of course, A is an L+-structure not an L-structure,
but by taking the restriction of A to the language L, i.e. by discarding the
interpretations of the constant symbols di in L+ ∖ L, we obtain an L-structure
that satisfies Γ. (See Theorem III.87.)

Lemma IV.39. A ⊧ Π. Hence A ⊧ Γ.

Proof. We shall prove:

Claim. For every L+-sentence A, we have A ⊧ A if and only if A ∈ Π.

The proof of the claim is by induction on the logical complexity of A. Two
of the induction steps are very similar to the proof of the claim on page 61 used
for the proof of the Completeness Theorem for PL, but we include them here
for completeness.6

Base case #1: Suppose A is an atomic formula P (s1, . . . , sk). By Lemma IV.38,
σ(si) = [si] for any truth assignment σ. Therefore, by the definition of truth,
and the definition of PA,

A ⊧ P (s1, . . . , sk) ⇔ ⟨[s1], . . . , [sk]⟩ ∈ PA ⇔ P (s1, . . . , sk) ∈ Π.

Base case #2: Suppose A is an atomic formula s1 = s2. By Lemma IV.38,
σ(s1) = [s1] and σ(s2) = [s2] for any truth assignment σ. Therefore A ⊧ s1 = s2
if and only [s1] = [s2]. That holds if and only if s1 ∼ s2, and that is further
equivalent to s1 = s2 ∈ Π by the definition of ∼. Thus, A ⊧ s1 = s1 is true if
and only if s1 = s2 is in Π.

Induction step #1: Suppose A is ¬B. The induction hypothesis tells that
the claim holds for B. Thus,

¬B ∈ Π ⇔ B ∉ Π Lemma IV.33(a)
⇔ A ⊭ B Induction hypothesis
⇔ A ⊧ ¬B Definition of truth

Induction step #2: Suppose A is B → C. The induction hypothesis holds for
both B and C. Then

6Pun not intended!
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(B → C) ∈ Π ⇔ B ∉ Π or C ∈ Π Lemma IV.33(b)
⇔ A ⊭ B or A ⊧ C Induction hypotheses for B and C
⇔ A ⊧ (B → C) Definition of truth

Induction step #3: Suppose A is ∀xB(x). The induction hypothesis holds
for B(t) for every closed L+-term t. Then

∀xB(x) ∈ Π ⇔ for all closed L+-terms, B(t) ∈ Π Lemma IV.33(e)
⇔ for all closed L+-terms t, A ⊧ B(t) Induction hypotheses for B(t)
⇔ for all closed L+-terms t, A ⊧ B(tA) Theorem III.74
⇔ for all σ, A ⊧ B(x)[σ] Lemma IV.38
⇔ A ⊧ ∀xB(x) Definition of truth

Therefore A ⊧ ∀xB(x) if and only if ∀xB(x) ∈ Π.

That concludes the proof of the Completeness Theorem.

IV.5 Compactness Theorem

The Compactness Theorem states that Γ ⊧ A if and only if there is a finite
subset Γ0 of Γ such that Γ0 ⊧ A:

Theorem IV.40 (Compactness Theorem for Sentences). Let Γ be a set of
sentences and A be a formula.

(a) Γ is satisfiable if and only if Γ is finitely satisfiable.
(b) Γ ⊧ A if and only if there is a finite subset Γ0 of Γ such that Γ0 ⊧ A.

Proof. This follows immediately from parts (a) of the Soundness and Com-
pleteness Theorems. Namely, suppose Γ ⊧ A. Then Γ ⊢ A by the Completeness
Theorem, and thus by the finiteness of proofs, there is a finite subset Γ0 of Γ
such that Γ0 ⊢ A. Finally, the Soundness Theorem implies that Γ0 ⊧ A.

The Compactness Theorem also holds when Γ is a set of formulas.

Corollary IV.41 (Compactness Theorem for Formulas). Let Γ be a set of
formulas and A be a formula.

(a) Γ is satisfiable if and only if Γ is finitely satisfiable.
(b) Γ ⊧ A if and only if there is a finite subset Γ0 of Γ such that Γ0 ⊧ A.

Proof. This follows immediately from the Compactness Theorem for sentences
with the aid of Theorem III.88 about replacing variables with new constant sym-
bols for semantic implication. Let A and Γ use the language L. Let L′ be ob-
tained by adding new constant symbols d1, d2, d3, . . .. Then by Theorem III.88,
Γ is satisfiable if and only if Γ(d⃗/x⃗) is satisfiable. Likewise, Γ is finitely satisfi-
able if and only if Γ(d⃗/x⃗) is finitely satisfiable. And, by Theorem IV.40, Γ(d⃗/x⃗)
is satisfiable if and only if it is finitely satisfiable. That proves part (a). Part (b)
is proved similarly.
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Applications of the Compactness Theorem.

Finiteness and overspill. Our first application of the Compactness Theorem
is about the undefinability of finiteness. We now again work with an arbitrary
fixed language L and assume that it contains the equality sign.7

Definition IV.42. A structure A is finite if its universe ∣A∣ is finite. The
cardinality of A is the cardinality of ∣A∣.
Theorem IV.43. There is no sentence A that defines the set of finite struc-
tures. In other words, the class of finite structures is not an elementary class
(EC).

Proof. Suppose, for the sake of a contradiction, that there is a sentence A such
that, for all structures A, A ⊧ A holds if and only if A is finite. From Exer-
cise III.12, for any fixed k > 1, there is a formula AtLeastk which states that
∣A∣ has cardinality at least k. For example, one way to construct AtLeastk is to
form the sentence ∃x1⋯∃xk⋀i<j xi ≠ xj .

Let Γ be the set {AtLeastk ∶ k ≥ 2}. Clearly, A ⊧ Γ holds if and only if
A is infinite. Therefore, Γ ∪ {A} is an unsatisfiable set of sentences, since any
model of Γ∪{A} would have to be both finite and infinite. By the Compactness
Theorem, there is a finite subset Γ′ of Γ such that Γ′ ∪ {A} is unsatisfiable.

Let k be the maximum value such that AtLeastk is in Γ′. Let A be any
structure of size at least k. There must exist such a structure A since it can be
formed by letting the universe have k objects and defining the interpretations
of the non-logical symbols arbitrarily. But then, A ⊧ A since it is finite, and A
has size ≥ k. Therefore A satisfies every sentence in Γ′ ∪ {A}, contradicting the
unsatisfiability of Γ′ ∪ {A}.

The set Γ from the proof defines the class of infinite structures, since A ⊧ Γ
holds if and only if A is infinite. In the terminology of Section III.11, this
means that the class of infinite structures is an elementary class in the wide
sense (EC∆), and is equal to Mod Γ.

We can now state an even stronger form of Theorem IV.43 that states that
there is not even an infinite set of sentences that defines the property of being
finite.

Theorem IV.44. The class of finite structures is not EC∆. That is, there is
no set Π of sentences such that, for all structures A, A ⊧ Π if and only if A is
finite.

Theorem IV.44 is an immediate corollary of Theorem IV.43 and the next
theorem.

Theorem IV.45. Let S be a class of L-structures and T be the complement
of S, namely T is the class of L-structures which are not in S. Suppose both S
and T are EC∆. Then both S and T are EC.

7It is natural to assume the presence of the equality sign, =, when talking about the finite-
ness of models. However, with some difficulty, the results on the undefinability of finiteness
can be reformulated to apply to languages without equality.
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Proof. Suppose S = Mod Γ and T = Mod Π; in other words, A ∈ S if and only
if A ⊧ Γ, and A ∈ T if and only if A ⊧ Π. Since S ∩ T is empty, Γ ∪ Π is
inconsistent. By the Compactness Theorem, there is a finite subset of Γ ∪ Π
which is inconsistent. Express this inconsistent subset as Γ′ ∪Π′ where Γ′ ⊆ Γ
and Π′ ⊆ Π. Let A be the sentence ⋀Γ′ and B be the sentence ⋀Π′.

Suppose A ⊧ A, or equivalently that A ⊧ Γ′. By the unsatisfiability of Γ′∪Π′,
we have A ⊭ Π. Therefore A ∉ T ; hence A ∈ S. On the hand, suppose A ⊭ A.
Then A ⊭ Γ, so A ∉ S. This shows that A ⊧ A if and only A ∈ S. In other words,
S = ModA. A similar argument shows T = ModB. Therefore, S and T are
elementary classes (EC).

The next theorem states that a theory with arbitrarily large models has an
infinite model. This is often called an “overspill” theorem because it states
that a property about arbitrarily large finite cardinalities spills over to infinite
cardinalities. It will come up again later as a form of the Löwenheim-Skolem in
Section IV.6.

Theorem IV.46. Let Γ be a set of sentences and suppose that, for every k ∈ N,
Γ has a model of cardinality ≥ k. Then Γ has an infinite model.

Proof. Let Π be the set of sentences Γ ∪ {AtLeastk ∶ k ≥ 1}. Since Γ has models
of cardinality ≥ k for all k, Π is finitely satisfiable. Hence, by the Compactness
Theorem, Π is satisfiable. Any model of Π is a model of Γ of course. In addition,
it must have cardinality ≥ k for all integers k. Hence it must be an infinite model
of Γ.

A nonstandard model of the theory of the integers. The theory of the
integers is equal to ThN , namely the set of sentences true in N = (N,0, S,+, ⋅).
By the remark after Definition III.99, ThN is complete. By definition, it fully
describes all first-order truths of the integers. Nonetheless, it does not uniquely
characterize the integers.

Theorem IV.47. Let LPA = {0, S,+, ⋅} be the language of N . There is an LPA-
structure A which is elementarily equivalent to N but not isomorphic to N .

Such a structure A is called a nonstandard model of the integers. Recall that
A andN being elementarily equivalent means that ThA = ThN . We haven’t yet
written out the precise definition of isomorphic (for this see Definition IV.53),
but it means what one would expect; namely, that there is a bijection of the
two universes that preserves the meanings of the constants, predicates, and
functions.

Proof. Let c be a new constant symbol. Let L′ = LPA ∪{c}. For each i ∈ N, let i
denote the term S(S(⋯S(S(0))⋯)) with i occurrences of S. For instance, 0 is
the term 0, and 1 is the term S(0), and 2 is the term S(S(0)), etc. Thus i is a
closed term, and in N it denotes the integer i. In other words, iN is equal to i.
The terms i are called numerals.
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Let Γ be the set of sentences ThN ∪ {c ≠ i ∶ i ≥ 0}. It is not hard to see that
every finite subset of Γ is consistent. To see this, consider the set of sentences Γn

defined by Γn = ThN ∪ {c ≠ i ∶ 0 ≤ i < n}. Then Γn is satisfiable, since we can
expand N to the language L′ by setting the interpretation cN equal to the
object n ∈ N. Every finite subset of Γ is a subset of some Γn; hence Γ is finitely
satisfiable. By compactness, Γ is also satisfied by some structure A.

By construction, A ⊧ ThN . Let B be the restriction of A to the lan-
gauge LPA. By Theorem III.87, B ⊧ ThN . In ∣B∣ = ∣A∣, there is an object,
namely cA that is distinct from iA for all i ∈ N. However, in N , every object
is equal to some iN . (Note that iN is the same as i.) Therefore N and B are
not isomorphic. This is because any isomorphism π ∶ N → B has to map each
i = iN to iA = iB, but then cA is not in the range of π.

The existence of a nonstandard model of the integers means that it is not
possible to give a set of axioms that are true for the integers and false for any
other (nonisomorphic) structure. This foreshadows the Gödel Incompleteness
Theorems, which state that there is no effective way to give a set of axioms
that imply all statements true in the integers. That, however, is a much deeper
and more important result than the existence of nonstandard models; it will be
stated properly and proved in subsequent chapters.

Torsion-free groups. The class of torsion-free groups was earlier shown to
EC∆ as the theory of groups augmented with the axioms

Tk ∶= ∀x(x ≠ 1→ xk ≠ 1)

axiomatizes the torsion-free groups.

Theorem IV.48. The class of torsion-free groups is not an elementary class.

Proof. Suppose the class of torsion-free groups is EC, so it is equal to ModA
for some sentence A. Let Γ be set containing the three group axioms and the
sentences Tk. Then, A ⊧ Γ and Γ ⊧ A. By compactness, there is a finite Γ0 ⊆ Γ
such that Γ0 ⊧ A. Let the Tk’s that appear in Γ0 be Tk1

, . . . Tkn . Choose
a prime p that does not divide any of k1, . . . kn, and let A be a cyclic group
of order p. Then A ⊧ Γ0, but since it is not torsion-free, A ⊭ A. This is a
contradiction.

IV.6 Cardinalities and Löwenheim-Skolem The-
orems

Theorem IV.46 already established the overspill property that a theory with
arbitrarily large finite models has an infinite model. This section will prove
further properties about the cardinalities of models of a theory. We discuss
countable languages and models. We do not give full proofs for the theorems
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on uncountable languages and models; these results are not used in the rest of
the text and readers can skip them if they wish.

We assume the reader has some basic knowledge of cardinalities in set theory.
To simplify working with cardinalities, we assume that the Axiom of Choice
holds. We write ∣X ∣ for the cardinality of a set X. Any set X can be categorized
in exactly one of the following ways:

(a) X is finite. That is ∣X ∣ ∈ N.

(b) X is countably infinite. That is, X is equinumerous with N.

(c) X is uncountable. That is, ∣X ∣ > ∣N∣.
A set is called countable if it is either finite or countably infinite.

Theorem IV.49. Let Γ be a consistent set of L-sentences where L is countable.
Then Γ has a countable model.

Proof. This is a direct consequence of the proof of the Completeness Theorem.
That proof added countable many constant symbols di to form a countably infi-
nite language L+ (when constructing a strongly Henkin extension of Γ). It then
formed an L+-structure A with domain consisting of the equivalence classes [s]
where s is a closed L+-term. Since L+ is countable, there are countably many
closed L+-terms. Thus there are countably many equivalence classes [s]. There-
fore, ∣A∣ is countable, so A is countable.

This last theorem has some simple, but surprising corollaries. The first states
that there is a countable structure that is elementarily equivalent to the real
numbers R = (R,0,1,+, ⋅).
Corollary IV.50. There is a countable model of ThR.

This means that first-order logic is unable to fully characterize the real num-
bers since it cannot exclude the existence of a countable model. The same holds
for ZF, the first-order Zermelo-Fraenkel set theory. This is often called the
“Skolem paradox” (because it was first proved by Skolem in 1922):

Corollary IV.51. If ZF is consistent, there is a countable model of ZF.

The Skolem paradox is not an actual paradox, but it superficially seems
paradoxical since the theory ZF can prove the existence of uncountable sets,
but still has a countable model. The resolution of the “paradox” is that in
any countable model A of ZF, there will be an object a that satisfies (relative
to truth in A) the first-order property of being an infinite set. Specifically, an
object a in ∣A∣ is uncountable in the sense of A if there is no bijection in A
between a and the interpretation of the natural numbers in A.

By the proofs of Theorems IV.47 and IV.49, we also get:

Corollary IV.52. There is a countable nonstandard model of the integers.

We define next the notion of countable categoricity. For this, two models
are said to be isomorphic if they are identical up to renaming the objects in the
universe. Formally this is defined by:
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Definition IV.53. Two L-structures A and B are isomorphic, written A ≅B,
if there is a bijection π ∶ ∣A∣→ ∣B∣ such that

(a) For every constant symbol c ∈ L, π(cA) = cB.
(b) For every k-ary function symbol f ∈ L and every a1, . . . , ak ∈ ∣A∣,

π(fA(a1, . . . , ak)) = fB(π(a1), . . . , π(ak)).

(c) For every k-ary predicate symbol P ∈ L, and every a1, . . . , ak ∈ ∣A∣,

⟨a1, . . . , ak⟩ ∈ PA if and only if ⟨π(a1), . . . , π(ak)⟩ ∈ PB.

Recall that the notation A ≡ B indicates that A and B are elementarily
equivalent.

Theorem IV.54. If A ≅B, then A ≡B.

The idea behind Theorem IV.54 is clear: if A and B are identical except for
the identities of objects in their universes, then they satisfy the same first-order
properties. We leave the proof to Exercise IV.23.

For the next definition, ℵ0 is used to denote the cardinality of N. (“ℵ” is
the Hebrew letter “aleph”.)

Definition IV.55. A set of sentences Γ is ℵ0-categorical if Γ has exactly one
countably infinite model up to isomorphism.

The terminology “ω-categorical” is often used instead of “ℵ0-categorical”.

Theorem IV.56 (Countable  Loś-Vaught Test). Suppose L is countable. Also
suppose that T is an ℵ0-categorial L-theory and that T has no finite models.
Then T is complete.

Proof. Suppose T is not complete, so there is a sentence A such that neither
A nor ¬A is a consequence of T . Therefore T ∪ {A} and T ∪ {¬A} are both
consistent. By Theorem IV.49, there are countable models A and B of T ∪ {A}
and T ∪ {¬A}. Since T has no finite models, A and B are countably infinite.
Since T is ℵ0-categorical, they are isomorphic. But in light of Theorem IV.54,
this is a contradiction since they disagree on the truth of A.

Example IV.57. The theory of dense linear order (DLO) without endpoints
is an example of an ℵ0-categorial theory. This was originally proved by Cantor
in the 1890’s, but we shall omit the proof. It follows that the theory of DLO
without endpoints is complete.

On the other hand, the theory DLO is not complete since the axiom about
the existence of a left (say) endpoint is neither provable nor refutable from the
DLO axioms. It is also not ℵ0-categorical. For instance, let Q≥0 be the set of
nonnegative rationals and Q≥0 be the structure (Q≥0,<). Then Q and Q≥0 are
countable models of DLO but are not isomorphic.

Example IV.58. The theory ThN of the integers is complete but not ℵ0-
categorical by Corollary IV.52.
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The Countable  Los-Vaught Test can also be stated for a set Γ of sentences.
Let Cn Γ denote the set of sentences which are logical consequences of Γ, namely
Cn Γ = {A ∶ A is a sentence and Γ ⊧ A}. Note Cn Γ must be a theory. Theo-
rem IV.56 implies that if Γ is ℵ0-categorical and has no finite models, then Cn Γ
is complete.

We now discuss uncountable languages.

Definition IV.59. Let L be a language. The cardinality of L is denoted
card(L) and is equal to the maximum of ∣L∣ and ℵ0.

Equivalently, card(L) = ℵ0 if L is countable, and card(L) = ∣L∣ if L is infinite.
The point of the definition of card(L) is that there are a total of card(L) many
formulas.

The Soundness, Completeness and Compactness Theorems all hold for un-
countable languages. The proof of the Completeness Theorem needs modifi-
cation to apply to uncountable languages: the primary modification is in the
proof of Theorem IV.29 constructing a strongly Henkin extension of Γ. See
Exercise IV.29 for an outline of the proof.

The proof as sketched in Exercise IV.29 proves a strengthed form of the
Completeness Theorem for languages of arbitrary cardinality:

Theorem IV.60 (Completeness Theorem). Let Γ be a consistent set of L-
sentences. Then Γ has a model of cardinality at most card(L).

As a consequence, we get the following result, which is a variant of the
Löwenheim-Skolem theorem.

Theorem IV.61. Let Γ be a set of L-sentences. Suppose that Γ has an infinite
model or that Γ has arbitrarily large finite models. Then for all cardinals λ ≥
card(L), Γ has a model of cardinality λ.

By Theoren IV.46, if Γ has arbitrarily large models, then Γ has an infinite
model. So the last part of the hypothesis is redundant.

Proof. Let κ = card(L) and λ ≥ κ. Let {dα ∶ α < λ} be a set of λ many new
constant symbols.8 Let L′ be L ∪ {dα ∶ α < λ}. Clearly card(L′) = λ.

Let Π be Γ ∪ {dα ≠ dβ ∶ α < β < λ}. We claim that Π is finitely satisfiable.
Any finite subset ∆ of Π can mention only k many dα’s for some finite k.
Since Γ has a model A of cardinality ≥ k, this means ∆ can be satisfied by
expanding A to have distinct interpretations for the dα’s mentioned in ∆. Since
every finite subset ∆ of Π is satisfiable, Π is consistent. Therefore, by the
Completeness Theorem IV.61, Π is satisfied by some structure A of cardinality
at most λ. Since Π contains the sentences dα ≠ dβ , any model of Π must have
cardinality at least λ. Since Π ⊃ Γ, it follows that A is the desired model of Γ
of cardinality λ.

Corollary IV.62. There is an uncountable nonstandard model of the integers.
8The definition of cardinals in set theory ensures that for any cardinal λ, there are there

are λ many cardinals α < λ.
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Definition IV.63. Let κ be a cardinality. A set of sentences Γ is κ-categorical
if Γ has exactly one model of cardinality κ up to isomorphism.

Theorem IV.64 ( Loś-Vaught Test). Suppose that λ ≥ card(L). Also suppose
that T is an λ-categorial L-theory and that T has no finite models. Then T is
complete.

Proof. The proof of this is essentially identical to the proof of the Countable
 Loś-Vaught Test in Theorem IV.56. Suppose T is not complete, so there is a
sentence A such that neither A nor ¬A is a consequence of T . Therefore T ∪{A}
and T ∪{¬A} are both consistent. By Theorem IV.60, there are models A and B
of T ∪{A} and T ∪{¬A}. Since T has no finite models, A and B are both infinite.
Thus by Theorem IV.64, there are models A′ and B′ of T ∪ {A} and T ∪ {¬A}
of cardinality λ. Since T is λ-categorical, A′ and B′ are isomorphic. But in
light of Theorem IV.54, this is a contradiction since they disagree on the truth
of A.

Exercises

Your answers to Exercises IV.1-IV.9 should not use the Completeness Theorem.

Exercise IV.1. Suppose that y and t are each substitutable for x in A.
(a) Show that ∀xA ⊢ A(t/x) by giving an explicit FO-proof of A(t/x) from

∀xA. (An “explicit” proof means writing out all the formulas in the
proof, indicating if they are a hypothesis, if they are an axiom or if they
are inferred by Modus Ponens or Generalization.)

(b) Show that ∀xA ⊢ ∀yA(y/x) by giving an explicit proof of A(y/x) from
∀xA.

Exercise IV.2. Let P and Q be unary predicate symbols, and 0 be a constant
symbol. Give an explicit FO proof (by listing all the formulas in the proof) of

∀x (P (x)→ Q(x)), ∀y P (y) ⊢ P (0)→ ∀z Q(z).

Exercise IV.3. Show that {∀x∃y P (x, y), ¬P (c, z)} is inconsistent by giving
an explicit FO proof (or explicit FO proofs).

Exercise IV.4. Prove the following:
(a) ⊢ f(x) = f(x).
(b) ⊢ f(x) = f(y)→ f(y) = f(x).
(c) ⊢ x = y → u = v → g(f(x), f(u)) = g(f(y), f(v)).

Exercise IV.5. Prove that ⊢ ∀xA→ ∃xA.

Exercise IV.6. Suppose that ∀xA → C is a sentence. In other words, x does
not occur free in C and x is the only variable which appears free in A. Prove:

(a) ∀x (A→ C) ⊢ ∃xA→ C.
(b) ∃xA→ C ⊢ ∀x (A→ C).
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Exercise IV.7. Redo the previous exercise (Exercise IV.6) under only the
assumption that x does not occur free in C (but without any assumptions on
what other variables might appear free in A or C).

Exercise IV.8. Prove that ∃y∀xQ(x, y) ⊢ ∀x∃yQ(x, y). [Hint: There are
several ways to work this; you might find the Theorem on Constants to be
helpful.]

Exercise IV.9. Let P and Q be unary predicate symbols.
(a) Prove that ∀x (P (x)→ Q(x))→ ∃xP (x)→ ∃xQ(x).
(b) Prove that ⊢ ∀x∀y (P (x)→ Q(y))→ ∃xP (x)→ ∀yQ(y).
(c) Prove that ⊢ ∃x∀y (P (y)→ P (x)).

Exercise IV.10. Theorem IV.13 stating the Deduction Theorem for FO re-
quired A to be a sentence. Show that this hypothesis cannot be eliminated by
giving an example of formulas A and B such that A ⊢ B but ⊬ A → B. (You
can use the Soundness Theorem to prove ⊬ A→ B.)

Exercise IV.11. Theorem IV.18 on proof-by-cases for FO required A to be a
sentence. Shown that this hypothesis cannot be eliminated by giving an example
of formulas A and B such that both A ⊢ B and ¬A ⊢ B hold and such that ⊬ B.

Exercise IV.12. Theorem IV.17 on Proof by Contradiction for FO required
A to be a sentence. Shown that this hypothesis cannot be eliminated by giving
an example of a formula A such that {A} is inconsistent, but ⊬ ¬A.

Exercise IV.13. Part (b.ii) of the Theorem on Constants IV.20 required x
to be the only free variable in A(x). Prove that this hypothesis cannot be
eliminated by giving an example of a formula A(x, y) such that {∃xA(x, y)} is
consistent but {A(c, y)} is inconsistent,

Exercise IV.14. Suppose that Γ and ∆ are sets of formulas and Γ ∪ ∆ is
unsatisfiable.

(a) Prove that there is a finite Γ′ ⊆ Γ and a finite ∆′ ⊆∆ such that Γ′ ∪∆′ is
unsatisfiable.

(b) Prove that there is a formula A such that Γ ⊧ A and ∆ ⊧ ¬A.
This has the identical statement (and the identical proof) as Exercise II.25 but
of course applies to first-order logic instead of propositional logic.

Exercise IV.15. Suppose Γ is a set of sentences and ∆ is a finite set of sentences
such that Γ ⊧) ∆. Prove that there is a finite subset Γ′ of Γ such that Γ′ ⊧) Γ.

Exercise IV.16. Let k0 ∈ N. Given an example of a theory that has models
of cardinality k0 and models of infinite cardinality, but does not have models of
any finite cardinality other than k0.

Exercise IV.17. Let A be a sentence and Γ be a set of sentences. Suppose
that A is true in every infinite model of Γ. Prove that there is a k ∈ N such that
A is true in every model of Γ of cardinality ≥ k.
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Exercise IV.18. Work in the language L with the symbol = and no non-logical
symbols. Prove that there is no finite set Γ of L-sentences which satisfies the
“even cardinality finite models” property of Exercise III.13.

Exercise IV.19. Prove that there is no formula A(x, y) that defines, in every
graph, the property of x and y being in the same connected component. For
the purposes of this exercise, such a formula A would need to work in all graphs
whether finite or infinite.

Exercise IV.20. Let T be the theory of linear orders from Example III.92
using the language L = {<}. A model A of T is called well-founded if there is
no sequence a0, a1, a2, . . . in ∣A∣ such that ai+1 <A ai holds for all i ∈ N. Show
that there is no set Γ of sentences over T that expresses the property of being
well-founded. That is, there is no set Γ of sentences such that for all models A
of T , we have A ⊧ Γ if and only if A is well-founded.

Exercise IV.21. (For readers who know some field theory. Compare with Ex-
ercise III.29.) Prove that the class of the fields of finite (non-zero) characteristic
is not an EC∆. That is, there is no theory T in the language 0,1,+, ⋅ which is
true for exactly the fields of finite (non-zero) characteristic.

Exercise IV.22. Let c be the cardinality of R (the “continuum”), Use the
following sketch to prove that there is a nonstandard model of ThR of cardi-
nality c. Thus ThR is not c-categorical. (If fact, ThR is not κ-categorical for
any infinite κ.)

(a) Recall that L = (0,1,+, ⋅,<) be the language of R. Let the numeral n be
the term 1+ 1+⋯+ 1 with value n ∈ N. An ordered field is archimedean if
every field element x > 0 satisfies x < n for some n ∈ ⋉.

(b) Prove that ThR has a model A which is a non-archimedean field of car-
dinality c.

(c) Prove that A is not isomorphic to R.
(d) Conclude that ThR is not c-categorical.

Exercise IV.23. Prove Theorem IV.54 that isomorphic structures are elemen-
tarily equivalent. The proof will assume that A ≅ B and use induction on the
complexity of A to prove that, for all σ, A ⊧ A[σ] holds if and only if B ⊧ A[σ]
holds.

Exercise IV.24. Let L be the language containing only the equality symbol =.
Let Γ be {AtLeastk ∶ k ≥ 2}. Prove that Γ is ℵ0-categorical and complete.

Exercise IV.25. Let L be the language with a unary predicate symbol P
(and, as always, equality). Let Γ be a set of sentences expressing that there are
infinitely many objects x satisfying P (x) and infinitely many objects x satisfying
¬P (x).

(a) Describe explicitly the formulas in Γ.
(b) Show that Γ is ℵ0-categorial. Conclude that the theory axiomatized by Γ

is complete.
(c) Show that Γ is not κ-categorical for κ > ℵ0.
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Exercise IV.26. Give an example of a theory that is κ-categorical for all
infinite κ.

Exercise IV.27☀ A theory is called categorical if all models of T are isomor-
phic.

(a) Describe what must happen if T is categorical.
(b) Suppose T is a categorical theory over a finite language L. Prove that T

is finitely axiomatizable, that is, that there is a finite set of sentences Γ
such that Γ ⊧) T .

Exercise IV.28. Give an example of how Theorem IV.56 (the  Loś-Vaught
Test) can fail if the hypothesis that T has no finite models is omitted.

Exercise IV.29☀ (For readers who know some set theory.) Use the follow-
ing proof outline to prove the Completeness Theorem IV.60 for uncountable
languages. (Compare this to Exercise II.30.) Let Γ be a consistent set of L-
sentences. Let κ = card(L) be the cardinality of L and suppose κ > ℵ0.

(a) There are κ many distinct L-formulas.
(b) Extend Γ to a strongly Henkin set ∆ of sentences. Let D be a set of κ many

new constant symbols, with D the disjoint union D = ⋃i∈NDi and each Di

of cardinality κ. Let Li = L ∪⋃i<j Di and L+ = ⋃iLi. There is the same
number of Li-sentences as there are constants in Di+1. Therefore each Li-
sentence A can be associated with a distinct constant dA ∈Di+1, so A↦ dA
is injective. Let ∆ be the set Γ plus the sentences A(d∀xA(x)) → ∀xA(x)
for all L+-sentences ∀xA(x). Clearly ∆ is strongly Henkin. Prove that ∆
is consistent. For this, use induction on i and the finiteness of proofs.

(c) Use Zorn’s Lemma to prove there is a complete, consistent set Π of sen-
tences with Π ⊃∆.

(d) Use the same constructions as in proof for the countable version of the
Completeness Theorem to prove that there is a Henkin model A of Π.
Thus A (and its restriction to the language L) satisfies Γ.

(e) The universe of A is equal to the interpretations of the constants in D.
That is, ∣A∣ = {dA ∶ d ∈D}. Therefore the cardinality of A is at most κ.



Chapter V

Algorithms, Informally

The notions of an “algorithm” or ‘effective ‘procedure” or “computability” are
central topics in mathematical logic. This chapter will deal with informal de-
scriptions of algorithms and computability. It also discusses noncomputability,
based on an informal formulation of the halting problem. As applications, this
chapter discusses algorithms for recognizing properties of formulas and proofs in
both propositional logic and first-order logic. Later chapters will study formal
notions of computability, including Turing machines and recursive functions.
The formal notions of computability will correspond extremely well with our
informal notions of algorithms.

An informal notion of algorithm is perfectly adequate for proving results
about things that are computable. However, it is also of great interest to under-
stand what is not computable. And, a big advantage of working with the formal
definitions of computability will be that it will let us prove theorems about what
cannot be computed, e.g., the Halting Problem for Turing machines. This will
further form the basis for results about the limits of provability in first-order
logic, in the form of Gödel’s Incompleteness Theorems.

First, however, the present chapter discusses algorithms, and computability
and non-computability, based on intuitive, informal definitions of these concepts.

V.1 Informal Definition of Algorithms

An algorithm is meant to be a precisely described procedure or method for
solving a problem. One way to think of algorithms is that they are procedures
that could be carried by an idealized computer. In particular, an algorithm has
a finite set of instructions, and at any given instant in time, the algorithm is
working with only a finite amount of data. Working on an “idealized” computer,
however, means that the algorithm is not constrained by practical considerations
such as the amount of memory available, the power that is consumed, the time
that is used, etc.

Generally, an algorithm accepts as input a string of symbols from some
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finite alphabet Σ of symbols. The output of the algorithm can be either a
“Yes”/“No” answer or another string of symbols over Σ. Of course, we are also
interested in algorithms that deal with objects such as integers and with general
combinatorial objects, but these can be encoded by strings of symbols. For
instance, integers can be represented by strings of 0’s and 1’s in binary notation,
or strings of digits 0-9 in decimal notation, etc. Likewise, a combinatorial object
such as a graph can be encoded by a string of symbols. Thus there is no real
loss of generality in requiring algorithms to work only with symbols from a finite
alphabet Σ.

The informal notion of an algorithm can be captured by the following prin-
ciples.

● The algorithm is specified by a finite set of instructions that fully and unam-
biguously specify the actions of the algorithm.

● The algorithm operates in a step-by-step fashion. At each step, it uses or
manipulates only a finite amount of data. The data is discrete or combina-
torial in nature, of the type that can be encoded by symbols drawn from a
finite alphabet of symbols.

● The input to the algorithm is encoded by a string of symbols from the finite
alphabet. The algorithm returns an answer after running for a finite number
of steps and then entering a special “output state” that indicates the answer
is ready. The answer is encoded in a straightforward way as a string of
symbols in the data as maintained by the algorithm. After outputting an
answer, the algorithm can continue where it left off, and potentially output
further answers. Alternatively, the algorithm could run forever and never
return a single answer.

All of these requirements are met by a modern-day computer program. In
practice, a computer’s memory is organized into words and pages, and stored in
a hierarchy of different memory types (cache memory, main memory, internal
disk, external disk, etc.); however, in the end, the entire contents of a computer’s
memory can be viewed as a binary string of 0’s and 1’s. A computer program
is a finite list of instructions, and at any given instance in time the computer’s
next action is based on only a finite number of bits. And, indeed we will argue
that idealized computer programs, namely algorithms that are not constrained
by time or space requirements, exactly capture our informal notion of algorithm.

It is important for the informal notion of algorithm that the instructions
“fully and unambiguously” specify the actions of the algorithm while only tak-
ing a finite amount of data into account. This rules out things like the use
of randomization or quantum computing. It also rules out appeals to human
intuition or human judgment. An example of a disallowed appeal to human
judgment would be an algorithm that is programmed to form a digital image,
and then take one action if the resulting image is “attractive” and another ac-
tion if the image is “unattractive”. The problem, of course, is that this is not
an unambiguous decision.
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Randomization however can, in many cases, be simulated by algorithms that
do not use randomization. Whether quantum computing or other (possibly yet-
to-be-discovered) physical processes could extend the power of algorithms is
unknown.

A more subtle limitation of algorithms is that they cannot work directly
with real numbers. Consider, for instance, the situation where it is wished for
an algorithm to decide whether π is a root of the polynomial 9x4−240x2+1492.1

Or more generally, whether a given real number is a root of a given polynomial.
This cannot be done directly in a single step, because a real number can be
non-rational, and may not be expressible as a finite amount of data. Indeed,
although special real numbers such π can be described succinctly, an arbitrary
real number cannot be “given” by a finite description. The best that can be
done is to give the algorithm a finite description of the real number, for instance
in the form of an algorithm that generates its binary or decimal representation.
This of course corresponds well to computation in ordinary computers, which
likewise cannot work directly with (infinite precision) real numbers.

The limitation about using only a finite amount of data is even more re-
strictive than just prohibiting using an infinite amount of data all at once. It
instead means that there is a fixed upper bound on the amount of data that
can be used in a single algorithmic step: this upper bound is independent of
the size of the input. For example, consider an algorithm that takes the bi-
nary representation of an integer n as input, and is required to decide whether
the input n is a prime number. It is not permitted to just look at the entire
number and see directly whether it is prime. Instead, the algorithm must break
its work into smaller steps, say based on trial division, to determine whether
n is prime. Even things like adding or multiplying integers (presented, say, in
binary notation) cannot be done in a single step. Instead, they need to be done
step-by-step, perhaps by using grade school-style algorithms adapted to base 2
instead of base 10. This again corresponds well to how ordinary computers need
to carry out computations for arbitrary precision arithmetic.

To illustrate this, consider the following problem. The input is a string of 0’s
and 1’s. We want an algorithm to determine the parity of the string, namely if
there is an even or odd number of 1’s. Suppose the string is very long, consisting
of millions or billions of symbols or even more. For the sake of concreteness, we
can picture the string as being presented to us in a multi-volume collection of
books filled with text containing just 0’s or 1’s, and then imagine how we would
determine its parity by hand. It is even more useful to picture the string as
being written on an extremely long ribbon of paper. Then a natural algorithm
is to start at the beginning of the string and scan the entire string from left to
right, keeping track at each step of whether an even number or an odd number
of 1’s has been encountered so far. This algorithm needs only to consider a finite
amount of the input data at any given step, and remember a finite amount of
information (namely the parity of the bits encountered so far).2

1This is the Kochański approximation to π: one of its roots is
√

40/3 − 2
√
3 ≈ 3.1415333387.

2The attentive reader will have noticed that the algorithm also has to remember its position
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This example raises the question of the efficiency of algorithms, namely
of how quickly they can be implemented in practical settings. The notions
of algorithms and computability that are discussed in this book do not take
efficiency into consideration at all. If an algorithm takes an enormous amount
of time, even more time than could possibly be available within the lifespan of
the universe, this does not disqualify it from being an “effective” algorithm. On
the other hand, the efficiency of an algorithm is obviously of great importance
in real-world applications. In theoretical computer science, the efficiency of
algorithms is categorized in many ways, for instance, whether the algorithm runs
in “linear” time, “polynomial” time, “exponential” time, etc. These notions all
have precise mathematical definitions (which we will not present), but they are
not important for our notion of an “effective” algorithm. Nonetheless, we take
a short detour to discuss these concepts.

For our brief tour of the efficiency of algorithms, first, consider addition and
multiplication of integers presented in binary notation. Suppose two integers
are presented in base 2 as binary strings written, say, in a multi-volume sets
of books, or on very long ribbons. The goal is to algorithmically determine
their sum or their product, say with the end result written in its own multi-
volume set of books or its own very long scroll. For integer addition, the grade
school algorithm (adapted to base 2) is quite efficient. Indeed if things are
arranged so that you can scan the inputs from right to left, namely starting
at the low-order bits, and write the output in right-to-left order, then the sum
can be written almost as fast as the two input summands can be scanned. This
is a quite efficient algorithm and is an example of a “linear time” algorithm.
The grade school algorithm for integer multiplication is less efficient; it is a
“quadratic time” algorithm. There are algorithms for integer multiplication
that are more efficient than quadratic time; however, the most efficient ones are
quite complex. (It is an open question whether there is a linear time algorithm
for integer multiplication.)

The primality testing problem is the problem of deciding whether an integer
is a prime. For primality testing, the input is an integer, coded as binary string,
and the output is a “Yes” or “No” answer depending on whether the input is
a prime or not. The straightforward algorithm based on trial division is an
“exponential time” algorithm, but there is a more sophisticated and complex
algorithm for primality testing which uses only “polynomial time”. The prime
factorization problem is the problem of, given an integer n as input, computing
the prime factorization of n. The best-known algorithms for prime factorization
require exponential time, and it is open whether it has a linear time algorithm
or even a polynomial time algorithm.

An algorithm is informally called feasible if it is efficient enough to be car-

in the input string, and this not cannot be encoded by a fixed number of bits. This is
unavoidable. A better way to state the requirement about using only a finite amount of
information is that the algorithm has a finite set of pointers to finite sub-portions of the data,
that it can only act on and alter data that is pointed to, and that the pointer values can be
updated only in certain restricted (finitely describable) ways. In the Turing machine models,
these pointers will be called “tape head positions”.
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ried out in practice. The feasibility of an algorithm is a rather vague concept.
Roughly speaking, it means something along the lines of the following: For rea-
sonably sized inputs, the algorithm can be successfully carried by a computer
program that could be run in the real world. Being “run in the real world” could
mean anything from running on a single computer, to running on a supercom-
puter, or to running on a network that somehow has co-opted a large fraction
of the world’s computers, and with the calculations being completed in, say,
months. Being a “reasonably sized” input, could be anything from consisting of
hundreds of symbols, to millions of symbols (e.g., fitting in a multivolume set
of books), to trillions of symbols, or more.

The notion of “feasible” is thus very vague and depends on the applica-
tion; it certainly lacks a mathematical definition. For convenience, many people
identify being feasible with being a polynomial time algorithm, even though it
is an imperfect identification. In most cases, everyone agrees that linear time
algorithms should count as feasible and that exponential time algorithms are
infeasible.3 Quadratic-time algorithms may generally be considered as feasible,
but this gets much less clear as the problem size increases and there are many
situations where quadratic-time algorithms become infeasible.

In this book, we present the theory of “effective” algorithms, without taking
into consideration whether they are feasible.

V.2 The Church-Turing Thesis

The present chapter discusses algorithms in an informal way, without present-
ing a formal definition of “computable” or “algorithm”. Later chapters will give
three mathematical definitions of “computable”: the first one is based on Turing
machines, the second one is based on definability in theories of the integers, and
the third definition is based on recursive function theory. The Church-Turing
thesis states that our informal notion of “computable” corresponds precisely to
the mathematically defined notions of “computable” as based on Turing ma-
chines or recursive function theory.

The Church-Turing thesis is often called “Church’s Thesis” as it was first
proposed by Church in 1936 for “lambda-definable” functions. Also in 1936 and
working independently, Turing proposed a concrete model for computation, now
known as Turing machines. A definition of computable functions was given a few
years earlier in work by Gödel and Herbrand; however, they did not formulate
a version of the Church-Turing thesis.

One reason for believing the Church-Turing thesis is that these three def-
initions of computability (lambda definability, Turing computable, and recur-
siveness) are mathematically equivalent. Indeed there are many other math-
ematically equivalent definitions of “computable”. This indicates that these
definitions define a robust notion of computability.

3But there are many exceptions to this, as this depends on the constant factors in the
asymptotics.
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Generic terminology Turing machines Recursive function theory

Computable Turing computable Recursive

Decidable Turing decidable Recursive
(for relations only)

Computably enumerable (c.e.) Turing enumerable Recursively enumerable (r.e.)
(for relations only)

Partial computable Partial Turing computable Partial recursive
(for functions only)

Figure V.1: Terminology for computability

A second, even better reason for believing the Church-Turing thesis is that
Turing machines, for all their simplicity, can carry out a broad range of algo-
rithms. As convincingly argued by Turing in his original paper on the topic,
any effective procedure, of the type that people can agree is really effective, can
be carried out by a Turing machine. This will be discussed more in the next
chapter.

The Church-Turing thesis has become to be seen as being “obviously true”,
based on the fact that a Turing machine can simulate the kinds of operations
carried out by modern-day computers. This still leaves open the possibility some
new physical principle might be discovered (say, based on quantum mechanics or
alternate universes or who knows what) that permits computations that cannot
be carried out by Turing machines. However, unless or until such things happen,
we can unquestioningly accept the Church-Turing thesis as being true.

An important (nonobvious) consequence of the Church-Turing thesis is that
it implies there is a “universal algorithm” that can simulate any other algo-
rithm.4 The existence of universal algorithms makes it possible to write general-
purpose compilers and interpreters, which can compile or interpret any program.
In theoretical computer science, it makes it possible to study “meta-algorithms”,
which are algorithms that take algorithms as inputs.

Figure V.1 summaries some of the terminology that will be used when de-
scribing computable relations and functions. In the present chapter, the terms
“computable” and “decidable” are used in their informal sense. This is suf-
ficient for proving results about what is computable. Later chapters will use
terminology such as “computable” and “decidable” in their mathematically for-
mal sense, as defined in terms of Turing machines or recursive function theory.
Having mathematical definitions for computability is not only interesting in
its own right; it also is needed in order to prove theorems about what is not
computable.

4Turing [1936] was the first to describe a universal algorithm, in the same paper that
introduced Turing machines.. Similar constructions were given by Church slightly earlier in
1935-1936.
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V.3 Basic Definitions for Computability

We now define various ways in which functions and relations can be computable.
For now, we work with k-ary relations that take strings of symbols as inputs.
Likewise, we work with functions that take strings of symbols as inputs and
output a string of symbols.

However, Section V.3.2 will discuss how the various notions of computability
also apply to functions and relations that act on integers; namely, by using a
binary representation or base 10 representation of integers. Chapter VII covers
the Incompleteness Theorems and representable relations and functions, and will
work extensively with functions and relations that act on integers. Appendix ??
discusses the traditional definitions of recursive sets and functions.

V.3.1 Computability and decidability

Definition V.1. An alphabet is a non-empty, finite set Σ of symbols. The
set Σ∗ is the set of strings of symbols from Σ. Equivalently, Σ∗ is the set of
finite sequences of symbols from Σ. The empty string is denoted ϵ; it is the string
with no symbols. The length of a string w is denoted ∣w∣ and is the number of
occurrences of symbols in w.

Example V.2. Let Σ = {0,1}. There is a single string in Σ∗ of length 0, namely
the empty string ϵ. There are two strings in Σ∗ of length one, namely 0 and 1.
There are four strings in Σ∗ of length two, namely 00, 01, 10, and 11.

We often use letters such as a, b, c, . . . or digits 0,1,2, . . . to denote symbols
in Σ. We often use letters such as u, v,w, x, y, z, . . . to denote strings. Strings
are sometimes called “expressions” or “words”. We fix an alphabet Σ for the
rest of this section.

This chapter, and Chapter VI, will primarily use the convention that func-
tions and relations act on strings of symbols.

Definition V.3. Let k ≥ 1. A k-ary function (on Σ∗) is a function

f ∶ (Σ∗)k → Σ∗;

that is, f takes k strings as inputs and outputs a string.

Definition V.4. A k-ary relation R (on Σ∗) is a subset of (Σ∗)k. Members
of R are k-tuples of strings from Σ∗. For w1, . . . ,wk, we say that

R(w1, . . . ,wk) holds if and only if ⟨w1, . . . ,wk⟩ ∈ R.

A unary relation R is also called a set or a language.5 (Calling a unary relation
a set is consistent with our convention that a 1-tuple ⟨w⟩ is identical to w. See
the comment after Example III.55.)

5This terminology “language” is common in theoretical computer science. It has nothing
to do with our earlier definition of a “language” as a set of non-logical symbols for first-order
formulas.
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Example V.5. The reversal of a string w is denoted wR and equal to the
string w written backward. For example, if w = 1101 then wR = 1011. Also,
ϵR = ϵ. In general, if w = a1a2⋯ak−1ak, then wR = akak−1⋯a2a1. Note that
∣w∣ = ∣wR∣. The reversal function w ↦ wR is a unary function.

The concatenation of strings u and v is the string uv. That is, if u = a1⋯ak
and v = b1⋯bℓ, then uv = a1⋯akb1⋯bℓ. As a special case, note that uϵ = ϵu = u.
Of course, ∣uv∣ = ∣u∣ + ∣v∣. The concatenation function that maps the pair (u, v)
to uv is a binary function.

A string w is a palindrome if w = wR. The set of palindromes is a unary
relation.

Example V.6. Let w ∈ Σ∗ and k ∈ N. The iterated concatenation of w with
itself k times is denoted wk. This can be recursively defined by w0 = ϵ and
wi+1 = wiw. For example, if w = 110, then w3 = 110110110. A useful form of
iterated concatenation is the binary function that maps (u, v) to u∣v∣; i.e., it
concatenates ∣v∣ many copies of u.

Definition V.7. A k-ary function f (on Σ∗) is computable provided there is
an algorithm Mf which when given as input any k strings w1, . . . ,wk from Σ∗

and produces as output the string that is equal to f(w1, . . . ,wk).

We write Mf(w1, . . . ,wk) for the output string produced by Mf on input
w1, . . . ,wk. So Mf is an algorithm for f provided

Mf(w1, . . . ,wk) = f(w1, . . . ,wk), for all w1, . . . ,wk ∈ Σ∗.

It is important to note that for f to be computable, Mf must succeed in pro-
ducing the correct output no matter what strings w1, . . . ,wk are input.

Definition V.8. A k-ary relation R (on Σ∗) is decidable provided there is
an algorithm MR which when given as input any k strings w1, . . . ,wk from Σ∗

produces the answer “Accept” or “Reject” depending on whether R(w1, . . . ,wk)
holds or not. When this holds, we say that the algorithm MR decides the
relation R.

If R is not decidable, we say that R is undecidable.

We have left undefined what it means for MR to produce an answer of
“Accept” or “Reject”; the precise details are unimportant; all that is needed
is that algorithm has some definitive, unambiguous way of signaling accep-
tance or rejection. We generally use the terminology “MR(w1, . . . ,wk) accepts”
or “MR(w1, . . . ,wk) rejects” instead of saying that MR(w1, . . . ,wk) produces
the answer “Accept” or “Reject”. We also use the terminology “MR accepts
w1, . . . ,wk” or “MR rejects w1, . . . ,wk”.

In other words, an algorithm M decides R provided that, for all w1, . . . ,wk,

M(w1, . . . ,wk) accepts ⇔ R(w1, . . . ,wk) holds

M(w1, . . . ,wk) rejects ⇔ R(w1, . . . ,wk) does not hold.
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Once again, it is important that MR is required to either accept or reject, no
matter what strings w1, . . . ,wk are input.

At this point, the reader might object to the previous definitions defining
the notions of “computable” and “decidable” in terms of the undefined notion
of “algorithm”. The intention, however, is that we are currently working with
an informal notion of algorithm as outlined in Section V.1. In later chapters, we
will give formal mathematical definitions of “algorithm” in the form of Turing
machines or recursive function definitions. At that point, the definitions of
“computable” and “decidable” also become formal mathematical definitions. All
the theorems stated below will still hold under the formal definition of algorithm.

Example V.9. Let Σ be an arbitrary alphabet. The reversal function w ↦ wR,
the concatenation function, and the iterated concatenation function are all com-
putable. The set of palindromes is a decidable set.

The empty set ∅ is a decidable set; it is decided by the algorithm which
rejects all inputs. The set Σ∗ is also decidable; it is decided by the algorithm
that accepts all inputs.

The empty set should not be confused with the set {ϵ} containing only the
empty string. The set {ϵ} also decidable: it is decided by an algorithm that
checks if its input w contains any symbols at all: if so, it rejects, and if not, it
accepts.

The “complement” of a relation is the set of k-tuples that are not in the
relation:

Definition V.10. Let R be a k-ary relation on Σ∗, so R ⊆ (Σ∗)k. The comple-
ment of R is denoted R and is equal to (Σ∗)k ∖R.

Theorem V.11. A relation R is decidable if and only if its complement R is
decidable.

Proof. Suppose that a k-ary relation R is decided by an algorithm M . Let M ′

be the algorithm that acts just like M except that it rejects if M accepts and
it accepts if M rejects. We can write this in algorithm form as:

Input: Strings w1, . . . ,wk

Algorithm: M ′

Run M on input w1, . . . ,wk.
If M accepts, then reject.
If M rejects, then accept.

Clearly M ′ decides R. This shows that if R is decidable, then so is R. Since
the complement of R is the same as R, it follows that if R is decidable then R
is decidable.

V.3.2 Functions and relations on the integers.

As defined above, functions and relations are defined to act on strings of sym-
bols, i.e., members of Σ∗; this will be the most appropriate when using Turing
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machines for computations. However, when studying recursive functions and
definability in theories of arithmetic, we will instead want to talk about func-
tions and relations that act on integers, not on strings. For this, we can view
integers as being coded by strings of symbols. One way to do this is via base 10
representation:

Example V.12. Let Σ be the set of digits {0,1,2,3,4,5,6,7,8,9}. Any mem-
ber w of Σ∗ can be viewed as the base 10 representation of a nonnegative
integer num10(w), possibly with extra leading zeros. For instance, num10(1) =
num10(01) is equal to the integer 1. Similarly, num10(27) = num10(027) is
equal the integer 27. The empty string is a binary representation for 0; that is,
num10(ϵ) is the integer 0. Conversely, for i ∈ N, str10(i) is the unique base 10
representation for i that does not start with a leading 0.

The integer addition defines a binary function on Σ∗, namely, (u, v) ↦
str10(num10(u) + num10(v)). The inequality predicate LE defined so that

LE(u, v) holds if and only if num10(u) ≤ num10(v)

is an example of a binary relation on Σ∗. The integer addition function is
computable and the relation LE is decidable.

We could have as equally well used base 2 (or any other base) in the example.
It would also work to use unary notation where Σ = {1} has only a single symbol,
and the string 1n represents the integer n. There are of course algorithms to
convert between base 10 and base 2 and unary representations of integers. Thus,
from the point of view of computability, it does not make any difference which
base is used to represent integers as strings.

Definition V.13. Let Σ = {0,1}. Let str and num be similar to the functions
in the previous example, but using base 2 instead of base 10. Suppose f ∶ Nk → N
is a k-ary function on the integers. Then f str is the k-ary function on Σ∗ defined
by

f str(w1, . . . ,wk) = str(f(num(w1), . . . ,num(wk))).
Then f is defined to be computable if and only f str is computable. Similarly,
suppose R ⊆ Nk is a k-ary relation on the integers. Then Rstr is the relation
defined by

Rstr(w1, . . . ,wk) holds if and only if R(num(w1), . . . ,num(wk)) holds.

Then R is defined to be decidable if and only if Rstr is decidable.
Similar conventions apply to the to-be-defined notions of “semidecidable”,

“computably enumerable” and “partial computable”.

Example V.14. Many functions on the integers are computable. This in-
cludes, for instance, addition (n,m)↦ n+m, multiplication (n,m)↦ n ⋅m, and
exponentiation (n,m) ↦ nm. Another computable function is the truncated
subtraction function � defined by

n �m = { n −m if n >m
0 otherwise.
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That is, n �m = max{n −m, 0}. Note that truncated subtraction, unlike sub-
traction, is total on N. Likewise many relations on the integers are decidable.
This includes, for instance, the set of primes (a unary relation) and the binary
relation ≤.

Definition V.15. Let R be a k-ary relation on N. The characteristic function
of R is denoted χR and is the k-ary function on the integers defined by

χR(n1, . . . , nk) = { 1 if R(n1, . . . , nk)
0 otherwise.

Example V.16. The characteristic function of the binary relation ≤ is the
function

χ≤(n,m) = { 1 if n ≤m
0 otherwise.

Namely, χ≤(n,m) =min{1,m � n}.

Theorem V.17. A k-relation R on N is decidable if and only if its character-
istic function χR is computable.

Proof. Suppose that an algorithm M decides the relation R. Modify the algo-
rithm M so that instead of accepting it outputs 1, and instead of rejecting, it
outputs 0. The resulting algorithm N computes the characteristic function χR.

Conversely, suppose N computes χR. Modify N so that when it is about to
output 1, it accepts; and when it is about to output 0, it rejects. This yields an
algorithm M that decides R.

V.3.3 Computable enumerability

The above definitions of computable functions and decidable relations required
algorithms that return an answer on all inputs. It is possible, however, for an
algorithm to run forever and never produce an output. This leads naturally
to the concept of computably enumerable relations. First, however, we define
“semidecidable”.

Definition V.18. A k-ary relation R (on Σ∗) is semidecidable provided there is
an algorithm MR when give as input any k strings w1, . . . ,wk from Σ∗, produces
the answer “Accept” if and only if R(w1, . . . ,wk) holds. If R(w1, . . . ,wk) does
not hold, then MR(w1, . . . ,wk) may either produce the answer “Reject” or may
run forever and fail to produce an answer.

When this holds, we say that “MR semidecides the relation R”.

It is common in the literature to say that “MR recognises R” or “MR ac-
cepts R” to mean that “MR semidecides R”. The three terms are equivalent.
“Semidecides” is the least common terminology; nonetheless, we will often use
“semidecides” just because it is less ambiguous. In any case, what it means is
that for all w1, . . . ,wk,

M(w1, . . . ,wk) accepts ⇔ R(w1, . . . ,wk) holds.
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It is no longer required that MR rejects inputs w1, . . . ,wk not in R; it is just
disallowed for MR to accept them. The intuition is that if ⟨w1, . . . ,wk⟩ is in R,
then running MR(w1, . . . ,wk) will eventually tells us that ⟨w1, . . . ,wk⟩ is in R;
however, if ⟨w1, . . . ,wk⟩ is not in R, then running MR(w1, . . . ,wk) may never
yield an answer. That is, for ⟨w1, . . . ,wk⟩ is not in R, the algorithm MR might
never give any indication of whether ⟨w1, . . . ,wk⟩ is in R or not.

Example V.19. Consider the binary relation R on the integers defined by
letting R(n,m) be true if and only if there is an integer i ≥ n such that both i
and i +m are prime. That is,

R = {⟨n,m⟩ ∈ N2 ∶ for some i ≥ n, both of i and i+m are prime)}.

We claim that R is semidecidable. To prove this, consider the following algo-
rithm.

Input: Integers n and m

Algorithm:

For i = n, n+1, n+2, n+3, . . .
If i and i +m are both prime

Accept (and halt).
End-if

End-for

Note that the for-loop is potentially an infinite loop: if ⟨n,m⟩ ∉ R, the
algorithm will run forever.

We have so far worked with algorithms that, on any given input, either
compute a single answer and then halt, or run forever without producing any
answer. We can also consider algorithms that generate or “enumerate” a series
of outputs, perhaps an infinite list of outputs. For this, we assume that the
algorithm does not take any inputs at all: it just starts running. As it runs,
it may upon occasion output a string in Σ∗. After outputting the string, it
continues running and successively outputting strings. It may output a finite
number of strings (possibly no strings at all) or it may run forever and output
an infinite number of strings. We call such an algorithm an “enumerator”. Such
a machine M enumerates, i.e., successively outputs a sequence of zero or more
strings

v0, v1, v2, . . . ,

where vi is the i-th string output by the algorithm. It is permitted that the
algorithm enumerates the same output string more than once.

Definition V.20. Let M be an enumerator as above, outputting strings in Σ∗.
Then M is said to enumerate the set {v1, v2, v3, . . .}. When this holds, the set
is called computably enumerable, or c.e. for short.

Definition V.21. The definition of enumerator can be generalized in the ob-
vious way to allow outputting k-tuples of strings, that is, outputting members
of (Σ∗)k. In this case, the i-th output vi is a k-tuple of strings, i.e., vi ∈ (Σ∗)k.
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A k-ary relation R is said to be computably enumerable if it is equal to the set
of k-tuples output by some enumerator.

Example V.22. The empty set is c.e. since it is enumerated by the algorithm
which just loops and never outputs anything.

Any finite set {w1, . . . ,wk} is c.e., since the algorithm can output succes-
sively the k-strings w1, . . . ,wk and enter an infinite loop and never produce any
further outputs. Alternatively, it is enumerated by the algorithm that first out-
puts successively w1, . . . ,wk−1 and then enters an infinite loop that repeatedly
outputs wk.

Example V.23. The set Σ∗ of all strings over Σ is c.e. Let k = ∣Σ∣ be the
number of symbols in Σ. A possible algorithm that enumerates Σ∗ acts as
follows: It first outputs the empty string ϵ. It then outputs, one at a time, the
k strings in Σ∗ of length 1, next the k2 many strings of length 2, next the k3

many strings of length 3, etc.:

Algorithm:

For i = 0, 1 2 . . .
Output, one at a time, the ∣Σ∣i many strings in Σ∗ of length i.

End-for

Note that this algorithm runs forever; this is of course necessary since Σ∗ is
infinite.

Likewise, the k-ary relation (Σ∗)k containing all k-tuples of strings over Σ
is c.e. Define the total length of a k-tuple ⟨w1, . . . ,wk⟩ to equal ∑j ∣wj ∣. For
each i, there are finitely many k-tuples of total weight i. An algorithm to
enumerate (Σ∗)k is thus

Algorithm:

For i = 0, 1 2 . . .
Output, one at a time, the k-tuples in (Σ∗)k of total length i.

End-for

Theorem V.24. If R is decidable then R is computably enumerable.

Proof. Suppose a k-ary relation R is decided by an algorithm M . Then R is
enumerated by the following algorithm:

Assumption: M decides R.

Algorithm:

For i = 1, 2, 3, 4, . . .
Let vi be the i-th k-tuple in a computable enumeration of (Σ∗)k.
Run M on input vi until it either accepts or rejects.
If M accepts the input vi, then output vi (but do not halt).

End-for

Since M decides R, running M any input vi will eventually lead to either ac-
ceptance or rejection. Therefore this algorithm never gets stuck and every vi
in (Σ∗)k eventually gets considered.
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We shall see later that not every computably enumerable set is decidable. On
the other hand, it is a pleasant surprise that semidecidability and computable
enumerability are equivalent:

Theorem V.25. A k-ary relation R is semidecidable if and only if it is com-
putably enumerable.

Proof. First, we prove the “if” direction. Suppose R is computably enumerated
by an enumerator algorithm M . Here is an algorithm that semidecides R:

Assumption: M enumerates R.

Input: A k-tuple v in (Σ∗)k
Algorithm:

Run the algorithm M , watching what it outputs.
If M ever outputs the k-tuple v, then accept and halt.

Now we prove the “only if” direction. Suppose that N is an algorithm that
semidecides R. Unlike in the algorithm used for the proof of Theorem V.24, we
cannot enumerate the members of R by running N to completion on input v1,
then on input v2, then on input v3, etc. The problem is that N does not halt
for all inputs: it accepts inputs that are in R, but it may run forever and give
no answer on inputs that are not in R. Instead, we must take turns with trial
computations of N on many different vi’s. This process is called “dovetailing”.

Here is a dovetailing algorithm that enumerates R:

Assumption: N semidecides R.

Algorithm:

For i = 1, 2, 3, 4, . . .
For j = 1, 2, 3, . . . , i

Let vj be the j-th k-tuple in a computable enumeration of (Σ∗)k.
Run N on input vj for a maximum of i steps.
If N on input vj accepts with ≤ i steps, then output vj (and do not halt).

End-for
End-for

Note that the inner loop is finite, and the output loop is infinite. This enumer-
ator algorithm works since it never gets stuck on any vj . Instead, it runs N for
a fixed number i of steps on input vj and then (temporarily) gives up on vj .
In the next iteration of the outer loop, it again tries N on input vj , now for
i+1 steps. In this way, any vj in R will eventually be discovered to be accepted
by N .

The last algorithm used an important property of algorithms. It is assumed
that an algorithm N uses a finite set of unambiguous instructions and runs step-
by-step. Each step in a computation of N involves applying the instructions
once. This means we can track the number of steps taken by N — this is
needed in order to control the dovetailing.
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Definition V.26. A relation R is co-computably enumerable (co-c.e.) if its
complement R is computably enumerable (c.e.).

Theorem V.24 showed that if R is decidable, then R is c.e. Since R is
decidable if R is decidable, it follows that if R is decidable then R is both c.e.
and co-c.e. The next theorem states that the converse holds too.

Theorem V.27. R is both c.e. and co-c.e. if and only if R is decidable.

Proof. Let R be a k-ary relation. As just remarked, it suffices to show that if
R is both c.e. and co-c.e. then R is decidable. Suppose that M enumerates R
and N enumerates R. Then the following is an algorithm that decides R:

Assumption: M enumerates R, and N enumerates R.

Input: v ∈ (Σ∗)k
Algorithm:

Run M and N in parallel, watching what strings the output.
If M outputs v, accept. (v ∈ R).
If N outputs v, reject. (v ∉ R).

Since M and N enumerate R and R, eventually one of them will output v. Thus
the algorithm eventually halts on all inputs v and correctly decides whether
v ∈ R.

There are several possibilities for how to run M and N “in parallel” in the
above algorithm. One way would be to interleave the computations of M and N
by alternating between running M for a few steps (saving the intermediate
results) and running N for a few steps (again, saving the intermediate results).
Another possibility is to take the finite sets of unambiguous instructions for
both M and N and conjoin them to give a set of instructions for running M
and N simultaneously. The conjoined instructions would still be a finite set of
unambiguous instructions, and thus give an effective procedure for running M
and N simultaneously.

Partial computable functions

Definition V.28. A k-ary partial function f ∶ (Σ∗)k → Σ∗ is a function with
domain a subset of (Σ∗)k and range a subset of Σ∗.

We say that f(w1, . . . ,wk) diverges, written f(w1, . . . ,wk)↑, if ⟨w1, . . . ,wk⟩
is not in the domain of f .

We say that f(w1, . . . ,wk) converges, written f(w1, . . . ,wk)↓, if ⟨w1, . . . ,wk⟩
is in the domain of f . We write f(w1, . . . ,wk) = w to mean that f(w1, . . . ,wk) con-
verges and w is the function value. We also equivalently write f(w1, . . . ,wk)↓ =
w when we want to stress the fact that f(w1, . . . ,wk) converges.

The above definition has overloaded the notation “f ∶ (Σ∗)k → Σ∗”, as this
this notation can be used for both partial functions and ordinary (that is, total)
functions. Our conventions will be that the terminology f is a “function” means
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that f is total and thus converges for all inputs. If f is partial or might be partial,
then we will say explicitly that f is a “partial function”. It is permitted that
a partial function has domain equal to all of (Σ∗)k; that is, a partial function
may actually be total.

Definition V.29. A k-ary partial computable function is a partial function
f ∶ (Σ∗)k → Σ∗ for which there is an algorithm M so that, for all w1, . . . ,wk ∈ Σ∗,

M(w1, . . . ,wk) halts and outputs w ⇔ f(w1, . . . ,wk)↓ = w

M(w1, . . . ,wk) never halts ⇔ f(w1, . . . ,wk)↑

Example V.30. Every computable function is a partial computable function.

Example V.31. Referring back to Example V.19, let f ∶ N→ N be the partial
function defined by letting f(n,m) equal the least i ≥ n such that i and i+m
are both prime if there is such an i, and letting f(n,m) be undefined if no such
i exists.

The function f can be defined using minimization operator notation:

f(n,m) = µi (i ≥ n, and i and i+m are prime).

The minimization notation “µiQ(i)” means “the least i such that property Q(i)
holds”. It is understood that the value of µiQ(i) is undefined if no such i exists.

An algorithm that computes f is:

Input: Integers n and m

Algorithm:

For i = n, n+1, n+2, n+3, . . .
If i and i +m are both prime

Output i (and halt).
End-if

End-for

Note that this differs from the algorithm in Example V.19 only in that it out-
puts i instead of just accepting.

Exercise V.14 asks you to prove that a set is c.e. if and only if it is equal to
the range of a partial computable function. Examples V.19 and V.31 provide
a strong hint of how to prove this. Exercises V.13, V.15 and V.16 give other
characterizations of c.e. sets in terms of being the domain or range of a function.

Recall the definition of the graph of a function f :

Definition V.32. Let f ∶ (Σ∗)k → Σ∗ be a k-ary partial function. The graph
of f is denoted Gf and is the (k + 1)-ary relation on Σ∗ defined by

Gf = {⟨w1, . . . ,wk, v⟩ ∶ f(w1, . . . ,wk)↓ = v}.

Theorem V.33. Let f ∶ (Σ∗)k → Σ∗ be a k-ary partial function. The following
are equivalent:
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(a) f is partial computable.

(b) The graph Gf of f is computably enumerable.

Proof. First, suppose there is an algorithm M that enumerates Gf . An al-
gorithm N(w1, . . . ,wk) can partial compute f(w1 . . . ,wn) by running M until
(and if) it outputs a (k + 1)-tuple of the form ⟨w1, . . . ,wk, v⟩ and at that point
N(w1, . . . ,wk) outputs v as the value of f(w1 . . . ,wn).

For the converse, suppose f is partial computed by an algorithm N . The
following algorithm M semidecides Gf .

Assumption: N partial computes f .

Input: A k-tuple ⟨w1, . . . ,wk, v⟩
Algorithm M :

Run N(w1, . . . ,wk) until (and if) it produces an output v′.
If v′ = v, accept (and halt).
Otherwise, reject (and halt).

Note that the algorithm does not halt if f(w1, . . . ,wk)↑, since in that case,
N(w1, . . . ,wk) does not halt. It is clear that M(w1, . . . ,wk, v) accepts if and
only if f(w1, . . . ,wk)↓ = v.

V.4 Algorithms for Propositional Logic

We now discuss an algorithm for validity and implication in propositional logic.
The first main result will be that the set of tautologies is decidable. The second
main result will be that if a set Γ of propositional formulas is decidable, or even
c.e., then the set of its tautological consequences is c.e. Our proofs will all be
based on the method of truth tables.

First, however, let’s consider algorithms for recognizing syntactically correct
formulas. To begin, we have to express formulas as strings (expressions) over
a finite alphabet Σ. The definition of propositional formulas in Definition I.1
used an infinite set of symbols as each pi is a distinct symbol. The informal
notion of algorithm only allows strings over finite alphabets. Accordingly, we
will encode formulas as strings over the alphabet Σprop with 17 symbols:

{∧, ∨, →, ↔, (, ), p, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

The digits 0-9 are used for writing out the subscripts of propositional variables
as base 10 integers. For example, the formula p7∨p42 → p747 will be represented
by the Σprop string “((p7∨p42)→p747)”. Note that we require that a formula
be fully parenthesized when encoded as a Σprop-expression.6

To simplify terminology in the sequel, we frequently conflate propositional
formulas and their representations as Σprop-strings.

6The convention that the Σprop representations of formulas include full parenthesization is
not crucial. There are certainly algorithms that can produce the fully parenthesized expression
from a formula that is written without all of its parentheses according to the conventions of
Section I.2.
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Theorem V.34. The set of syntactically correct propositional formulas is de-
cidable.

What this theorem means is that the set of Σprop-strings that represent
syntactically correct propositional formulas is decidable. Indeed, it is straight-
forward to write a parsing algorithm that decides this. The main difficulty for
the parsing algorithm is track the counts of open parentheses and close paren-
theses; for this, see Theorems I.42 and I.43 and Exercises I.36-I.38 on unique
readability. For proving Theorem V.34, the parsing algorithm only needs to
accept or reject according to whether its input encodes a syntactically correct
propositional formula. But in fact parsing algorithms can also effectively build
a parse tree.

Theorem V.35. The set of tautologies is decidable.

Proof. The algorithm first checks whether its input codes a syntactically correct
proposition formula. If so, it uses the method of truth tables to decide whether
a given propositional formula is a tautology.

The next theorem states that there is an algorithm that can decide whether a
finite set Γ of sentences is satisfiable, and an algorithm that can decide whether
Γ ⊧ A. The idea is just that the method of truth tables can be used to algo-
rithmically determine if Γ is satisfiable. However, there is the complication that
the definition of concepts such as “decidable” are based on k-ary relations that
take a fixed number of strings as input. Now we want an algorithm to take as
input a set Γ whose size is not specified ahead of time. For this, the finite set Γ
is encoded into a single string.

This is straightforward. One way to do it is to enlarge the alphabet Σprop

by adding comma as an additional symbol; namely, define Σprop+ = Σprop ∪ { ,}.
Then an arbitrary finite set Γ of formulas can be encoded as a string over the
alphabet Σprop+ by just concatenating formulas separated with commas. That
is, if Γ = {A, . . . ,Ak}, then Γ is encoded by the string that consists of the
encodings of the Ai’s as Σprop-strings separated by commas. For instance, if
Γ = {p1,¬p3∨p17}, then Γ can be encoded by the string “p1,¬(p3∨p17)”.7

This encoding of a finite, variable-length set into a single string is an example
of the use of “sequence coding” to encode multiple strings into a single string.
We will see more examples of this later on when sequence coding is used to let
a single integer encode a finite length sequence of integers.

Theorem V.36. Work in propositional logic.

(a) The unary relation

{Γ ∶ Γ is a finite satisfiable set of formulas}

7In fact, the commas could be omitted, and the breaks between formulas can still be
detected. The use of commas makes the breaks between formulas explicit and does not
depend on the details of how formulas are defined.
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is decidable.
(b) The binary relation

{⟨Γ,A⟩ ∶ Γ is a finite set of formulas, A is a formula, and Γ ⊧ A}

is decidable.

Proof. The algorithm for (a) does the following: It first checks whether Γ cor-
rectly encodes a (finite) set of syntactically correct formulas. If not, it rejects.
Otherwise, it uses the method of truth tables to determine whether Γ is satisfi-
able. The algorithm for (b) is similar.

Now we consider infinite sets Γ of sentences. We will consider the case
where the set Γ is decidable or computably enumerable. However, unlike in the
previous theorem, Γ is now a fixed set (i.e., Γ is not given as part of the input).

Theorem V.37. Let Γ be a computably enumerable set of propositional formu-
las. Then the set of tautological consequences of Γ, namely Cn Γ = {A ∶ Γ ⊧ A},
is computably enumerable.

Proof. Suppose M is an algorithm that enumerates Γ. By Theorem V.25, it
suffices to prove that Cn Γ is semidecidable. We claim the following algorithm N
works:

Assumption: M enumerates Γ.

Input: A ∈ (Σprop)∗
Algorithm N :

If A is not a syntactically correct formula, reject.
For i = 0, 1, 2, 3, . . .

Run M until (and if) it generates i members of Γ.
Let Γi be the first i members enumerated by M .
If Γi ⊧ A, then accept (and halt).

End-for

It is clear that the only way the algorithm N can accept A is if some finite
subset Γi of Γ tautologically implies A. Conversely, if Γ tautologically implies A,
then some finite subset Π of Γ tautologically implies A. Eventually, M will
enumerate a subset Γi of Γ such that Π ⊆ Γi. At that point, N will accept A.

Therefore, the algorithm N correctly semidecides the tautological conse-
quences of Γ, and thus Cn Γ is computably enumerable.

The algorithm N was written so as to work even in the case where Γ is
finite. It is even permitted that Γ is empty: in this case, for-loop executes only
for i = 0 and uses Γi = ∅. More generally, if Γ is finite, the for-loop might
execute only finitely many rounds and then, once all members of Γ have been
enumerated, continue running M forever while waiting to see if M will produce
another member of Γ.

Note that, however, the fact Theorem V.37 holds for finite Γ is also an
immediate corollary of part (b) of Theorem V.36.
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The obvious next question is what happens when Γ is decidable instead of
computably enumerable? A natural first thought is that the set {A ∶ Γ ⊧ A}
might be decidable. But this is not the case. To give a non-rigorous argument of
how it can fail to be decidable consider, for example, a set Γ that might contain
the propositional formulas of the form ⋁k

j=1 pi for some j, k (but definitely does

not contain any other formulas). Since ⋁k
j=1 pi is the k-fold disjunction of pi

with itself, it is tautologically equivalent to pi. Then Γ ⊧ pi holds if and only if
one of the formulas ⋁k

j=1 pi is in Γ. If Γ is decidable, then an algorithm given i

as input can determine, for any finite number of values k, whether ⋁k
j=1 pi is a

member of Γ. But there is no way for the algorithm to rule out the possibility
that Γ contains ⋁k

j=1 pi for some other values of k. Equivalently, there is no way
for the algorithm to decide whether Γ ⊧ pi when given i as input.

In addition, it turns out that if Γ is a computably enumerable set of formulas,
then there is a decidable set Π of logically equivalent formulas. That is, if Γ is
c.e., there is a decidable Π such that Γ ⊧) Π. This is known as Craig’s Theorem,
and you are asked to prove it in Exercise V.22.

Exercise V.26 asks you to prove that there is a decidable Γ (equivalently,
a computably enumerable Γ) whose set of logical consequences is undecidable.
That proof will depend on the methods that will be developed in Section V.6.

V.5 Algorithms for First-Order Logic

We now discuss validity and implication for first-order logic. The first main
result in this seection is that the set of logically valid formulas is computably
enumerable. The second main result is that the set of logical consequences of a
computably enumerable set of sentences is also computably enumerable.

It is assumed that we are working with a fixed language L of nonlogical
symbols. First-order L-formulas can be expressed as strings of symbols over the
alphabet Σfo−L defined as

Σfo−L = L ∪ {=,¬,→,∀, (, ), x,0,1,2,3,4,5,6,7,8,9}.

This is an alphabet of cardinality ∣L∣+17. For example, the formula ∀x17 (f(x17) = x17 → R(x17))
will be encoded with the Σfo−L-string “∀x17(f(x17)=x17→R(x17))”. Sets of
first-order formulas, and first-order proofs (FO-proofs), will be expressed as
strings of symbols over the alphabet

Σfo−L+ = Σfo−L ∪ {,}.

The additional symbol, comma, serves to separate formulas that appear in a set
of formulas or in an FO-proof. For example, the sequence of formulas x1 = x1

followed by ¬x12 = x12 would be encoded by the string “x1=x1,¬x12=x12” of
length 14.

We often conflate formulas and proofs with the strings that encode them.
For instance, part (c) of the next theorem states that the set of syntactically
correct L-formulas is decidable; strictly speaking, this means that the set of
Σfo−L-strings that encode syntactically correct L-formulas is decidable.
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Theorem V.38. let L be a finite language. Consider the following function
and relations which take inputs in (Σfo−L)∗.

(a) The set of syntactically correct L-terms is decidable.
(b) The set of syntactically correct atomic L-formulas is decidable.
(c) The set of syntactically correct L-formulas is decidable.
(d) Let Subst(A,x, t) be the 3-ary relation on (Σfo−L)∗ which is true for ex-

actly the L-formulas A such that the L-term t is substitutable for the vari-
able x in A. The relation Subst is decidable.

(e) Let Sub(A,x, t) be the 3-ary function which, for inputs A an L-formula,
t an L-term, and x a variable produces the L-formula A(t/x). For all other
inputs, Sub(A,x, t) is the empty string (denoting an error condition). The
function Sub is computable.

(f) The set L-formulas which are valid FO axioms is decidable.

Proof. There are straightforward algorithms for all of these.

Theorem V.39. Let L be a finite language. The set of pairs ⟨Π, P ⟩ such that
P is valid FO-proof from the hypotheses Π is decidable.

Proof. The input is a pair v,w of strings in (Σfo−L)∗. The algorithm works as
follows. First, if v is not an encoding of a set of formulas Π or if w is not an
encoding of a sequence P of formulas, then reject. Otherwise, check that each
formula in P is a valid FO-axiom, is a member of Π, is inferred by Modus Ponens
from two earlier formulas in P , or is inferred by the Generalization Rule from
an earlier formula in P . If this holds for every formula in P accept. Otherwise,
reject.

It is clear that an algorithm can be designed to carry out these checks.

Part (a) of the next theorem states that the set of valid first-order formulas
is computably enumerable. This is a fairly remarkable fact because the validity
of a formula means that the formula is true in all possible structures and object
assignments. Its proof is based on the fact that a first-order formula is valid
if and only if has an FO-proof, namely, on the fact that Completeness and
Soundness Theorems hold.

Theorem V.40. Let L be a finite language.
(a) The set of valid L-formulas is computably enumerable.
(b) The binary relation

{⟨Γ,A⟩ ∶ Γ is a finite set of formulas and Γ ⊧ A}

is computably enumerable.

Proof. The idea of the proof is that the algorithm can enumerate all possible
proofs, seeking a proof of A (from the hypotheses Γ). If ⊧ A holds (or Γ ⊧ A
holds), then there does exist such a proof and it will eventually be found. In
more detail, to prove (b) it will suffice to give an algorithm that semidecides
the binary relation {⟨Γ,A⟩ ∶ Γ ⊧ A}. The following algorithm can be used. It
uses the computable enumeration of strings in (Σfo−L+)∗ from Definition V.23
to enumerate all members of (Σfo−L+)∗ as v1, v2, v3, . . ..
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Input: A ∈ (Σfo)∗ and Γ ∈ (Σfo−L+)∗.

Algorithm N :

If A is not a syntactically correct formula, reject.
If Γ is not a finite set of syntactically correct formulas, reject.
For i = 1, 2, 3, . . .

Let vi be the i-th member of a computable enumeration of (Σfo−L+)∗.
If vi encodes a syntactically correct FO-proof of A from Γ,

accept (and halt).
End-for

That proves part (b). The proof of (a) is similar but uses Γ = ∅.

Note how the above algorithm is very simple-minded and very inefficient.
It makes no attempt to analyze the logical structure of A or formulas in Γ. It
definitely makes no attempt to “understand” why Γ might logically imply A. It
will of course find a shortest proof of A from Γ (where length is measured by
the length of the encoded proof). But this is done by a blind, brute-force search
for a proof.

Theorem V.40(b) was stated for a finite set of hypotheses Γ. A similar result
holds Γ is a computably enumerable set:

Theorem V.41. Let L be a finite language. Suppose Γ is a computably enu-
merable set of L-formulas. Then the set of L-formulas A such that Γ ⊧ A is
computably enumerable.

Proof. The idea for this proof is to simultaneously enumerate members of Γ and
use a brute-force search through all possible proofs of A. If Γ ⊧ A holds, then
eventually a sufficiently large finite subset Γi of Γ will have been found such
that Γi ⊧ A. Eventually, the brute-force search for proofs will succeed in finding
a proof of A from Γi.

To make this argument precise, it suffices to show that the set of L-formulas A
such that Γ ⊧ A is semidecidable. The following algorithm N semidecides this:

Assumption: M enumerates Γ.

Input: A ∈ (Σfo−L)∗
Algorithm N :

If A is not a syntactically correct formula, reject.
For i = 0, 1, 2, 3, . . .

Run M for a total of i steps.
Let Γi be the subset of Γ enumerated by M within i steps.
For j = 1,2,3, . . . , i,

Let vj be the j-th member of a computable enumeration of (Σfo−L+)∗.
If vj encodes a syntactically correct FO-proof of A from Γi,

accept (and halt).
End-for

End-for
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It is clear that the only way the algorithm N can accept A is if some finite
subset Γi of Γ logically implies A. Conversely, if Γ logically implies A, then
some finite subset Π of Γ logically implies A. Eventually, M will enumerate a
subset Γi0 of Γ such that Π ⊆ Γi0 . By construction, Π ⊆ Γi for all i ≥ i0. There
is a proof of Π ⊧ A; this is also a proof of Γi ⊧ A. Such a proof is encoded by
some vj0 . Hence, once i ≥min{i0, j0}, the algorithm N will accept and halt.

It follows that the algorithm N correctly semidecides the logical conse-
quences of Γ. Thus A is computably enumerable.

It is interesting to compare the above algorithm to the algorithm of Theo-
rem V.37 for propositional logic. The main difference is that the earlier algo-
rithm could use the method of truth tables, whereas the new algorithm dovetails
the enumeration of Γ with brute-force proof search. The second difference is that
the set Γi in the proof of Theorem V.37 was the first i elements output by M
in the enumeration of Γ. For Theorem V.41, it was important that Γi is instead
the elements enumerated in the first i steps of M .8

Theorem V.42. Let L be a finite language and Γ be a set of L-sentences. Let
T = Cn Γ be the set of logical consequences of Γ. Suppose that T is complete and
that Γ is c.e. Then T is decidable.

Proof. If T is inconsistent, then T is the set of all L-sentences and is certainly
decidable. So, suppose T is consistent. In this case, A ∈ T if and only if ¬A ∉ T .

Theorem V.41 states that T is c.e. Let Π be the set of sentences A such that
T ⊧ ¬A. Since T is c.e., there is an algorithm M that enumerates T .

By modifying M so as to add a negation sign ¬ to the front of each output, we
obtain an algorithm N that enumerates Π; hence Π is c.e. The complement T
of T is the union of Π with the set of strings that do not encode valid L-
sentences. Thus T is the union of a c.e. set and a decidable set, and hence (by
Exercise V.1), T is also c.e. Since T and T are both c.e., T is decidable.

For a more direct proof of Theorem V.42 consider the following algorithm
which decides T , assuming T is consistent:

Assumption: M enumerates T .

Input: A ∈ (Σfo−L)∗
Algorithm N :

If A is not a syntactically correct sentence, reject.
Run M and watch the sentences enumerated as M runs.
If A is output by M , accept (and halt).
If ¬A is output by M , reject (and halt).
End-for

This algorithm works since T is consistent and complete; consequently either
A ∈ T or ¬A ∈ T , and in either case M eventually outputs one of A and ¬A and
halts.

8More precisely, it is important if that Γi is defined in this way if the algorithm is to work
for finite sets Γ as well as infinite sets Γ.



188 Algorithms, Informally (Draft B.2.e)

Example V.43. The theory of dense linear order (DLO) without endpoints
is complete and has a finite set of axioms. Therefore the theory DLO without
endpoints is decidable.

Example V.44. Let L be the language with equality (=) but no non-logical
symbol. Let Γ be {AtLeastk ∶ k ≥ 2}. By Exercise IV.24, the set Cn Γ is
complete. Clearly, Γ is decidable. It follows that Cn Γ is decidable.

Definition V.45. A theory T is axiomatizable if there is a decidable set of
sentences Γ such that T = Cn Γ.

It follows from Craig’s Theorem (which is stated in Exercise V.22) that if
T has a c.e. set of axioms Γ, then T is axiomatizable. In light of this, we can
restate Theorem V.42 as:

Theorem V.46. If T is axiomatizable and complete, then T is decidable.

V.6 Undecidability

This section discusses methods for showing that functions are not computable
or relations are not decidable. It is hard to do this with only an informal
definition of the notion of algorithm since the informal definition does not put
any apparent limits on the power of algorithms. However, once we give formal,
mathematically rigorous, definitions of algorithms, then we can prove theorems
about what is not computable.

Nonetheless, by exploiting the full power of the Church-Turing thesis, we
can prove results about non-computability and non-decidability in a very gen-
eral way. The key technical result will establish the non-computability of the
“halting problem”.

The Church-Turing thesis provides the link between the informal and formal
definitions of “algorithm”. In fact, even before giving a mathematical defini-
tion of algorithms, notably in terms of Turing machines, we can exploit the
Church-Turing thesis to prove results about non-computability. Our proofs will
be completely rigorous, but will assume some properties about the formal defi-
nitions of algorithms that will be provided later, notably when Turing machines
are defined.

For simplicity, and concreteness, we let Γ = {0,1}, and restrict our attention
to algorithms that accept strings from Γ∗ as input and output strings from Γ∗

(if they generate outputs).9 The Church-Turing thesis implicitly includes the
following assumptions:

A unified representation scheme for all algorithms: There is a single set
of “instruction types” that suffices to describe an arbitrary algorithm. The
informal notion of algorithm required that any algorithm be described by a

9This can be done without loss of generality, since a larger alphabet Σ∗ can be ac-
commodated by representing distinct symbols from Σ by distinct finite length codewords
from Γ∗ = {0,1}∗.
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finite set of unambiguous instructions. The further assumption that there
is a unified representation scheme means that there are only finitely many
types of instructions. Any particular algorithm can be defined by combining
instructions appropriately.

Concomitantly, any algorithm can be described by a finite string, over the
alphabet Γ, that encodes the instructions for the algorithm. This is similar
to the way that arbitrary first-order L-formulas can be described by strings
over Σfo−L+. If M is an algorithm, we write ⌜M⌝ to denote a string that
encodes the unambiguous instructions for M . The string ⌜M⌝ is called the
“Gödel number” of M .10

A universal algorithm. A universal algorithm is an algorithm that can sim-
ulate any other algorithm. Specifically, there is a universal algorithm U(v,w)
that takes two inputs: The string v is supposed to equal ⌜M⌝ encoding the
finite set of instructions for some algorithm M . The string w is intended to
be the input to M .

This universal algorithm U , when given inputs v = ⌜M⌝ and w, is able to
simulate the action of the algorithm M when given the input w in a step-
by-step fashion. As it simulates M(w), the algorithm U can detect things
such as whether M has accepted or rejected, whether M has halted or is still
running, and whether the algorithm has just finished outputting a string.

In other words, the universal algorithm is able to parse the instructions en-
coded by the string v = ⌜M⌝, and then act upon those instructions to simulate
the actions of the algorithm M . A universal algorithm is possible only because
of the assumption of a unified representation for algorithms.

Malleability of algorithms. It is implicit in the notion of a universal algo-
rithm that a string ⌜M⌝ encoding a set of instructions can be parsed and even
modified to form a different algorithm. For example, given the Gödel num-
ber ⌜M⌝ of an algorithm M , one can construct the Gödel number ⌜N⌝ of an
algorithm N that acts exactly like M except that N will accept if M rejects,
and N will reject if M accepts. Furthermore, this mapping ⌜M⌝ ↦ ⌜N⌝ is a
computable function.

For a second example, suppose ⌜M⌝ is the Gödel number of an algorithm M
that accepts a pair of inputs ⟨v,w⟩. Then for any particular value of v, we
can form the Gödel number ⌜Mv⌝ of an algorithm Mv such that Mv takes a
single input w and acts exactly like M on input ⟨v,w⟩. In other words, Mv

is the same as M , but with v set to a fixed value. The malleability condition
asserts that the map ⟨⌜M⌝, v⟩↦ ⌜Mv⌝ is computable.

As a third example, suppose ⌜M1⌝ and ⌜M2⌝ are Gödel numbers for algo-
rithms that compute unary functions f1 and f2. Then an algorithm N can be

10The terminology “Gödel number” is a bit inaccurate at the moment, since ⌜M⌝ is a string
in Γ∗, not a number. The terminology reflects the historical fact that the first use of Gödel
numbers was based on integers, not strings. Chapter VII will use integers instead of members
of Γ∗ to encode the description of a Turing machine; however, for the time being, our Gödel
numbers are strings from {0,1}∗.
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constructed that computes the composition f2 ○ f1 by letting N first run M1

and use the output of M1 as the input to M2. The mapping ⟨⌝M1,M2⟩↦ ⌜N⌝
can be a computable function.

These three assumptions of a unified representation for algorithmic instruc-
tions, a universal algorithm, and the malleability of algorithms may sound very
strong, but they should not be particularly surprising. First, given our intu-
ition that modern-day computers can carry out arbitrary algorithms11, we see
immediately that instructions can be presented from some finite instruction set
of the type used by computers. The Gödel number of an algorithm is just the
source code for the algorithm. That is all that is meant by the existence of a
uniform representation. Second, the fact that compilers and interpreters can
handle arbitrary programs means that they are in effect universal algorithms.
Third, the malleability of algorithms just means that the instructions for an
algorithm (as encoded by its Gödel number or its source code) may be locally
modified to change the behavior of the program. In particular, the malleabil-
ity of algorithms allows us to modify the inputs to a program or the output
behavior of a program and to compose two programs. It is important to note
that these kinds of operations only modify the input/output conventions for
programs; they do not require understanding anything at all about the inner
workings of programs.

The Church-Turing thesis states that arbitrary algorithms can be imple-
mented via Turing machines. This gives another justification for the assump-
tions of a unified representation for algorithmic instructions, a universal algo-
rithm, and malleability. Turing machines act like modern-day computers, ex-
cept with a highly restricted set of possible instructions. Furthermore, Turing’s
original paper describes a universal Turing machine, which is just a universal
algorithm specialized for Turing machines.

As a philosophical side remark, it is worth mentioning that the existence
of a universal algorithm is a rather striking fact, even an a priori unexpected
fact. If one did not know the Church-Turing thesis, it could certainly seem
plausible that there is a hierarchy of possible “instruction sets” for algorithms,
with the instruction sets increasing in computational strength as one goes up
the hierarchy. That is to say, one might envision a hierarchy of increasingly
strong programming languages C1, C2, C3, etc., such that each programming
language Ci+1 can express more algorithms than the programming language Ci.
In this case, there could be no universal algorithm, since it could not be written
in any particular programming language Ci. This scenario is precluded by the
Church-Turing thesis!

The rest of this section will prove undecidability results. The assumption
of a unified representation for algorithms is crucial for the results below. How-
ever, the full strength of the malleability assumption will be used only for the
final result about the halting problem (Halt0). The assumption that there is a
universal algorithm will not be used at all.

11Putting aside considerations of efficiency and the limitations of time and space.
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V.6.1 Undecidability via cardinality

The “unified representation” assumption that every algorithm M can be de-
scribed by some string ⌜M⌝ (over a fixed language Γ) immediately implies that
there are only countably many algorithms, just because there are only countable
many possible strings in Γ∗. However, there are uncountably many subsets of
N, and likewise, uncountably many subsets of Σ∗ for any alphabet Σ∗. In other
words, there are more subsets of Σ∗ than there are algorithms M . This gives
immediately the following theorem:

Theorem V.47. For any alphabet Σ, there is a subset of Σ∗ which is not
decidable. Likewise, there is a relation on N which is not decidable.

Proving this theorem using the countable/uncountable distinction is unfor-
tunately not particularly illuminating, since it gives no idea what particular set
is not decidable. We’ll improve on this below by defining the “halting problem”
and proving it is not decidable. That will give a constructive definition of a set
that is not decidable. It will also serve as the basis for proving many other sets
to not be decidable.

First, however, it is interesting to review the proof that there are uncountably
many subsets of N. (Essentially the same proof shows that there are uncountable
many subsets of Σ∗.) This theorem was originally proved by Cantor in 1891 to
prove the uncountability of the set of real numbers; its proof hinges on what is
called the Cantor diagonal argument. We will use the diagonal argument again
for the halting problem.

Theorem V.48 (Cantor). There are uncountably many subsets of N.

Proof. The proof is by contradiction. Suppose there are countably many subsets
of N. Thus all the subsets of N can be enumerated in an infinite sequence
X0,X1,X2, . . .. That is, each Xi is a subset of N, and every subset of N is equal
to (at least) one of the sets Xi.

Define a subset Y of N by specifying, for all i ∈ N, that

i ∈ Y ⇔ i ∉Xi. (V.1)

We claim that it is impossible that Y =Xi for any fixed i. The reason is that, if
Y =Xi, then i ∈ Y if and only if i ∉Xi, and the latter is the same as i ∉ Y . And,
having i ∈ Y if and only if i ∉ Y is impossible. On the other hand, Y is definitely
a subset of N, so by the choice of the Xi’s, the set Y is equal to some Xi.

This is a contradiction. Thus, we have proved that it is impossible that the
set of subsets of N is countable.

The proof of Theorem V.48 is illustrated in Figure V.2. The figure makes it
evident why this proof is called a diagonal argument.
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0 1 2 3 4 ⋯
X0 0 1 1 1 0 ⋯
X1 1 1 0 1 1 ⋯
X2 0 0 1 1 1 ⋯
X3 1 0 1 0 0 ⋯
X4 1 1 0 0 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
Y 1 0 0 1 0 ⋯

Figure V.2: An example of how the Cantor diagonal argument works. Each Xi

is a subset of N. The entry in the row Xi and column j is equal to 1 if j ∈ Xi

and equal to 0 otherwise. In other words, it is the value of χXi(j). The set Y
is defined by Equation V.1 by letting the value for χY (i) = 1 − χ(Xi). In other
words, Y is defined by flipping the values (shown in boldface) on the diagonal.
Therefore, the set Y cannot be equal to any Xi.

V.6.2 Undecidability via the halting problem

We now give an example of a particular, concrete problem set that is not de-
cidable, namely the halting problem. The proof that the halting problem is
undecidable will exploit the diagonal argument used in the proof of Cantor’s
Theorem V.47. Now, however, we must diagonalize against all decidable sets.

By the assumption of uniform representations for algorithms, every algo-
rithm M has a representation ⌜M⌝ which is a string over a (fixed) alphabet Γ.
The string ⌜M⌝ is often called the “Gödel number” of M . We assume without
loss of generality that any string in Γ can be viewed a Gödel number for an al-
gorithm. This can be done without loss of generality since any w ∈ Γ∗ that does
not encode a syntactically correct set of instructions for an algorithm can be
treated as being a Gödel number for a fixed trivial algorithm, say the algorithm
that ignores its input and immediately rejects and halts.

We define three versions of the halting problem. Recall that Γ = {0,1} is
being used both as the alphabet for inputs to algorithms and as the alphabet
used to encode Gödel numbers of Turing machines. On any given input w ∈ Γ∗,
an algorithm will either eventually halt (with an output or with an accept/reject
decision) or will run forever. We write M(w) for the action of the algorithm M
when given the input w.

Definition V.49. The halting problem with input is the binary relation

Halt1 = {⟨⌜M⌝,w⟩ ∶M(w) halts}.12

12A more correct, but overly pedantic way to define Halt1 would be that it equals

{⟨v,w⟩ ∶ v is a Gödel number for an algorithm M and M(w) halts}.
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The self-halting problem is the unary relation defined by

HaltSelf = {⌜M⌝ ∶M(⌜M⌝) halts}.

The halting problem is the unary relation defined by

Halt0 = {⌜M⌝ ∶M(ϵ) halts}.

Note that something somewhat self-referential is happening in the definition
HaltSelf . We have defined that ⌜M⌝ is “self-halting”, namely is in HaltSelf , if and
only if the algorithm M eventually halts when it is run with its input equal to
its own Gd̈el number ⌜M⌝. There is nothing circular or otherwise problematic
about this definition. And, certainly, the other two halting problems are defined
straightforwardly enough without any self-referential aspects.

We will use the diagonal method to prove that the self-halting problem is
undecidable. The undecidability of the self-halting problem can then be used
to prove the undecidability of Halt1 and Halt0.

Theorem V.50. The self-halting problem HaltSelf is undecidable.

Proof. Suppose, for the sake of a contradiction that there is some algorithm M
that decides the self-halting problem HaltSelf . Modify M to form a new al-
gorithm N by letting N(w) run identically like M(w) until M(w) halts. If
M(w) is about to reject, N(w) halts (and, say, accepts). If M(w) is about to
accept, N(w) enters an infinite loop and never halts. In other words, N is the
following algorithm:

Assumption: M decides HaltSelf .

Input: w ∈ Γ∗

Algorithm:

Run M on input w until it halts.
If M(w) rejects,

Accept and halt.
If M(w) accepts,

Enter an infinite loop and never halt.

Since N is an algorithm, it of course must have a Gödel number ⌜N⌝. Taking
the input w to N to be equal to ⌜N⌝, we have

N(⌜N⌝) halts ⇔ M(⌜N⌝) rejects
⇔ ⌜N⌝ ∉ HaltSelf Since M decides HaltSelf
⇔ N(⌜N⌝) does not halt By the definition of HaltSelf

This gives that N(⌜N⌝) halts if and only if it does not halt, which is of course
a contradiction. Therefore, there cannot be an algorithm M that decides the
self-halting problem HaltSelf .

Figure V.3 gives a more pictorial version of the proof, and illustrates how it
is a diagonal argument.
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v0 v1 v2 v3 v4 ⋯
M0 NH H H H NH ⋯
M1 H H NH H H ⋯
M2 NH NH H H H ⋯
M3 H NH H NH NH ⋯
M4 H H NH NH H ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
N H NH NH H NH ⋯

Figure V.3: Enumerate all strings in Γ∗ as v0, v1, v2, . . .. The enumeration order
is unimportant, but for the sake of consistency with earlier constructions, they
can be taken in order of increasing length, lexicographically ordering strings of
a given length. Each vi is the Gödel number vi = ⌜Mi⌝ of an algorithm Mi. The
entry in the row Mi and column vj is “H” or “NH” depending on whether Mi(vj)
halts (“H”) or not (“NH”). The diagonal entries, shown in boldface, indicate
whether Mi(⌜Mi⌝) halts or not. In the final row Y , the column vi entry indicates
whether N(vi) halts. The final row cannot be equal to any other row in the
infinite table, contradicting the assumption that N is an algorithm and hence
equal to some Mi.

The undecidability of the self-halting problem can be used to prove the
undecidability of the other two halting problems. The halting problem with
input, Halt1, is a generalization of the self-halting problem, so its undecidability
follows immediately.

Theorem V.51. Halt1 is undecidable.

Proof. Suppose that Halt1 is decided by an algorithm M . Then the following
algorithm N decides HaltSelf :

Assumption: M decides Halt1.

Input: w ∈ Γ∗

Algorithm:

Run M(w,w) until it halts.
If M(w,w) accepts, accept and halt.
If M(w,w) rejects, reject and halt.

The point is that the input w is equal to a Gödel number ⌜Mw⌝ of an algo-
rithm Mw, and that ⌜Mw⌝ ∈ HaltSelf if and only if ⟨⌜Mw⌝, ⌜Mw⌝⟩ ∈ Halt1, since
these both mean “Mw(⌜Mw⌝) halts”.

Thus an algorithm M that decides Halt1 gives immediately an algorithm
that decides SelfHalt. But here is no algorithm that decides SelfHalt, so Halt1
must be undecidable.

The undecidability of the HaltSelf and Halt1 were proved without using the
assumption of a universal algorithm, and without using the full strength of the
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malleability assumption. In fact, none of the algorithms discussed yet in this
chapter have an input which is used as a Gödel number of an algorithm. For
example, the two last proofs created an algorithm N assuming the existence
of some particular, concrete algorithm M . Those algorithms were formulated
directly in terms of a fixed M ; what they did not was take ⌜M⌝ as an input and
use this to create ⌜N⌝.

The next theorem will need to use the full strength of the malleability as-
sumption. Specifically, the proof will use an algorithm that takes the Gödel
number ⌜M⌝ of an algorithm, and modifies ⌜M⌝ to the obtain a Gödel num-
ber ⌜N⌝ of a related algorithm.

Theorem V.52. The halting problem Halt0 is undecidable.

Our proof will use the malleability assumption, but does not need to use
the universal algorithm. We use two assumptions about the malleability of the
algorithms.

● The first assumption is that there is an algorithm, which given a string w as
input, produces the Gödel number of an algorithm Mw that computes the
constant function which equals w for all inputs. To be precise, let gw denote
the unary function such that gw(v) = w for all v. We claim that there is
a computable function f such that, for all w, the value of f(w) is equal to
the Gödel number ⌜Mw⌝ of an algorithm Mw which computes the constant
function gw.
To state this assumption in terms of computer programs, this is saying there
is an effective procedure which, given any w, generates the source code for
a program that ignores its input and just outputs w. This program might
consist primarily of a print statement that outputs the string w.

● The second assumption is that there is a computable binary function f ′ such
that the following holds: Whenever M1 is an algorithm that (partial) com-
putes a unary function h, and M2 is an algorithm that takes a single input w,
then f ′(⌜M1⌝, ⌜M2⌝) is equal to the Gödel number ⌜M ′⌝ of an algorithm M ′

that, on input w ∈ Σ∗, acts by first computing v = h(w) and then runs M2(v).
In particular, whenever M1 is an algorithm that computes a unary function h,
and M2 is an algorithm that decides a unary relation R, then f ′(⌜M1⌝, ⌜M2⌝)
is equal to the Gödel number ⌜M ′⌝ of an algorithm M ′ that decides the unary
relation R ○ h = {w ∶ h(w) ∈ R}.
The intuition is that M ′(w) acts by first running the algorithm M1, and then
running M2 using the output from M1 as the input to M2. To state this in
terms of computer programs, it means just means that the source code for
the programs M1 and M2 can be combined to form the source code for M ′

by letting the output of M1 be the input to M2 and then letting the resulting
output of M2 be the final output of M ′.

Proof. We prove Theorem V.52 by contradiction. Suppose that Halt0 is decided
by an algorithm N . This means that N(⌜M⌝) correctly decides whether M(ϵ)
halts, for all inputs ⌜M⌝. Consider the following algorithm N ′:
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Assumption: N decides Halt0, and f, f ′ are as above.

Input: ⌜M⌝ ∈ Σ∗

Algorithm N ′:

Run N on input f ′(f(⌜M⌝), ⌜M⌝).
If N accepts, then accept.
If N rejects, then reject.

To understand this, note that f(⌜M⌝) is the Gödel number of an algorithm
that outputs ⌜M⌝. Thus f ′(f(⌜M⌝), ⌜M⌝) equals the Gödel number of an algo-
rithm M ′ that, for any input w, running M ′ on input w yields the same result
as running M on input ⌜M⌝. We have:

N ′(⌜M⌝) accepts ⇔ N(f ′(f(⌜M⌝), ⌜M⌝)) accepts
⇔ f ′(f(⌜M⌝), ⌜M⌝) ∈ Halt0
⇔ ⌜M ′⌝ ∈ Halt0
⇔ M ′(ϵ) halts
⇔ M(⌜M⌝) halts
⇔ ⌜M⌝ ∈ HaltSelf

Since N ′ accepts its input ⌜M⌝ if and only if ⌜M⌝ ∈ HaltSelf , the set HaltSelf is
decided by N ′. But this contradicts Theorem V.50 that HaltSelf is undecidable.
Therefore, Halt0 is not decidable.

The above proof implicitly used the notion of a “many-one reduction” from
HaltSelf to Halt0:

Definition V.53. Let R and S be unary relations on Σ∗ (or on N). A many-
one reduction from R to S is a computable function f ∶ Σ∗ → Σ∗ (or f ∶ N→ N)
such that for all w ∈ Σ∗ (or, all w ∈ N), we have w ∈ R if and only if f(w) ∈ S.

If there is a many-one reduction from R to S, then R is said to be many-one
reducible to S.

The point of a many-reduction from R to S is that deciding (or semidecid-
ing) R can be reduced to the problem of of deciding (or semideciding) S.

In the above proof, letting g(w) = f ′(f(w),w), the proof argument showed
that g is a many-one reduction from HaltSelf to Halt0. This was used to show
that Halt0 is undecidable since HaltSelf is undecidable. The general theorem
this is based on is:

Theorem V.54. Suppose R and S are unary relations and that f is a many-
one reduction from R to S. If S is decidable, then R is decidable. If S is
semidecidable, then R is semidecidable. Thus if S is c.e., R is c.e.

Proof. The proof of this is simple: To decide whether w ∈ R, compute f(w) and
decide whether f(w) ∈ S.

Example V.55. The proof of Theorem V.51 showed that Halt1 is undecidable
by observing that the function w ↦ ⟨w,w⟩ is a many-one reduction from HaltSelf
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to Halt1. Likewise, the proof of Theorem V.52 showing Halt0 is undecidable used
a many-one reduction from HaltSelf to Halt0.

V.6.3 Self-referential algorithms

A key step in the above proof that Halt0 is undecidable was to construct an
algorithm M ′ such that for any input w, running M ′(w) has the same effect
as running M(⌜M⌝). This means that M ′ has the effect of “running M on
itself”, where the “itself” part is referring to ⌜M⌝. This construction can be
sharpened to create an algorithm DM that computes M(⌜DM ⌝). This can be
phrased informally to say that “DM is running M on itself”, where the “itself”
part refers ⌜DM ⌝. Loosely speaking, DM is doing something with its own Gödel
number, namely running M on it. For this reason, DM is an example of a “self-
referential” algorithm, because it acts on its own Gödel number. (The letter
“D” stands for “diagonal” since DM can be used in diagonal arguments to prove
something is not computable.)

Example V.56. Let M be the algorithm that computes the identity function,
namely M(w) outputs w. Then DM is an algorithm with Gödel number ⌜DM ⌝
such that, for any input w, DM(w) outputs ⌜DM ⌝. (The input w to DM is
ignored.)

Note that M(⌜DM ⌝) and DM(w) produce the identical output, namely ⌜DM ⌝.

We still need to prove that diagonal algorithms DM always exist. The exis-
tence of an algorithm DM as in the example that outputs its own Gödel number
may seem a little counterintuitive (or maybe even very counterintuitive). If algo-
rithms are written as C programs for instance, this means there is a C program
that outputs its own source code. Such a program is called a “quine” or a
“self-printing program”. Quines and self-printing programs are indeed possible.
In fact, they are possible for essentially any computer language, not just for C
programs. The reader is encouraged to search the internet for examples.

We’ll show that the existence of self-referential algorithms follows from the
malleability assumptions. For this, we formally state and prove the existence of
a self-referential algorithm DM :

Theorem V.57 (Diagonal Theorem for Algorithms). Let M be an algorithm
that takes a single input w ∈ Σ∗. There is an algorithm DM with Gödel num-
ber ⌜DM ⌝ such that, for any input w, running DM(w) produces the same result
as running M(⌜DM ⌝).

Note that the input w to DM is ignored. The only reason for having the
input w is that by convention any function must take at least one input.

Proof. Let f and f ′ be the computable functions described in items (a) and (b)
immediately following the statement of Theorem V.52. Thus f(w) produces
the Gödel number ⌜Mw⌝ of an algorithm Mw that ignores its input and out-
puts w. And f ′(⌜M1⌝, ⌜M2⌝) is equal to the Gödel number of an algorithm
that has the same effect as running M2 on the output (if any) of M1. For the
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present proofs, the important points are that f ′(f(⌜M1⌝), ⌜M2⌝) is the Gödel
number of a Turing machine which does the same thing (halts, rejects, accepts,
and/or outputs something) as M2(⌜M1⌝), and that the mapping ⟨⌜M1⌝, ⌜M2⌝⟩↦
f ′(f(⌜M1⌝), ⌜M2⌝) is computable.

Form an algorithm EM so that EM(w) runs M(f ′(f(w),w)). Since any
w is a Gödel number ⌜N⌝ of an algorithm N , this is the same as EM(⌜N⌝) =
M(f ′(f(⌜N⌝), ⌜N⌝)). By construction, EM(⌜N⌝) always yields the same result
as running M on the Gödel number of an algorithm that ignores its input and
computes N(⌜N⌝).13

Define DM to be the algorithm with Gödel number ⌜DM ⌝ equal to f ′(f(⌜EM ⌝), ⌜EM ⌝).
The algorithm DM acts by first forming ⌜EM ⌝ and then running EM(⌜EM ⌝).
The action of EM(⌜EM ⌝) is to form f ′(f(⌜EM ⌝), ⌜EM ⌝) and run M with input
f ′(f(⌜EM ⌝), ⌜EM ⌝). To summarize, the algorithm DM acts as follow:

Assumption: M is an algorithm that takes one input.

Input: None (or, ignored)

Algorithm DM :

Run M on input f ′(f(⌜EM ⌝), ⌜EM ⌝).
(The result of M is used as the result of DM .)

We chose DM so that ⌜DM ⌝ is equal to f ′(f(⌜EM ⌝), ⌜EM ⌝). Thus, the effect of
DM is the same as M(⌜DM ⌝). This proves the Diagonal Theorem.

The Diagonal Theorem can be used to give another proof of the undecid-
ability of Halt0 that does not require using the fact that HaltSelf is undecidable.

Second proof of Theorem V.52. The proof is again by contradiction. Suppose
Halt0 is decided by an algorithm N . Note that N(w) always halts and either
accepts or rejects. Modify N to form an algorithm N ′ so that if N(w) rejects
then N ′(w) halts and if N(w) accepts, N ′ enters an infinite loop and never
halts. Namely:

Assumption: N decides Halt0.

Input: w ∈ Σ∗

Algorithm N ′:

Run N on input w.
If N(w) rejects, then halt.
If N(w) accepts, then enter an infinite loop and never halt.

Form the algorithm DN ′ as in the Diagonal Theorem. Then,

DN ′(ϵ) halts ⇔ N ′(⌜DN ′⌝) halts
⇔ N(⌜DN ′⌝) rejects
⇔ DN ′(ϵ) does not halt (since N decides Halt0)

This is a contradiction and proves the theorem.

13The names of the variables M and N of variables are swapped here, but EN is the same
as the algorithm N ′ of the proof of Theorem V.52 except that now running M might have
possibly outcomes other than accept and reject.
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See Exercise V.38 for another version of the Diagonal Theorem that allows
an additional input v as a side parameter.

V.6.4 Computably inseparable c.e. sets

For another application of the Diagonal Theorem, we prove the existence of
“computably inseparable” pairs of computably enumerable sets.

Definition V.58. Let X and Y be disjoint subsets of Σ∗. The sets X and Y
said to be computably separable if there is a decidable set Z such that X ⊆ Z
and Y ∩Z = ∅. Otherwise, they are computably inseparable

The separation conditions can also be written as X ⊆ Z and Y ⊆ Z. Note
that if X and Y are disjoint and computably inseparable then neither one is
decidable. Otherwise, we could take one of Z = X or Z = Y as the decidable
separating set.

Theorem V.59. There are computably enumerable sets X and Y which are
computably inseparable.

Proof. Define Accept0 to be the set of Gödel numbers ⌜M⌝ such that M(ϵ)
eventually accepts. Similarly, define Reject0 to be the set of Gödel numbers ⌜M⌝
such that M(ϵ) eventually rejects.

We claim that Accept0 and Reject0 are c.e. For this, it is enough to show
they are semidecidable. We omit the proof that they are semidecidable here:
Exercise V.30(b) asks you to supply it.

Now we show that Accept0 and Reject0 are computably inseparable. Sup-
pose for the sake of a contradiction that there is a decidable set Z such that
Accept0 ⊆ Z and Reject0 ⊆ Z. The complement Z is also decidable, by some
algorithm N . Let DN be the self-referential algorithm from the Diagonal The-
orem V.57. Then

DN(ϵ) accepts ⇔ N(⌜DN ⌝) accepts by choice of DN

⇔ ⌜DN ⌝ ∉ Z by choice of N
⇒ ⌜DN(ϵ)⌝ does not accept by choice of Z

Therefore DN(ϵ) does not accept. But also,

DN rejects ⇔ N(⌜DN ⌝) rejects
⇔ ⌜DN ⌝ ∈ Z
⇒ ⌜DN(ϵ)⌝ does not reject

Thus DN(ϵ) does not reject. Now we have a contradiction: The algorithm N
deciding Z has to halt on all inputs, so DN(ϵ) must halt and either accept or
reject. Therefore no decidable separating set Z can exist.
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V.6.5 Rice’s Theorem

Rice’s Theorem states that for any non-trivial property P of computably enu-
merable sets, it is not decidable whether a given algorithm enumerates a member
of P . In other words, there is no decision procedure, which given a Gödel num-
ber ⌜M⌝, decides whether the set enumerated by M satisfies the property P .
Informally, this means there is no general way to examine the source code of a
program (the Gödel number of an algorithm) and determine reliably what the
program does. This can be viewed as a theoretical barrier for things such as
checking the correctness of programs, or checking that a program is virus-free,
etc.

Let’s make this precise with a couple of definitions and a theorem.

Definition V.60. Let P be a collection of c.e. subsets of N. We call P a non-
trivial property of c.e. sets if P is nonempty and does not contain all c.e. subsets
of N. In other words, at least one c.e. set is in P but not all c.e. sets are in P .

Example V.61. The set of nonempty c.e. subsets of N is a non-trivial property
of c.e. sets. The set of finite subsets of N is a non-trivial property of c.e. sets.
The set of c.e. subsets of the even integers is a non-trivial property of c.e. sets.

Definition V.62. Let M be an algorithm that enumerates integers. We let
Le(M) denote the set enumerated by M .

Theorem V.63. Suppose P is a non-trivial collection of subsets of N. Let X
be the set of Gödel numbers of algorithms that enumerate a member of P ,

X ∶= {⌜M⌝ ∶ Le(M) ∈ P}.

Then X is not decidable.

Rice’s Theorem is stated (as is usual) about computably enumerable subsets
of N. Similar results also hold for partial computable functions. For this, see
Exercise V.39

Proof. Suppose, for the sake of a contradiction, that M is an algorithm that
decides the set X. Let M1 and M2 be algorithms such that Le(M1) ∈ P and
Le(M2) ∉ P ; these exist since P is a non-trivial property of c.e. sets. Let N be
the following algorithm:

Assumption: M decides X.

Input: w ∈ Σ∗

Algorithm N :

If M(w) accepts,
Run M2(ϵ), outputting whatever M2(ϵ) outputs.

If M(w) rejects,
Run M1(ϵ), outputting whatever M1(ϵ) outputs.
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Use the Diagonal Theorem to form DN . This means that DN(ϵ) runs by first
checking whether M(⌜DN ⌝) accepts. If so, DN(ϵ) enumerates (outputs) the
strings in Le(M2). Otherwise, M(⌜DN ⌝) rejects, and DN(ϵ) enumerates the
strings in Le(M1). Thus,

M(⌜DN ⌝) accepts ⇔ Le(DN) = Le(M2)
⇔ Le(DN) ∉ P
⇔ M(⌜DN ⌝) rejects

The second equivalence holds since Le(DN) is either Le(M1) or Le(M2) de-
pending on whether M(⌜DM ⌝) accepts or rejects.

This gives the desired contradiction.

We have finished our proofs of undecidability for now. So far, our proofs
have worked with an informal notion of algorithms, under the assumptions of
uniform representations and malleability of algorithms. The next chapter will
define Turing machines. Once Turing machines have been formalized, we will
have a justification for the Church-Turing Thesis and it will evident that the
corresponding problems for Turing machines are likewise undecidable. For ex-
ample, the three formulations of the halting problem, HaltSelf , Halt1 and Halt0,
when recast to work with Gödel numbers of Turing machines are undecidable.
Likewise, the Diagonal Theorem, Theorem V.59 on computable inseparability,
and Rice’s Theorem all still hold when working with Turing machines.

Exercises

Exercise V.1. Prove the following. Let R and S be subsets of Σ∗ where
Σ∗ = {0,1}. Let f, g ∶ Σ∗ → Σ∗. (Alternatively, let R and S be subsets of N, and
let f, g ∶ N→ N.)

(a) If R and S are decidable, then R ∪ S is decidable.
(b) If R and S are c.e. (computably enumerable), then R ∪ S is c.e.
(c) If R and S are decidable, then R ∩ S is decidable.
(d) If R and S are c.e., then R ∩ S is c.e.
(e) If f and g are computable, then f ○ g is computable.
(f) If f and g are partial computable, then f ○ g is partial computable.
(g) If f is computable and R is decidable, then {w ∶ R(f(w))} is decidable.
(h) If f is computable and R is c.e., then {w ∶ R(f(w))} is c.e.
(i) If f is partial computable and R is c.e., then {w ∶ f(w)↓ and R(f(w))} is

c.e.

Exercise V.2. Suppose R is a finite relation (i.e., R is true for only finitely
many inputs). Prove that R is decidable. The relation R is called cofinite if
R is finite. Also prove that if R is cofinite, then R is decidable.

Exercise V.3. Suppose R and S are k-relations on Σ∗. Define the symmetric
difference R△ S of R and S to equal (R ∖ S) ∪ (S ∖R). Suppose that R△ S is
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finite. Prove that R is decidable if and only if S is decidable. Prove that R is
c.e. if and only if S is c.e.

Exercise V.4. Let Σ = {a}. Let f ∶ Σ∗ → Σ∗ be the unary function so that for
all w ∈ Σ∗,

f(w) = { ϵ if the Riemann hypothesis is true

a if the Riemann hypothesis is false.

Prove that f is computable.

Exercise V.5. Let Σ = {1}. Let f be the unary function defined by

f(1n) = { ϵ if there is a run of n consecutive 7’s in the decimal expanson of π
1 otherwise.

Prove that f is computable.

Exercise V.6. Let R and S be unary relations on Σ∗ (that is, subsets of Σ∗).
Define the concatenation R ○ S of R and S to be {vw ∶ v ∈ R and w ∈ S}. For
example, {0,11} ○ {10,110} = {010,0110,1110,11110}.

(a) Prove that if R and S are decidable, then R ○ S is decidable.
(b) Prove that if R and S are c.e., then R ○ S is c.e.

Exercise V.7. Let R be a unary relation on Σ∗. Define the Kleene star R∗ of
R to be the set

R∗ = {w1 ○w2 ○ ⋯ ○wk ∶ k ≥ 0 and w1, . . .wk ∈ R}.

Thus R∗ is the set of strings formed by concatenating zero or more members
of R. For example, {0,11}∗ = {ϵ,0,00,11,000,011,110, . . .}.

(a) Prove that if R is decidable, then R∗ is decidable.
(b) Prove that if R is c.e., then R∗ is c.e.

Exercise V.8. Let R be a binary relation on Σ∗. Define S to be the set
{w ∈ Σ∗ ∶ ∃v ∈ Σ∗ (⟨v,w⟩ ∈ R)}. We call S the projection of R onto its second
coordinate. Suppose that R is c.e. Prove that S is c.e.

Exercise V.9. Suppose that S is c.e. Prove that there is a decidable binary
relation R such that S is the projection of R onto its second coordinate, namely
that S is equal to {w ∈ Σ∗ ∶ ∃v ∈ Σ∗ (⟨v,w⟩ ∈ R)}. (This is the converse to the
previous exercise. Therefore, S is c.e. if and only if it is the projection of a
decidable set.)

Exercise V.10. Suppose that R ⊆ N is enumerated by an algorithm M in
increasing order. In other words, M successively outputs n1, n2, . . . so that
R = {n1, n2, n3, . . .} and ni < ni+1 for each i. Prove that R is decidable. What
if the assumption is weakened to have the enumeration be in non-decreasing
order, namely to the condition that ni ≤ ni+1? Must R still be decidable?
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Exercise V.11. Assume R ⊆ N is an infinite decidable set. Prove that there
is an algorithm M that enumerates R in increasing order. That is, there is an
algorithm that enumerates R in as n1, n2, . . . , with each ni < ni+1.

Exercise V.12. The following assertions are all false in general! Proving that
they are false requires using a formal definition of algorithm. Instead of giving
formal proofs, explain why the types of constructions used in Section V.3 do
not work to prove these assertions. Here R, S and the Ri’s are unary relations.

False Assertion (a): If R is c.e. then R is c.e.
False Assertion (b): If R and S are c.e., then R ∖ S is c.e.
False Assertion (c): If each Ri is decidable, then ⋃i{i} ×Ri is decidable.
False Assertion (d): If each Ri is decidable, then ⋃i{i} ×Ri is c.e.

Exercise V.13. Prove that a k-ary relation is computably enumerable if and
only if it is the domain of a partial computable function.

Exercise V.14. Prove that a set is computably enumerable if and only if is
the range of a partial computable function.

Exercise V.15. Prove that a set is computably enumerable if and only if it is
empty or is the range of a computable function.

Exercise V.16. Prove that a set is computably enumerable if and only if it is
finite or is the range of an injective computable function. (A function is injective
if and only if it is one-to-one.)

Exercise V.17. Let f be a (total) k-ary function, f ∶ (Σ∗)k → Σ∗. Prove the
following are equivalent.

(a) f is computable.
(b) The graph Gf of f is decidable.
(c) The graph Gf of f is computably enumerable.

(See also Exercises V.31 and V.32.)

Exercise V.18. Let R be a set (a unary relation) and f be a unary function.
The preimage f−1[R] of R under f is the set {x ∶ f(x) ∈ R}.

(a) Suppose R is decidable and f is computable. Prove that f−1[R] is decid-
able.

(b) Suppose R is c.e. and f is partial computable. Prove that f−1[R] is c.e.

Exercise V.19. Suppose that f and g are (total) unary integer functions, that
g is computable, and that f(n) ≤ g(n) for all n. Let Gf be the graph of f .
Prove that the following are equivalent:

(a) f is computable.
(b) Gf is c.e.
(c) Gf is co-c.e.

(See also Exercise V.17.)

Exercise V.20. Suppose that X is c.e., that Y is co-c.e., and X is many-one
reducible to Y . Prove that X is decidable.
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Exercise V.21. Prove that every infinite c.e. set R has an infinite decidable
subset S.

Exercise V.22. Prove Craig’s Theorem:

(a) Suppose Γ is c.e. set of propositional formulas. Prove there is a decidable
set Π of propositional formulas such that Γ ⊧) Π.

(b) Suppose Γ is c.e. set of first-order sentences. Prove there is a decidable
set Π of first-order sentences such that Γ ⊧) Π.

[Hint: The proofs for (a) and (b) are identical!]

Exercise V.23. Characterize the following as being decidable, c.e., co-c.e.,
or partial computable, or that it apparently is not any of these. Justify your
answers. For the last option, it is not necessary to give a proof that it does not
fall into any of the four categories, just to observe that the techniques of this
chapter do not put it into any of the four categories. By a “least formula” or
“least proof”, we mean that strings are ordered (a) first by length, and (b) second
by lexicographic (dictionary) order according to some ordering of the underlying
alphabet.

(a) The set of propositional formulas that have a PL-proof.
(b) The function that maps every propositional formula A to its least PL-

proof, or to ϵ if A does not have a proof.
(c) The function that maps a propositional formula A to the least formula B

which is tautologically equivalent to A.
(d) The set of first-order sentences that have an FO-proof.
(e) For a fixed first-order sentence A, the set of sentences that are logically

equivalent to A.
(f) The set of finite sets Π of first-order sentences which are consistent.
(g) The set of finite sets Π of first-order sentences which are inconsistent.
(h) The function that maps every first-order sentence A to its least FO-proof.
(i) The function that maps every first-order sentence A to the least sentence B

which is logically equivalent to A.

Exercise V.24. Suppose that T is a consistent, decidable theory. Prove that
there is a complete, consistent, decidable theory S extending T . [Hint: Show
that the proof of Lindenbaum’s Theorem can be made effective.]

Exercises V.25-V.36 require the techniques of Section V.6 (or subsequent
sections). In some cases, your answer will need to use a general form of the
malleability assumption. Be sure to indicate explicitly where your answers use
the malleability assumption. (Basically, this is whenever a Gödel number of an
algorithm is being modified to produce a Gödel number for another algorithm.)

Exercise V.25. Prove that binary relation Accept1 defined by

Accept1(⌜M⌝,w) ⇔ M(w) accepts

is undecidable.
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Exercise V.26. Prove there is a decidable set of propositional formulas Γ such
that the set {i ∶ Γ ⊧ pi} is undecidable.

Exercise V.27. Prove that there is a consistent, complete first-order theory T
which is undecidable. [Hint: You might find it easier to work with a countably
infinite non-logical language.]

Exercise V.28. Prove that the following assertion is false in general.

False Assertion: If each Ri is a decidable set, then ⋃i∈N({i} ×Ri) is c.e.

[Hint: Use the fact that there is an undecidable set.]

Exercise V.29. Let R be a set and f be a unary function. The image f[R]
of R under f is the set {f(x) ∶ x ∈ R}. Prove that there are a decidable set R
and a computable function f such that the set f[R] is undecidable.

Exercise V.30. For this exercise, you will need to use the assumption that
there is a universal algorithm U .

(a) Prove that the sets Halt0, Halt1 and HaltSelf are c.e. Conclude that these
three sets are not co-c.e.

(b) Prove that the sets Accept0 and Reject0 are c.e.. Use this prove that these
two sets are not co-c.e.

Exercise V.31. Prove that there is a partial computable function f such that
graph Gf of f is not decidable. Use this to prove that Gf is not co-c.e.

Exercise V.32. Prove that there is a (total) function f such that the graph Gf

of f is co-c.e., but f is not computable. [Hint: Let f(⌜M⌝) equal i + 1 if the
algorithm M halts after making exactly i steps, and equal 0 otherwise.]

Exercise V.33. Define the integer function f ∶ N→ N by

f(i) = ∣{⌜M⌝ ∈ Σ∗ ∶ ∣⌜M⌝∣ = i and ⌜M⌝ ∈ Halt0}∣.

In other words, f(i) is the number of strings w of length i such that w is the
Gödel number ⌜M⌝ of an algorithm M that halts when run on the empty string.
Prove that f is not computable.

Exercise V.34. Prove that Halt1 and HaltSelf are many-reducible to Halt0.

Exercise V.35. Suppose that R is a c.e. relation. Prove that R is many-
one reducible to Halt0. (Because of this property, and the fact that Halt0 is
c.e., Halt0 is said to be “many-one complete” for the computably enumerable
functions.) [Hint: You might first show that R is many-one reducible to Halt1.]

Exercise V.36. Define Total to be the set

Total = {⌜M⌝ ∶ Algorithm M halts on all inputs w}.

In other words, Total is the set of Gödel numbers ⌜M⌝ such that M computes
a (total) function.
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(a) Give a many-one reduction from Halt0 to Total.

(b) Give a many-one reduction from Halt0 to Total. Halt0 denotes the com-
plement of Halt0.

(c) Prove that Total is neither c.e. nor co-c.e.

Exercise V.37. Let X be the set {⌜M⌝ ∶ Le(M) is finite}.
(a) Prove that X is not decidable.
(b) Prove that X is not c.e.
(c) Prove that X is not co-c.e.

[Hint: Use Rice’s Theorem and many-one reductions from Halt0 and Halt0.]

Exercise V.38. Prove the following version of the Diagonal Theorem V.57
which allows a self-referential program with an input v:

Let M be an algorithm that takes two inputs u, v ∈ Σ∗. There
is an algorithm DM with Gödel number ⌜DM ⌝ such that, for any
input v ∈ Σ∗, running DM(v) produces the same result as running
M(⌜DM ⌝, v).

Exercise V.39. Prove a version of Rice’s Theorem for partial computable func-
tions.

(a) Formulate the definition of nontrivial property of partial computable func-
tions.

(b) Give two examples of nontrivial properties of partial computable functions.
(c) Suppose P is a nontrivial property of partial computable functions. Let

X be the set of Gödel numbers ⌜M⌝ of algorithms M which partial com-
pute a function in P. Prove that X is undecidable.

[Hint: It can be helpful to use the version of the Diagonal Theorem given in the
previous exercise.]

Exercise V.40. Give an example of a non-trivial property P of computably
enumerable subsets of N such that the set of Gödel numbers ⌜M⌝ of algo-
rithms M such that Le(M) ∈ P is computably enumerable. (This blocks one
possible way of generalizing Rice’s Theorem in that in some cases there exists
a c.e. separating set.)

Exercise V.41. For each set X and Y state whether it is (i) decidable, (ii) com-
putably enumerable, and (iii) co-c.e. Justify (prove) your answers. It is OK to
use the results of Exercises V.20, V.36 or V.39 to justify your answers. If you
find some of the questions to be ambiguous, explain how they are ambiguous
and what assumptions you have made to answer the question.

(a) The set X is the set of Gödel numbers of algorithms which partial compute
a function that has finite domain.

(b) The set Y is the set of Gödel numbers of algorithms which semidecide a
set.

Exercise V.42. (Roger’s Fixed Point Theorem.) Suppose f is a (total) com-
putable function on {0,1}∗. Prove that there is an algorithm M with Gödel
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number ⌜M⌝, such that, letting N be the algorithm with Gödel number ⌜N⌝ =
f(⌜M⌝), the algorithms M and N give the same results on all inputs. [Hint:
You should use the Diagonal Theorem as extended in Exercise V.38 to take a
parameter v. You should also use a universal algorithm U .]

Exercise V.43. Let f(x, y) be a computable, binary function on N. Define
h(x) to be the unary partial function on N such that, for all x ∈ N,

h(x) = µm (f(x,m) = 0),

i.e.,

h(x) =
⎧⎪⎪⎨⎪⎪⎩

the least value m such that f(x,m) = 0 if such an m exists

undefined, if no such m exists.

(Saying “h(x) = undefined” means h(x)↑, i.e., h(x) diverges.) Prove that h is
partial computable.

Exercise V.44. Let f(x, y) be a partial computable, binary function on N.
Define h(x) to be the unary partial function on N such that, for all n ∈ N,

h(x) = µm (f(x,m) = 0),

i.e.,

h(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

the least value m such that f(x,m) = 0 and such that for all p <m,
f(x, p) converges and is greater than zero

if such an m exists

undefined if no such m exists.

Prove that h is partial computable.

Exercise V.45. Let f(x, y) be a partial computable, binary function on N.
Define g(x) to be the unary partial function on N such that, for all x ∈ N,

g(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

the least value m such that f(x,m) = 0 and such that for all p <m,
f(n, p) diverges or is greater than zero

if such an m exists

undefined if no such m exists.

Give an example of partial computable f such that g is not partial computable.
(For this reason, the notation “µm (⋯)” is used for functions h as defined in
Exercises V.43 and V.44, but is not used for the function g.)
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Chapter VI

Turing Machines

The previous chapter developed the notion of algorithm in an informal way,
including the Church-Turing thesis, the malleability of algorithms, universal al-
gorithms, diagonal theorems, and undecidability. We next define a formal notion
of computability based on Turing machines. Turing machines provide a specific
model for computation that meets all the criteria for algorithms. Namely, a
Turing machine acts in a step-by-step fashion following a finite set of unam-
biguous definite instructions. A Turing machine accepts a string of symbols as
input and performs all of its calculations with operations on symbols.

Specifically, a Turing machine stores its data on a tape that holds symbols
from a finite alphabet. It accesses the tape by writing and reading symbols
using a tape head that is constrained to move one tape cell left or right at a
time. A Turing machine can read and write only a single symbol on its tape at
a time. In addition to the tape, there is a finite amount of additional “state”
memory.

All this means that Turing machines are simplistic models of computation.
Nonetheless, Turing machines provide a powerful model of computation. Indeed,
according to the Church-Turing thesis, Turing machines suffice to capture any
model of effective computation.

VI.1 Definitions for Turing Machines

A Turing machine stores data on an infinite tape, each position (also called a
“cell”) on the tape can hold a single symbol from an alphabet Γ. The tape
contents is accessed with a tape head that can read from or write into a single
cell at a time. The tape head can move a single step leftward or rightward, one
cell at a time. In addition to the tape contents, a Turing machine maintains a
current “state” value; there are only finitely many possible states. The action
of the machine is controlled by a “finite control” or “transition function” that
describes the action of the Turing machine based on the current state and the
current symbol being read by the tape head.

209
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Turing machines have severe restrictions on how they can access data on
their tape, since the contents of only one tape cell can be read at a time and
since the tape head can only move one cell at a time. Modern-day computers
can of course access data in much more flexible ways, especially with the use of
random access memory (RAM) to directly access data by its address in memory.
Nonetheless, setting aside issues of efficiency, a Turing machine can perform any
operation that can be done by a computer. The point is that Turing machines
were designed to be a minimalistic model of computation that still captures all
possible effective computations.

The key features of a Turing machine are as follows:

(a) The Turing machine stores its data on an infinitely long, linear tape. The
tape consists of cells, each cell contains a single symbol from the tape
alphabet Γ.1

(b) The Turing machine reads one cell at a time from the tape. The current
cell being read is called the tape head position. The tape head can move
one cell left or right at a time.

(c) There is an alphabet Σ called the input alphabet. We have Σ ⊊ Γ. There
is a special blank symbol # which is in Γ but not in Σ. A Turing machine
is initialized with only finitely many non-blank symbols on its tape. If
the Turing machine takes a single input w ∈ Σ∗, it is initialized with the
input w written in consecutive tape cells and the rest of the tape cells
hold blank symbols #. A Turing machine that takes k inputs w1, . . . ,wk

is initialized with the string w1#w2#⋯#wk−1#wk and the rest of the tape
blank. The tape head position starts at the first (leftmost) symbol of its
first input.2

(d) The Turing machine has a finite control which consists of a finite set Q of
states, and a finite list of instructions for how the Turing machine should
act. These instructions are encoded with a transition function δ.

(e) At any given step, the Turing machine is in a particular state q ∈ Q, called
the current state, and is reading the symbol a ∈ Γ in the tape cell under
the tape head. The value δ(q, a) gives the instructions on what symbol
should be written in the current tape cell, whether to move the tape head
left or right one square, and what the next state should be.

(f) There is a designated start state (or “initial state”) often denoted q0; the
Turing machine starts running in its start state.

(g) There is a set Qhalt of designated halting states. A Turing machine that
is used to decide or semidecide a relation has two halting states, often de-
noted qacc and qrej, that are designated accepting and rejecting states. A
Turing machine that computes or partial computes a function or enumer-
ates a set, has a single designated output state, often denoted qout. When
the output state is entered, the output string is equal to the maximum

1Multitape Turing machines can use finitely many tapes.
2Definition VI.4 gives the formal definition of how inputs are given to a Turing machine.
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length string w that is contained in the tape cells starting at the current
tape cell and going rightward to the first symbol that is in Γ ∖Σ. Gener-
ally, we impose the further condition that a string w is output when #w#
appears on the tape with the tape head positioned over the first symbol
of w. Similar conventions are adopted for a Turing machine that outputs
k-tuples of strings in Σ∗ in order to enumerate a k-ary relation.3

The next definition formalizes the description of a Turing machine as a 8-
tuple (Γ,Σ,Q, q0, δ,Qhalt, qacc, qrej) or 7-tuple (Γ,Σ,Q, q0, δ,Qhalt, qout)

Definition VI.1. A Turing machine with accept/reject states is specified by
an 8-tuple (Γ,Σ,Q, q0, δ,Qhalt, qacc, qrej) such that

(a) Γ and Σ are the tape alphabet and the input alphabet. We have Σ ⊂ Γ; the
blank symbol is a member of Γ ∖Σ.

(b) Q is a finite set of states.

(c) q0 ∈ Q is the start state.

(d) There are two distinct designated accept and reject states qacc, qrej ∈ Q.

(e) Qhalt = {qacc, qrej} is the set of halting states.

(f) The transition function δ is a function δ ∶ (Q∖Qhalt)×Γ→ Γ×{L,R}×Q.
Thus, when q is a non-halting state and a is a tape alphabet symbol,
δ(q, a) is equal to a triple (a′,L, q′) or (a′,R, q′) where a′ is a tape alphabet
symbol and q′ is a state. The symbols L and R mean “move Left” and
“move Right”.

Definition VI.2. A Turing machine that outputs strings is specified by a 7-
tuple (Γ,Σ,Q, q0, δ,Qhalt, qout) such that Γ, Σ, Q, q0 and δ are as above and
such that

(d′) qout ∈ Q is the output state.

(e′) The set Qhalt of halting states is equal to either {qout} or the empty set ∅.

The meaning of the transition function is that δ(q, a) gives the instructions
on what the Turing machine should do when in state q reading the symbol a.
The values

δ(q, a) = (a′,L, q′) and δ(q, a) = (a′,R, q′)

give the instructions that when in state q reading the symbol a, the Turing
machine should overwrite a with a′, move the tape head one cell to the left or
right (respectively), and then enter state q′.

A configuration (also called an ‘instantaneous description”) of a Turing ma-
chine is a complete description of the Turing machine at a given step: this
includes specifying the contents of the tape, the current state, and the current
position of the tape head. A computation of Turing machine thus consists of a

3Definition VI.5 formally defines how a Turing accepts and rejects strings (or k-tuples of
strings). Definitions VI.9 and VI.12 formally define what it means for a Turing machine to
output a string or a k-tuple of strings.
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sequence of configurations; the initial configuration is in the initial state (usu-
ally called q0) and has the input string or strings written on the tape starting at
the tape head position. (See Definition VI.4 below.) The final configuration (if
any) is in a halting state and is called a halting configuration. (Definitions VI.5,
VI.9 and VI.12 describe how a Turing machine returns results.) It is possible
that the Turing machine runs forever without entering a halting configuration.

A Turing machine transitions from one configuration to the next as specified
by the transition function; see Definition VI.14 below.

Example VI.3. For a first, simple example, we construct a Turing machine
that accepts exactly inputs of even length. We’ll use the input alphabet Σ = {1}
and the tape alphabet Γ = {1,#}. The action of the machine is informally
described as follows. It alternates between two states q0 and q1 while scanning
the input string from left to right. It maintains the invariant that it is in state
q0 or q1 depending on whether an even or odd number of 1’s have been seen so
far. When the first blank symbol (#) is reached, the machine enters either qacc
or qrej.

Figure VI.1 shows three configurations of the machine acting on the in-
put 1111. The transition function is given by

δ(q0,1) = (1,R, q1)
δ(q1,1) = (1,R, q0)
δ(q0,#) = (#,L, qacc)
δ(q1,#) = (#,L, qrej)

It is also possible to draw the Turing machine with a state diagram:

q0 q1

qacc qrej

1▸1,R

1▸1,R#▸#,L #▸#,L

The state diagram shows a directed edge for each value of δ. An edge from
state q to state q′ labeled with a▸b,D with D either R or L indicates that
δ(q, a) = (b,D, q′). The arrow coming into the state q0 indicates it is the start
state. The double circles on qacc and qrej indicate they are halting states.

The Turing machine above accepts (that is, decides) the set {w ∈ Σ∗ ∶
∣w∣ has even length}. The next definitions make this formal.

Definition VI.4. Let M be a Turing machine with input alphabet Σ. The
machine M is given w ∈ Σ∗ as input if it is started in state q0, the tape is
entirely blank other than the sequence of consecutive tape cells containing the
string w, and the tape head position is over the first (leftmost) symbol of w, or
over a blank symbol if w = ϵ.
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⋯ # 1 1 1 1 # ⋯

q0

⋯ # 1 1 1 1 # ⋯

q1

⋯ # 1 1 1 1 # ⋯

q0

⋯ # 1 1 1 1 # ⋯

qacc

Figure VI.1: The first two configurations and the last two configurations of
the Turing machine M from Example VI.3 running on input “1111”. (Two
configurations are omitted.) M starts in state q0 with the tape head positioned
over the leftmost symbol 1. In the next step, M is in state q1 with the tape
head positioned over the second 1. Three steps later, it is in state q0 with
the tape head over the blank symbol (#) following the final 1. In the final
configuration, it has moved left one square and is in state qacc. This is an
accepting configuration and thereby a halting configuration. The position of
the tape head in an accepting or rejecting configuration is unimportant.

The machine M is given a k-tuple w1, . . . ,wk ∈ Σ∗ as input if it is started
in state q0, the tape is entirely blank apart from a sequence of consecutive tape
cells containing the string w1#w2#⋯#wk, and the tape head position is over
the first (leftmost) symbol of w1, or if w1 = ϵ, it is over the blank symbol where
w1 would have started.

Definition VI.5. Let M be a Turing machine with accept and reject states. Fix
k ≥ 1. We say M accepts a k-tuple w1, . . . ,wk, if, when it is given w1, . . . ,wk as
input, it eventually enters its accepting state. If it eventually enters its rejecting
state, then we say M rejects w1, . . . ,wk.

Note that it is possible that M neither accepts nor rejects W and instead
runs forever without halting.

Definition VI.6. The notation L(M) denotes the set of strings w such that
M accepts w. This is called the language of M .

Definition VI.7. A subset R of Σ∗ is Turing semidecidable if there is a Turing
machine M such that L(M) = R. Note that when given an w ∉ R, M may either
reject w or may run forever without halting. We also say that M semidecides R.
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If there is a Turing machine M such that L(M) = R and such that M halts
on all inputs, then we say that R is Turing decidable. In this case, M decides R.

The above Example VI.3 shows that the set of even strings over Σ = {1} is
Turing decidable. By the Church-Turing Thesis, being Turing semidecidable is
the same as being semidecidable (and the same as being computably enumer-
able). Similarly, being Turing decidable is the same as being decidable.

Example VI.8. Let Σ = {0,1} and define the binary complement function f
be the unary function such that f(w) is obtained from w by interchanging
0’s and 1’s in w. For example, f(1011) = 0100. A Turing machine M that
computes f is as follows: The tape alphabet is Γ = {0,1,#} and the states are
Q = {q0, q1, qout}. The machine M starts at the first symbol of w, and first scans
from left to right overwriting 0’s with 1’s, and 1’s with 0’s. When it reaches the
first blank symbol, it scans back to the beginning of w. It does this by scanning
leftward until reaching a #, and then moving one tape cell rightward before
ending up in the output state qout. When M halts, the tape head is positioned
over the first symbol of the output string.

The machine M uses state q0 to scan rightward, and then state q1 to scan
leftward. The transition function is given by

δ(q0,0) = (1,R, q0)
δ(q0,1) = (0,R, q0)
δ(q0,#) = (#,L, q1)

δ(q1,0) = (0,L, q1)
δ(q1,1) = (1,L, q1)
δ(q1,#) = (#,R, qout)

and qout is a halting state, so QHalt = {qout}. The state diagram for M is:

q0 q1 qhalt
#▸#,L #▸#,R

0▸1,R

1▸0,R

0▸0,L

1▸1,L

Three configurations of M when given 1011 as input are shown in Figure VI.2.

The above example gives a Turing machine that computes the binary com-
plement function. This is formalized in the next definitions.

Definition VI.9 (Outputting a string). Let M be a Turing machine with
a halting output state qout and with input alphabet Σ. When (and if) M
enters qout, the output string is the string v ∈ Σ∗ written on the tape, with the
tape head positioned at the first (leftmost symbol) of v, and with v terminated
on the tape with a member of Γ ∖ Σ. Generally, we require w.l.o.g. that v be
terminated with #.4

4The reason for allowing w to be terminated by a symbol from Γ∖Σ other than the blank
symbol # is that we want the output string to be a well-defined member of Σ∗ whenever M
enters its output state.
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⋯ # 1 0 1 1 # ⋯

q0

⋯ # 0 1 0 0 # ⋯

q1

⋯ # 0 1 0 0 # ⋯

qout

Figure VI.2: The initial configuration, one of the middle configurations, and the
halting configuration of the Turing machine M from Example VI.8 running on
input “1011”. The middle configuration shows when state q1 is entered; it is
reached after five steps. The final configuration is a halting output configuration.
It is required that the output configuration has the tape head positioned over
the first symbol of the output string.

Definition VI.10. Let M and k be as above. Then M partial computes the
function f such that, for all w1, . . . ,wk ∈ Σ∗,

● If f(w1, . . . ,wk)↓ = v, then the the machine M given w1, . . . ,wk ∈ Σ∗ as
input eventually halts with output v;

● If f(w1, . . . ,wk)↑ then M given w1, . . . ,wk ∈ Σ∗ as input never halts.

We say that f is Turing partial-computable. Note that f is uniquely determined
by M and k.

If f is total, then we say M computes f and that f is Turing computable.

By the Church-Turing Thesis, a function f is computable if and only if it
is Turing computable; and it is partial computable if and only if it is Turing
partial-computable.

We have so far defined the notions of “Turing semidecidable”, “Turing de-
cidable”, and “Turing (partial) computable”. We next give an example of an
“Turing enumerable” set.

Example VI.11. Let Σ = {1} and consider the set R = {1n ∶ n is even}. We
construct a Turing machine M that enumerates R. Let the tape alphabet be
Γ = {#,1}, let the set of states be Q = {q0, q1, q2}, let the start state be q0, let
the output state (usually called qout) also be q0, and let Qhalt = ∅ so there is no
halting state. Define the transition function δ so that

δ(q0,#) = (1,L, q1)
δ(q0,1) = (1,L, q0)

δ(q1,#) = (1,L, q2)
δ(q2,#) = (1,R, q0)
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The values of δ(q1,1) and δ(q2,1) are immaterial for the action of M when
started on a completely blank tape, since M will never read a 1 while in state
q1 or q2. We therefore omit specifying those values of δ.

The machine M produces infinitely many outputs and never halts. It acts
by repeatedly adding two 1’s the front of the string on the tape and outputting
the result. The states q0 and q1 are used to add the 1’s, moving the tape head
leftward with each symbol. The state q2 is used to step back to output a string
in state q0. As shown in Figure VI.3, the strings that are output are ϵ, then 11,
then ϵ, then 1111, etc. The fact that the empty string ϵ is repeatedly output
is OK since a Turing machine is permitted to output duplicate strings when
enumerating a set.5

The state diagram for M is:

q0 q1 q2

1▸1,L

#▸1,L #▸1,L

#▸#,R

The double circle on q0 indicates it is an output state; however, it is not a
halting state. The states q1 and q2 have only a single outgoing edge. This is in
keeping with the fact that the values of δ(q1,1) and δ(q2,1) are immaterial for
the operation of M when started on a blank tape.

The machine M is said to “enumerate” the set R. This is formalized in
the next definitions. The first definition gives the conventions for how a Turing
machine outputs a k-tuple of strings. It coincides with Definition VI.9 when
k = 1.

Definition VI.12 (Outputting a k-tuple of strings). Let M be a Turing ma-
chine with a non-halting output state qout and with input alphabet Σ, and let
k ≥ 1. Whenever M enters qout, it outputs a k-tuple ⟨w1, . . . ,wk⟩ of strings
from Σ∗. By convention, the output strings are written on the tape in form
v = w1#1w2#2 . . .#k−1wk#k where each wi ∈ Σ∗ and each #i ∈ Γ ∖Σ, and the
tape head is positioned on the first symbol of w1 or on the symbol #1 if w1 = ϵ.
The symbols #i do not need to be the blank symbol #; however, it is the usual
convention that the #i are all equal to #.

When working with a Turing machine with a non-halting output state, we
fix a value for k so that the machine is viewed as outputting k-tuples of strings.

Definition VI.13. Let M and k be as above. Then M enumerates the k-ary
relation R containing exactly the k-tuples that are output by M . The relation
may contain finitely many or infinitely many tuples. We say that R is Turing
enumerable.

By the Church-Turing Thesis, R is Turing enumerable if and only if it is
computably enumerable.

5The duplicate outputs could be eliminated by using a four state Turing machine.
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⋯ # # # # # # ⋯

q0

⋯ # # # # 1 # ⋯

q1

⋯ # # # 1 1 # ⋯

q2

⋯ # # # 1 1 # ⋯

q0

⋯ # # # 1 1 # ⋯

q0

⋯ # # 1 1 1 # ⋯

q1

⋯ # 1 1 1 1 # ⋯

q2

⋯ # 1 1 1 1 # ⋯

q0

Figure VI.3: The first eight configuration of the Turing machine M from Exam-
ple VI.11 when started on a completely blank tape. The first, fourth, fifth and
eighth configurations are in state q0 and are output configurations; they output
ϵ, 11, ϵ, and 1111.
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Output convention Action Definition

Qhalt = {qacc, qrej}; Always halts Decides a relation VI.7

Qhalt = {qacc, qrej}; May or may not halt Semidecides a relation VI.7

Qhalt = {qout}; Always halts Computes a function VI.10

Qhalt = {qout}; May or may not halt Partial computes a function VI.10

Qhalt = ∅; May enter qout repeatedly Enumerates a relation VI.13

Figure VI.4: The different types of Turing machines.

At this point, it should be clear how a Turing machine operates. But, for
the sake of completeness, we give the formal definition of how a Turing machine
transitions from one configuration to the next:

Definition VI.14. Suppose that a Turing machine is in a configuration C such
that (a) the machine is in a non-halting state q; (b) the tape contains the string
vaw where v,w ∈ Γ∗, a ∈ Γ, ∣v∣ ≥ 1, ∣w∣ ≥ 1, and the rest of the tape is blank
(contains only the symbols #); and (c) the tape head is positioned over the
symbol a. The next configuration C ′ that follows C in the Turing machine’s
computation is defined by:

• If δ(q, a) = (a′,L, q′), then C ′ has va′w written on the tape in place of
vaw, is in state q′, and has the tape head positioned over the last symbol
of v.

• If δ(q, a) = (a′,R, q′), then C ′ has va′w written on the tape in place of
vaw, is in state q′, and has the tape head positioned over the first symbol
of w.

VI.2 More Constructions of Turing Machines

The Church-Turing Thesis tells us that Turing machines are powerful enough
to simulate any algorithm. So far, however, we have seen only very simple
Turing machines. In this section, we’ll present some more complex examples of
Turing machines. Our goal is to show that Turing machines can carry out any
computation that can be implemented on an idealized modern-day computer.
This will give strong evidence for the Church-Turing Thesis.

The breadcrumb technique. The single biggest limitations on Turing ma-
chines are that they have only finitely many states, must store their data on a
linear tape, and can only access a single tape cell at a time. This makes even
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simple tasks difficult, for instance copying a string from one area of the tape to
another area of the tape. The next example shows how to do this with the aid
of adding two new symbols 0′ and 1′ to the tape alphabet. We’ll refer informally
to the act replacing a 0 or a 1 with 0′ or 1′ as “adding a breadcrumb” to the
symbol 0 or 1. As the next example shows, a breadcrumb can be used to mark
the location of the symbol currently copied.6

Example VI.15. We design a Turing machine M that when given as input a
string w ∈ {0,1}∗, makes a copy of w so that the tape now contains w#w. We
assume the machine states with its tape head over the first symbol of w. The
machine will halt with its tape head over the first symbol of the first w in w#w.

The difficulty in making a copy of w is that the machine M has to copy w one
symbol at a time. To do this, it has to keep track of which symbol is currently
being copied. This will be done by placing a marker or a “breadcrumb” at the
symbol being copied. We will enlarge the tape alphabet to be Γ = {ϵ,0,1,0′,1′};
the two additional symbols 0′ and 1′ are used as markers or “breadcrumbs”
showing which symbol is currently being copied.

The Turing machine will act as follows. It first places a “breadcrumb” on
the first symbol 0 or 1 of w, by replacing it with 0′ or 1′. It then scans past
the end of w and writes that symbol 0 or 1. It then scans back leftward to the
breadcrumb, moves the breadcrumb one symbol rightward, and scans rightward
to place a copy of the second symbol of w. This process continues until all of w
is copied. A complete example of this for w = 010 is shown in Figure VI.6.

The states used by M are:
• q0 is used to place a breadcrumb on the first symbol of w. q0 also detects

if w = ϵ.
• q0,1 and q0,2 are used to scan rightward to the second # symbol and

overwrite it with a 0.
q1,1 and q1,2 do the same, but overwrite the # with a 1.

• q3 scans leftward to the breadcrumb and removes it.
• q4 adds a breadcrumb to the next symbol of w to the right of the previous

breadcrumb if that symbol is 0 or 1. If that symbol is #, then the copying
is complete.

• q5 is entered once the copying is complete to place the tape head at the
start of the first w.

• q6 is the halting output state.
The state diagram for M is shown in Figure VI.5.

The “breadcrumb” technique allows a Turing machine to mark a symbol 0
or 1 by replacing it with 0′ or 1′. It is also possible to use multiple types of
breadcrumb. For instance, we could also use 0′′ and 1′′ as new symbols, so we
could put “double breadcrumbs” on a symbol.

Breadcrumbing is a simple but important tool that allows a Turing machine
to correlate the contents of the tape at different locations, in spite of the lim-
itation of having a single tape head. Example VI.15 showed copying from one

6The terminology “breadcrumb” alludes to the fairy tale Hansel and Gretel in which a
trail of dropped breadcrumbs is used to mark a path in the woods.
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q0

q0,1 q0,2

q1,1 q1,2

q3 q4

q5
qout

#▸#,L

0▸0′,R

1▸1′,R

0▸0,R
1▸1,R

#▸#,R

0▸0,R
1▸1,R

#▸0,L

0▸0,R
1▸1,R

#▸#,R

0▸0,R
1▸1,R

#▸1,L

0′▸0,R

1′▸1,R

0▸0,L
1▸1,L

#▸#,L

#▸#,L

0▸0′,R

1▸1′,R

#▸#,R

0▸0,L
1▸1,L

Figure VI.5: The state diagram for the Turing machine from Example VI.15.

location to another using a breadcrumb to make the location being copied from
and using a blank symbol at the end of the string to mark the location being
copied to. The same technique allows a Turing machine to compare strings at
distant locations on the tape:

Theorem VI.16. The following are Turing decidable.
(a) The binary relation {⟨w,w⟩ ∶ w ∈ {0,1}∗}.
(b) The unary relation {ww ∶ w ∈ {0,1}∗}.

Proof. (Sketch) We give just a general overview of how the Turing machines
operate. Part (a) asserts that there is a Turing machine M1 such that when
M1 is started on the first symbol of u#v on an otherwise blank tape with
u, v ∈ {0,1}∗, M1 eventually accepts if u = v and eventually rejects otherwise.
M1 starts by placing a breadcrumb on the first symbol of u and scanning leftward
to place a breadcrumb on the first symbol of v. If those two symbols are different,
M1 rejects. Otherwise, M1 shuttles back and forth, moving the breadcrumbs
rightward one tape cell at a time and comparing the breadcrumbed symbols. If
there is ever a discrepancy in the symbols in u and v, or if u and v turn out to
not have the same length, then M1 rejects. Otherwise, M1 accepts.

The algorithm for part (b) is similar. The input to the Turing machine M2

is now a single string u, and M2 must decide whether u has the form ww. The
difficulty is that the middle of u is not marked. So, M2 must first locate the
midpoint of u. To do this, it places breadcrumbs on the first and last symbols
of u, and then shuttles back and forth, moving the first breadcrumb rightward
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q0: # 0 1 0 # # # # #

q0,1: # 0′ 1 0 # # # # #

q0,1: # 0′ 1 0 # # # # #

q0,1: # 0′ 1 0 ## # # #

q0,2: # 0′ 1 0 ### # #

q3: # 0′ 1 0 # 0 # # #

q3: # 0′ 1 0 # 0 # # #

q3: # 0′ 1 0 # 0 # # #

q3: #0′ 1 0 # 0 # # #

q4: # 0 1 0 # 0 # # #

q1,1: # 0 1′ 0 # 0 # # #

q1,1: # 0 1′ 0 # 0 # # #

q1,2: # 0 1′ 0 # 0 # # #

q1,2: # 0 1′ 0 # 0 ## #

q3: # 0 1′ 0 # 0 1 # #

q3: # 0 1′ 0 # 0 1 # #

q3: # 0 1′ 0 # 0 1 # #

q3: # 0 1′ 0 # 0 1 # #

q4: # 0 1 0 # 0 1 # #

q0,1: # 0 1 0′# 0 1 # #

q0,2: # 0 1 0′ # 0 1 # #

q0,2: # 0 1 0′ # 0 1 # #

q0,2: # 0 1 0′ # 0 1 ##

q3: # 0 1 0′ # 0 1 0 #

q3: # 0 1 0′ # 0 1 0 #

q3: # 0 1 0′# 0 1 0 #

q3: # 0 1 0′# 0 1 0 #

q4: # 0 1 0 # 0 1 0 #

q5: # 0 1 0 # 0 1 0 #

q5: # 0 1 0 # 0 1 0 #

q5: # 0 1 0 # 0 1 0 #

q5: # 0 1 0 # 0 1 0 #

qout: # 0 1 0 # 0 1 0 #

Figure VI.6: The execution of the Turing machine from Example VI.15 when run
on the input w = 010. We use a compact representation for the configurations,
showing the state and the tape contents. Underlined bold-font symbols show
the position of the tape head.
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one tape cell at a time and the second breadcrumb leftward one tape cell at
a time. When the breadcrumbs meet in the middle of u, the machine M2 can
determine if ∣u∣ is even or odd. If ∣u∣ is odd, M2 rejects. Otherwise M2 can
place a breadcrumb on the first symbol of the second half of u, and scan back
to the beginning of u to place a breadcrumb on the first symbol of u. Now
M2 shuttles back-and-forth, comparing symbols from the first half of u and the
second half of u, and moving the breadcrumbs rightward one tape cell at a time.
If a discrepancy is found, then M2 rejects. The process stops once the second
breadcrumb passes the last symbol of u; at this point M2 accepts.

Functions and relations on integers. We now introduce conventions for
how Turing machines can define functions and relations on (nonnegative) inte-
gers. When working with integers, the input alphabet is Σ = {0,1} and integers
are encoded with their binary representations. The definition is a repeat of
Definition V.13.

Definition VI.17. If n ∈ N, then str(n) is the usual binary representation of n;
thus str(n) is in {0,1}∗. By convention, str(0) is the string 0. For n > 0, str(n)
does not include any leading 0’s.

For w ∈ {0,1}∗, num(w) is the integer n for which w is a binary representa-
tion; it is permitted that w may contain leading zeros. By convention, the empty
string ϵ is a binary representation of 0. For example, num(101) = num(0101) =
num(00101) = 5 and num(ϵ) = num(0) = num(00) = 0.

Turing machines define functions and relations on the integers by working
with their binary representations.

Definition VI.18. Let R ⊆ Nk be a k-ary relation on the integers. A Turing
machine M semidecides R if, for all n1, . . . , nk ∈ N, M(str(n1), . . . , str(nk))
accepts if and only if R(n1, . . . , nk) holds. The machine M decides R if in
addition, for all n1, . . . , nk ∈ N, M(str(n1), . . . , str(nk)) rejects if R(n1, . . . , nk)
does not hold.

Definition VI.19. Let f ∶ Nk → N be a k-ary function. A Turing machine M
partial computes f if, for every n ≥ 0, (a) M(str(n)) halts if only if f(n)↓ and
(b) if M(str(n)) halts, it outputs a string w such that num(w) = f(n). If f is
total, then M computes f .

Definition VI.20. Let R ⊆ Nk be a k-ary relation on the integers. A Turing
machine M enumerates R if R is the relation containing exactly the tuples
⟨num(w1), . . . ,num(wk)⟩ such that M(ϵ) outputs ⟨w1, . . . ,wk⟩.

These three definitions depend only on what the Turing machines do for
inputs of the form str(n). Since the num function allows leading zeros, any
output of the Turing machines can be interpreted as an integer or a k-tuple of
integers.7

7Smullyan’s dyadic representation provides an alternative representation of integers with
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Theorem VI.21. The following functions on N are Turing computable:

(a) The successor function S(n) = n + 1.

(b) The predecessor function

P (n) = n � 1 = max{0, n − 1} = { n − 1 if n > 0
0 if n = 0

Proof. We first exhibit a Turing machine MS for the successor function; in fact,
we’ll design it so it can take any binary representation w as input, not just
the representations str(n). The algorithm is used on the usual “gradeschool”
algorithm for adding 1 in binary representation. The machine MS starts at the
left symbol of w; the rest of the tape is blank. MS first scans to the right end
of w, namely the low-order bit, using state q0. State q1 scans back leftward
changing low order 1’s to 0’s until a 0 is encountered. That 0 is changed to 1;
then state q2 scans back to the start of (the now-updated) w. The state diagram
for MS is:

q0 q1 q2 qout

0▸0,R
1▸1,R

#▸#,L

1▸0,L
#▸1,L
0▸1,L

0▸0,L
1▸1,L

#▸#,R

Now we exhibit a Turing machine MP for the predecessor function. It works
similarly to MS , but now, scanning from the left end, low-order 0’s are changed
to 1’s, and the first encountered 1 is changed to a 0. In addition, MP has to
check (with state q0) whether its input represents the integer 0. In this case,
the output is the same as the input. The state diagram for MP is:

q0 q1 q2 q3 qout

0▸0,R

1▸1,R

#▸#,L

0▸0,R
1▸1,R

#▸#,L

0▸1,L

1▸0,L

0▸0,L
1▸1,L

#▸#,R

The purpose of state q0 is to detect when the input is a binary representation
for zero; in that case, the Turing machine transitions on the edge from q0 to q3,
and the integer is not decremented.

strings over {0,1}. In dyadic representation, strings are ordered first by length, and then
lexicographically. For instance, the integers 0 through 8 are represented by the strings
ϵ,0,1,00,01,10,11,000,001. The general formula is that aℓaℓ−1⋯a1a0 is the dyadic repre-
sentation of ∑ℓ

i=0 ai ⋅2i. This has the advantage that, unlike the situation for binary represen-
tations, integers have unique dyadic representations. We use binary representation, however,
since it is much more familiar.
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Implementation of loops. We next describe how to perform addition and
subtraction of integers. This will also illustrate how to implement loops with
Turing machines.

We describe algorithms for addition and subtraction based on repeatedly in-
crementing and decrementing integers by 1. Of course, this is much less efficient
than, say, using the grade-school algorithms adapted to base 2. But the effi-
ciency or inefficiency of the algorithms is not the point: we are only interested
in the question of computability.

Theorem VI.22. The following functions on N are Turing computable:

(a) The addition function ⟨m,n⟩↦m + n.

(b) The truncated subtraction function

⟨m,n⟩ ↦ m � n = max{0,m − n} = { m − n if m ≥ n
0 if m <m

Proof. The idea for the addition function is to repeatedly increment the inte-
ger m by 1, a total of n times. To do this, the machine repeatedly decrements n
by 1 and increments m by 1. The process stops once n’s value reaches zero.

The Turing machine starts with the tape containing “#u#v#”; the tape
head is on the first symbol of u and the tape is otherwise blank. The strings
u and v are binary representations of m and n. To slightly abuse notation, we
can also say that the tape contents are equal to “#m#n#”. To further abuse
notation, we can talk about the Turing updating the values of m and n in place
on the tape. Thus to add m and n, the Turing machine implements the following
steps:

1. Scan rightward to the first symbol of n.
2. Decrement n by 1. If n is discovered to already be zero (before decrement-

ing), go to step 5.
3. Scan leftward to the first symbol of m.
4. Increment m by 1. Go to step 1.
5. Scan leftward to the first symbol of m and halt. This value of m is the

desired sum.

The actions of incrementing m and decrementing n can be carried out by the
Turing machines given by the previous theorem. Note that the Turing machine
for decrementing n already includes the test of whether n is zero (as the edge
from q0 to q3 will be traversed if it is attempted to subtract from zero). The
other actions, scanning leftward to m or rightward to n are easily implemented
with a couple of additional states. As m is incremented, it may occupy more
tape cells, but this does not cause any problem as the tape is presumed to be
blank to the left of the input #m#n# so there is room for m to grow. The
entire Turing machine for computing m + n is shown in Figure VI.7.

The truncated subtraction function is implemented similarly, except m is
decremented instead of incremented. It can halt once either m or n is decre-
mented to 0.
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1.

2. q′1 q′2 q′3 3.

4.q′′1q′′2

5. 6. qout

0▸0,R
1▸1,R

#▸#,R

0▸0,R

1▸1,R

#▸#,L

0▸0,R
1▸1,R

#▸#,L

0▸1,L

1▸0,L

0▸0,L
1▸1,L

#▸#,L

0▸0,L
1▸1,L

#▸#,R

0▸0,R
1▸1,R

#▸#,L

1▸0,L
#▸1,L
0▸1,L

0▸0,L
1▸1,L

#▸#,R

0▸0,L
1▸1,L

#▸#,R

0▸0,L
1▸1,L

#▸#,R

Figure VI.7: A Turing machine computing ⟨m,n⟩↦m+n. This implementation
assumes that, if m = 0, it is not encoded by the empty word ϵ. The states
q′1, q

′
2, q

′
3, respectively the states q′′1 , q

′′
2 , are the internal states from the Turing

machines for the predecessor and successor functions of Theorem VI.21.
This Turing machine was formed in a modular fashion from the Turing

machines for successor or predecessor. It therefore contains some inefficiencies.
In particular, states 3. and 4. could be eliminated, since state 3. scans from
the right end of n to the left end, and state 4. scans back to the right end.
Similarly, states q′′2 and 1. could be combined since q′′2 scans to the left end of n
and state 1. scans back to the right end.
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Theorem VI.23. The integer multiplication function ⟨m,b⟩ ↦ m ⋅ n is Turing
computable.

Proof. We give an informal proof of this, similar to the proof of Theorem VI.22.
The multiplication will be carried out by iterated addition. Since addition is
carried out by looping and incrementing, this means that a doubly-nested loop
is used to implement multiplication by starting with 0 repeatedly adding 1.

Continuing to abuse notation, the Turing machine starts with tape contents
#m#n#. It further initializes the tape by writing, to the left of the input, a
copy of m called m′ and an integer N set to 0. At this point, the tape contents
is equal to #N#m′#m#n#. The value m′ will vary in value between 0 and m.
The value N will be repeatedly incremented, taking up space to the left as it
grows. The Turing machine overall runs as follows:

1. Initialize the tape to hold #N#m′#m#n# with N = 0 and m′ =m.
2. If n = 0, halt and output N . Otherwise decrement n.
3. Add m′ to N . This results in m′ = 0.
4. Set m′ equal to m, and go to step 2.

We leave it to the reader to confirm that a Turing machine can be designed to
carry out these steps.

VI.3 The Church-Turing Thesis

So far we have seen that Turing machines can handle several programming
techniques. This includes conditional testing and “if ⋯ then ⋯ else ⋯” type
controls. It also includes basic integer operations and controlled loops. We
next argue that Turing machines satisfy the conditions of the Church-Turing
Thesis. For this, we argue that Turing machines can emulate general-purpose
memory access, where data values are stored and retrieved via memory locations
or variable names.

Conditional testing, controlled loops, and general memory access are enough
to emulate the action of full-featured programming languages. Thus, we argue
that this shows that Turing machines fulfill the Church-Turing Thesis.

To be concrete, we propose a particular method of implementing general-
purpose memory access on a Turing machine. The data values will be strings of
symbols, say over the alphabet {0,1}. There will three other special symbols $,
$′ and ¢. The machine will also use strings as addresses of memory locations,
or equivalently as names of variables. The Turing machine will read and write
values into the general-purpose memory into locations using the addresses or
variable names.

To be specific, the tape can be set up in the form

$ ⋯ w1 ⋯ ¢ ⋯ v1 ⋯ $ ⋯ w2 ⋯ ¢ ⋯ v2 ⋯ $ ⋯
⋯

Local data store General data store
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The general data store extends to the right on the tape. It holds a sequence
of pairs of values wi, vi where wi is intended to be a “address” or “variable name”
and vi is the data value stored as the location wi. (In this scenario, the wi’s
are not required to be in sorted order.) The local data store is intended to hold
a small number of addresses and data values in a working memory area. Data
items are fetched from the general data store to the local data store, where their
values can be used and updated. Values updated in the local data store can then
be copied back into the general data store. This style of computation, where
data is fetched or downloaded from a general data store to a local working area
and copied or uploaded back to the general store, reflects the “Von Neumann
architecture” used by modern-day computers.

Data in the local data store can be updated using copying, comparisons,
conditional branching, and loops. To fetch data from the general data store, the
Turing machine starts with an address value w. It sequentially compares w to
w1,w2,w3, . . . until it finds a wi which is equal to w. The sequential comparison
can keep track of the current wi by placing a breadcrumb on its leading $ (say
by replacing the preceding $ with $′). It further uses breadcrumbs to compare w
and wi symbol-by-symbol. Once a wi equal to w is found, the accompanying vi
can be copied the local data store, again using breadcrumbs to track the current
symbol that the is being copied. The right end of the general data store needs
to be marked in some way, say by the presence of a $′. This allows detecting
when an address w is not yet present in the general data store; in this case, a
new entry may be created in the data store for w, say with the value v = ϵ.

Similar techniques can be used to copy values from the local data store into
the general data store. There is an added complication that a new value v
overwriting a former value vi may have a different length. This can be accom-
modated either by shifting the right end of the general data store to create the
right amount of space to hold v or by invalidating the old entry wi¢vi (say, by
overwriting it with $’s) and creating a new entry wi¢v at the right end of the
general data store.

At this point, we hope the reader is convinced that a Turing machine can
simulate a general-purpose computer, and that thereby the Church-Turing The-
sis holds with Turing machines providing an adequate mathematical model for
arbitrary effective computation.

Of course, this simulation of a general-purpose computer by a Turing ma-
chine is highly inefficient. Indeed, the Von Neumann bottleneck, namely the
shuttling of data back and forth between the general data store and the local
data store, is really inefficient due to the linear nature of the Turing machine’s
tape. However, the point is not to give an efficient simulation of general-purpose
computers or arbitrary algorithms by Turing machines. We are only interested
effective simulations, and are not concerned with practical considerations such
as the running time of the Turing machine.
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VI.4 Universal Turing Machines

A universal Turing machine is a Turing machine U that can simulate any Turing
machine M when given the Gödel number of M . In light of the Church-Turing
thesis, a universal Turing machine must exist. This is just because it is possible
to write an algorithm that uses ⌜M⌝ to simulate M and because that algorithm
can be implemented on a Turing machine.

At this point, it is hoped that the reader is convinced that the Church-Turing
Thesis is true and thus convinced that there is a universal Turing machine. We
therefore will not attempt to describe a universal Turing machine. What we
will do instead is propose one possible way that the inputs to a universal Turing
machine can be formatted.

For this, here is one possible way of defining the Gödel number ⌜M⌝ of a
Turing machine M . In this proposal, the Gödel number ⌜M⌝ can be viewed as
a string of bits that specify the following information:

● The cardinality ∣Γ∣ of the tape alphabet Γ.

● The cardinality ∣Σ∣ of the input alphabet Σ.

● The number ∣Q∣ of states. W.l.o.g. the states are named q0, q1, . . . , q∣Q∣−1
and q0 is the start state.

● The number ∣Qhalt∣ of halting states. If this is 0 or 1, there is a single
output state qout which, w.l.o.g., is equal to q∣Q∣−1. If ∣Qhalt∣ = 2, there are
two output states qacc and qrej which w.l.o.g. are equal to q∣Q∣−2 and q∣Q∣−1.

● The transition function δ ∶ (Q∖QHalt)×Γ→ ∣Γ∣×{R,L}×∣Q∣ has (∣Q∣−∣Qhalt∣)⋅∣Γ∣
many values. Letting ℓΓ = ⌈log2 ∣Γ∣⌉ and ℓQ = ⌈log2 ∣Q∣⌉, each value of δ
can be encoded with ℓΓ + 1 + ℓQ many bits. By concatenating the binary
strings encoding the values of δ, the entire function δ is encoded by a
single binary string Encodeδ of length

ℓδ ∶= (∣Q∣ − ∣Qhalt∣) ⋅ ∣Γ∣ ⋅ (ℓΓ + 1 + ℓQ).

The Gödel number ⌜M⌝ of the Turing machine M must encode the above infor-
mation about M . For the sake of concreteness, ⌜M⌝ can then be defined to be
the binary string

1∣Γ∣01∣Σ∣01∣Q∣01∣QHalt∣0Encodeδ

of length ∣Γ∣ + ∣Σ∣ + ∣Q∣ + ∣QHalt∣ + 4 + ℓδ.
The universal Turing machine U will take two inputs ⌜M⌝ and a string w:

the result of running U(⌜M⌝,w) is the same as the result of running M(w).
This exposes another complication. Namely, the universal machine U uses a
particular input alphabet ΣU ; but in the definition above, the size of the input
alphabet Σ was allowed to be specified in the Gödel number ⌜M⌝. This means
there is a mismatch in the inputs w that M can accept and the inputs w that U
can accept.

There are a couple of ways around this. The first, and perhaps the best, is to
just mandate that all machines have the same alphabet. In this approach, U is
a universal machine for those Turing machines M with the same input alphabet
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Σ = {0,1} as U . The second approach would be to allow machines M to have
arbitrary input alphabets even though U must use a fixed input alphabet, say
Σ = {0,1}. In this approach, an input w to M is encoded as a binary string w∗

and then U(⌜M⌝,w∗) simulates the action of M(w). If U(⌜M⌝,w∗) produces
the result that M outputs v, then U outputs the encoded value v∗ of v.

A natural way to define the encoding w∗ of w is to use a fixed length binary
encoding wherein each symbol a of Σ is encoded by a distinct string va ∈ {0,1}∗
of length exactly ℓ∣Σ∣. If w is a1a2⋯ak where each ai ∈ {0,1}, then w∗ is just
the concatenation va1va2⋯vak

of the code words for the ai.

Using the tape alphabet {0,1,#} We now restrict attention to Turing
machines which use input alphabet Σ = {0,1}. The universal Turing machine U
uses some fixed tape alphabet ΓU , where ΓU ⊇ {0,1 #}. It is interesting to ask
whether a universal Turing machine U can be designed with ΓU = {0,1,#}.
The answer is yes, but this may not be immediately evident. Indeed, the ear-
lier arguments justifying the Church-Turing Thesis depended on having Turing
machines that can copy strings long distances, or compare two strings on the
tape that are not located near each other on the tape. Those Turing machines
were built with the aid of “breadcrumbs”, namely the tape alphabet contained
symbols such s 0′ and 1′, thus the tape alphabet Γ for these machines is larger
than just {0,1,#}.

To address this, we describe a way to transform an arbitrary Turing ma-
chine M1 with input alphabet Σ = {0,1} and with arbitrary tape alphabet Γ1

to an equivalent Turing machine M2 with tape alphabet equal to Γ2 = {0,1,#}.
The idea is to encode symbols from Γ1 by fixed length binary codewords over
the alphabet Γ2. Each code word will have length ℓ = ⌈log2 ∣Γ1∣⌉. Without loss
of generality, the codewords for the symbols 0 and 1 are 0ℓ and 1ℓ; in addition,
M2 should use ℓ many #’s in place of a 0/1-codeword for #. A configuration
of M1 with the tape contents equal to ⋯#a1a2 . . . ak#⋯ and the tape head po-
sitioned on the symbol ai will correspond to the configuration of M2 with tape
contents ⋯#v1v2⋯ vk#⋯ where each ai has been replaced with its codeword vi,
and with M2’s tape head positioned over the first symbol of vi.

M2 simulates M1 by keeping track of M1’s current state and simulating a
single step of M1 by the following steps: (a) First taking ℓ − 1 steps to scan
rightward and read the current codeword, using 2ℓ − 1 many states. This lets
M2 know what symbol M1 is currently reading. (b) Then moving leftward
ℓ−1 steps to overwrite the codeword with the new codeword for the symbol M1

would write. And, (c) finally moving leftward or rightward ℓ tape cells, according
to whether M1’s tape head moves left or right, to position the tape head to be
ready to simulate the next step of M1.

The Turing machine M2 can thus emulate the operation of M1 using the
tape alphabet Γ2. But before M2 can begin emulating the operation of M1,
it needs to convert its input string w ∈ Σ∗ into its encoded version w∗. This
is done by replacing each symbol in w with its ℓ-symbol codeword. And, once
M2’s emulation of M1 discovers that M1 has output a string v∗, then M2 has
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to convert it the encoded output string v∗ back to the string v ∈ Σ∗ for M2 to
output it. For example, suppose codewords have length ℓ = 2. Then if M1 takes
input “01” and outputs “010”, then M2 first replaces the input with “0011”,
then emulates M1 using codewords of length 2, and finally converts the encoded
output “001100” to just “010”.

These conversions from w to w∗ and from v∗ to v have to be done using
the tape alphabet Γ2 = {0,1,#}. Exercise VI.7 asks you to give algorithms for
this under the assumption that the codewords have length ℓ = 2 and that the
codewords for “0” and“1” are “00” and “11”. Similar methods can be used for
longer codewords, still using the tape alphabet Γ2 = {0,1,#}.

This construction allows any Turing machine with input alphabet {0,1}
be converted into an equivalent Turing machine that uses the tape alphabet
{0,1,#}. In particular, there is a universal Turing machine U which uses the
tape alphabet {0,1,#}. The only caveat is that if the universal Turing machine
is to handle Turing machines that have input alphabet Σ other than {0,1}
then the universal machine has to accept encoded inputs and output encoded
outputs.

Using the tape alphabet {1,#} It is even possible to restrict Turing ma-
chines to use the tape alphabet {1,#}. Turing machines with an alphabet of
size 2, say Σ = {1,#}, are typically envisioned as working on (non-negative)
integers. An input or output string of the form 1n is viewed as representing in
the integer n.

We claim that any Turing machine with input alphabet Σ = {1} can be
simulated by a Turing machine with tape alphabet {1,#}. This is proved almost
exactly like the just-given construction reducing Turing machines to machines
that use Γ = {0,1,#}. The only difference is now codewords use the two symbols
# and 1 instead of 0 and 1. We formalize this as a theorem as it will be useful
in Chapter VII when we discuss how to represent decidable predicates and
computable functions in first-order theories of arithmetic.

Recall that Definitions VI.18-VI.20 defined the computability of functions
and the decidability of relations on N using Turing machines that encoded in-
tegers as {0,1}-strings in binary notations.

Theorem VI.24. Let Σ = {1} and Γ = {#,1}.
(a) If R is a decidable k-ary predicate on N, then there is a Turing machine

with input alphabet Σ and tape alphabet Γ that decides R, using unary
notation to encode its inputs.

(b) If f is a computable k-ary function on N, then there is a Turing machine
with input alphabet Σ and tape alphabet Γ that computes f , using unary
notation to encode its inputs and outputs.

Proof. (Sketch) Turing machines with input alphabet {1} represent integers n in
unary notation with strings 1n. Exercise VI.6 asks you to show Turing machines
can convert between binary and unary notations. Thus for purposes of decid-
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ability or computability, it does not matter whether integers are represented
using binary notation or unary notation.

Using unary notation for integers, the “codeword” construction above shows
that decidable predicates and computable functions can be decided or computed
by a Turing machine with tape alphabet {1,#}.

This theorem will be helpful in Chapter VII, when we show that Turing
machine computations are representable.

Multitape Turing machines. So far, we have discussed only Turing ma-
chines that have a single two-way infinite tape, with a single tape head. It is
common to also consider multitape Turing machines that have k many tapes
for some k > 1. Each of the k tapes has its own tape head and the tape heads
can move independently. The transition function δ for a k tape Turing machine
takes as input the current state, and the k symbols being read by the k tape
heads. The value of the transition function is the k many symbols that over-
write the symbols on the k tape, and k many values from {R,L,N} for “move
right”, “move left” or “no movement”, and the next state. Thus the transition
function δ is a mapping

δ ∶ Q × Γk → Γk × {R,L,N}k ×Q.

A tape head of a multitape Turing machine is allowed to remain stationary
instead of moving left or right (using the code “N” for “no movement”) so as to
have complete flexibility in the independent movement of the tape heads. The
first tape of a multitape Turing machine is the designated input/output tape.
The input tape holds the inputs when the machine is started, and the rest of
the tapes are initially blank. The output tape is usually the same as the input
tape and holds the output when the Turing machine outputs a value.

A multitape Turing machine M can be simulated by a single tape Turing
machine N , albeit with a quadratic slowdown in running time. The usual ap-
proach for constructing N from M is something similar to the following. We let
Γ′ be the set containing the symbols a′ for a ∈ Γ. In other words, Γ′ contains
the “breadcrumbed” copies of symbols of Γ. Then the tape alphabet of N is
(Γ ∪ Γ′)k, so each symbol is a k-tuple of symbols from Γ possibly with bread-
crumbs added. In this way the contents of the k-tapes M can be written “in
k parallel tracks” on the tape of N ; a tape cell of N holds the symbols of the
corresponding cells on the k tapes of M . A symbol is marked with a breadcrumb
to indicate that the corresponding tape head is currently reading that symbol.
The intuition is that the tape of N has k many tracks, with each track holding
the contents of one tape of M .

It is straightforward to show that a Turing machine N of this type can
simulate the action of M . The finite state control of N can remember the
relative positions of the k tape heads on the k tapes, relative to the tape head
position of N . Thus, N can scan back and forth between the different tape head
positions and make the appropriate updates to the contents of the k tracks on
its tape. We leave the details to the reader to work out.
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VI.5 Malleability of Turing Machines

The malleability of Turing machines allows algorithms, implemented on Turing
machines possibly, to parse and modify Turing machines in terms of their Gödel
numbers. For instance, the construction from the previous section that converts
a Turing machine M1 with input alphabet Σ = {0,1} and arbitrary tape alphabet
into an equivalent Turing machine M2 with tape alphabet Γ = {0,1,#} was en-
tirely constructive, in the sense that there is a (straightforward) algorithm that
maps ⌜M1⌝ to ⌜M2⌝. By the Church-Turing thesis, the mapping ⌜M1⌝ ↦ ⌜M2⌝
and be computed by a Turing machine. Similarly, a k-tape Turing machine can
be algorithmically converted into an equivalent 1-tape Turing machine.

It is particularly important that the malleability assumptions used in the
proof of Theorem V.52 about the undecidability of Halt0 hold for Turing ma-
chines. Specifically, when working with Gödel numbers of Turing machines, the
mapping sending ⌜M⌝ and ⌜N⌝ to f ′(f(⌜N⌝), ⌜M⌝) is computable by a Turing
machine. This construction was crucial to the construction of a self-referential
algorithm DN in Section V.6.3.

Let’s break this down and consider f(⌜M⌝) and f ′(⌜M1⌝, ⌜M2⌝) separately.
First consider f(⌜M⌝). When working with Turing machines, the function f has
the property that, for any w ∈ {0,1}, f(w) is equal to the Gödel number of a
machine Mw that ignores its input and outputs the string w. The machine Mw

uses input alphabet Σ = {0,1} and the alphabet Γ = {0,1,#}. It starts by using a
fixed number of states (two states in fact) to overwrite its input with #’s. It then
uses ∣w∣ states to write the string w on the tape. It then uses another constant
set of states (one state can suffice if w is written right-to-left) to position the
tape head on the first symbol of w and halt. This is a total of ∣w∣ + cf many
states for some contant cf . (In fact, cf can equal three.)

Second consider f ′(⌜M1⌝, ⌜M2⌝). The idea is that f ′(⌜M1⌝, ⌜M2⌝) is the
Gödel number of a Turing machine that first runs the Turing machine M1 and
then uses the output of M1 as the input to M2 and runs M2. There is a bit of
a complication since, by convention, M2 is expecting a tape to be completely
blank except for its input. But this can be readily fixed. Either we can modify
M1 so that it erases everything on the tape except the output string before
halting. Or, we can modify M2 to write blanks into any “new” part of the tape
before using it. For the former option, M1 is modified use a new breadcrumbed
symbol #′ to mark the leftmost and rightmost tape cells visited. As more
tape cells are visited, the modified M1 detects this and moves the delimiting
#′ symbols as needed. M1 is further modified so that, before halting, it scans
left and right to find the #′ symbols, overwriting all of the visited tape cells
with #’s except for the tape cells containing the output. For the latter option,
M2 can be modified similarly to use a new breadcrumbed symbol #′ to mark
the leftmost and rightmost visited tape cells. When new tape cells need to be
visited, the delimiting symbol #′ is moved over and the new cells are initialized
to hold #’s.

Detecting and maintaining the delimiting #′ symbols requires extra states:
it basically replaces each state of M1 or M2 with a small (constant) number of
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new states. Then eliminating the use of the new symbol #′, so as to use the tape
alphabet Γ = {0,1,#} requires another constant factor blowup in the number
of states: this is based on the construction in the previous section. The end
result is that the number of states in the Turing machine with Gödel number
f ′(⌜M1⌝, ⌜M2⌝) is bounded by O(n1 + n2) where M1 and M2 have n1 and n2

states each.

In conclusion, Turing computable functions, Turing decidable relations, Tur-
ing enumerable relations, etc. satisfy the malleability conditions of Chapter V.
Thus, all the results of Chapter V apply to Turing machines. This includes
the undecidability of the halting problems Halt0, Halt1 and HaltSelf for Turing
machines, the Diagonal Lemma, and Rice’s Theorem.

Exercises

Exercise VI.1. Describe Turing machines by drawing a state diagram and
specifying which states are halting, accepting, rejecting, or output states.

(a) Prove that the set {1n0 ∶ n ≥ 0} = {0,10,110,1110,11110, . . .} is Turing
decidable by giving a Turing machine that decides it.

(b) Prove that the set {1n0 ∶ n ≥ 0} = {0,10,110,1110,11110, . . .} is Turing
enumerable by giving a Turing machine that enumerates it.

Exercise VI.2. Let the input alphabet have k symbols Σ = {s1, . . . sk}. De-
scribe a Turing machine M that decides the set

R = {w ∈ Σ∗ ∶ w is non-empty and has its first symbol the same as the last symbol}.

How many states does your machine M have as a function of k?

Exercise VI.3. Let the input alphabet be Σ = {0,1}. Give the state dia-
gram for a Turing machine that computes the string concatenation function
⟨u, v⟩↦ uv. Describe the input and output conditions. Where is the tape head
placed in the halting configuration? What are the initial configurations in the
cases either u or v are the empty string?

Exercise VI.4. Give the explicit state diagram of a Turing machine M= that
computes the binary equality relation. Namely, M= accepts the pair ⟨v,w⟩ if
v = w, and rejects if v ≠ w. [Hint: You might wish to use the breadcrumb
technique, similar to what was done for copying a string in Example VI.15; this
is especially useful if you want to carry out the comparison without destroying
the values of v and w. It is also possible to non-destructively compare v and w
without using breadcrumbs.]

Exercise VI.5. Recall that wR is the reversal of w. Prove the following by
giving an explicit description of a Turing machine, preferably in the form of a
state diagram. (One way to do these is with the breadcrumb technique. There
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are Turing machines with ten states that work, but we do not know if ten states
is optimal.)

(a) Prove that the reversal function w ↦ wR is Turing computable.
(b) Prove that {w ∶ w ∈ Σ∗ and w = wR} is Turing decidable. This is the set

of palindromes.

Exercise VI.6. Give high-level descriptions of how Turing machines with input
and tape alphabets Σ = Γ = {0,1,#} can convert between unary and binary
representations for integers, so that the following functions are computable:

(a) The function 1n ↦ str(n),
(b) The function w ↦ 1n where w is a binary representation of n.

Exercise VI.7. Give the state diagrams for Turing machines that use only the
tape symbols Γ = {0,1,#} and compute the following functions:

(a) The symbol-doubling function a1a2⋯an−1an ↦ a1a1a2a2⋯an−1an−1anan;
so that 0’s are replaced with “00”, and 1’s with “11”.

(b) The symbol-halving function a1a2a3a4⋯an−1an ↦ a2a4a6⋯a2⌊n/2⌋ that
computes an inverse to the symbol-doubling function.

Exercise VI.8.
(a) Prove that there is a Turing machine M such that: (i) If M is started with

the input tape is completely blank, then M does not halt, and (ii) If M
is started with a non-blank symbol anywhere on the tape, then M halts.

(b) Prove that there is no Turing machine N such that: (i) If N is started with
the input tape completely blank, then N eventually accepts, and (ii) If N
is started with a non-blank symbol anywhere on the tape, then N rejects.

Exercise VI.9. For this exercise, restrict attention to Turing machines that
use the alphabets Σ = Π = {#,1} and partial compute unary functions. Prove
that it is undecidable whether a given Turing machine has the least possible
number of states. That is, let X be the binary relation

X = {⟨⌜M⌝, n⟩ ∶M is a Turing machine and there is no Turing machine M ′

that partial computes the same partial function as M
and has at most n states. }

Prove X is undecidable. As a consequence, there is no algorithm to minimize
the number of states in a Turing machine.

Exercise VI.10. (The Busy Beaver function for running time.) For this exer-
cise and the next one, restrict attention to Turing Machines over the alphabets
Σ = Γ = {1,#}. With this restriction, there are only finitely many Turing ma-
chines with n states (up to renaming of states). Define the running-time version
of the Busy Beaver function BBsteps ∶ N→ N by

BBsteps(n) = max{m ≥ 0 ∶ there is a Turing Machine M with n states
such that M(ϵ) halts after exactly m steps. }

(a) Prove that BBsteps(n) is not computable by proving that otherwise HaltTM
0

would be decidable. (Here HaltTM
0 means the version of Halt0 where Gödel
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numbers of algorithms are given in the form of Turing machines. All the
theorems proved in Chapter V for Halt0 apply also to HaltTM

0 .)
(b) Suppose f ∶ N → N is computable. Prove that BBsteps(n) eventually

dominates f , namely there is an N such that f(n) < BBsteps(n) for all
n > N .

Exercise VI.11. (Busy Beaver function for output value.) Use the same con-
ventions as the previous exercise. The Busy Beaver function BB ∶ N → N is
defined by

BB(n) = max{m ≥ 0 ∶ There is a Turing Machine M with n states such
that M(ϵ) halts with m many 1’s written on the tape. }

Suppose f ∶ N → N is computable. Prove that BB(n) eventually dominates f .
Conclude that BB is not computable.
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Chapter VII

Arithmetic and
Incompleteness

This chapter discusses first-order theories of arithmetic and the First and Second
Gödel Incompleteness Theorems. The key result is that the theory ThN of the
integers is undecidable. It follows that there is no (decidable) axiomatization for
the set of true statements about the integers, even when restricting to the lan-
guage LPA = {0, S,+, ⋅}. This fact is the essence of Gödel’s First Incompleteness
Theorem.

VII.1 Intensional and Extensional Approaches

There are two traditional ways to prove the First Incompleteness Theorem. The
first way, sometimes called the “intensional” approach, works with the first-
order Peano Arithmetic theory (PA). Peano Arithmetic is formalized over the
language LPA with induction axioms as its primary axioms. Although Peano
Arithmetic can talk only about integers, it can in fact formalize the metamath-
ematical syntax of first-order logic. It does this by encoding metamathematical
concepts such as “first-order formula” and “FO-proof” with Gödel numbers,
namely with integers. Via Gödel numbers, Peano Arithmetic can formulate and
reason about the syntactic properties of first-order formulas, sentences, proofs,
and theorems; in particular, it can formulate the syntactic properties of proofs
and theorems of PA itself. This includes all the syntactic concepts developed
in Chapters III and IV, including the concepts such as provability and consis-
tency. This allows Peano Arithmetic to “reason” about its own consistency,
and to formulate a sentence ConPA expressing that Peano Arithmetic itself is
consistent.

The First Incompleteness Theorem for Peano Arithmetic can be proved by
using a diagonal construction similar to the Diagonal Theorem V.57 but now
using a sentence A that expresses “The sentence A does not have a PA-proof”,
or informally, the sentence A asserts “I am not PA-provable”. The First In-
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completeness Theorem is proved by showing that (under the assumption that
PA is consistent) this sentence A is true in N , but is not a theorem of Peano
Arithmetic. The Gödel Second Incompleteness Theorem takes this further by
showing that Peano Arithmetic (unless inconsistent) cannot prove the sentence
ConPA expressing the consistency of Peano Arithmetic. Thus ConPA is an ex-
plicit and comprehensible example of a true sentence that cannot be proved by
Peano Arithmetic.

Peano Arithmetic is limited to dealing with finite objects and cannot reason
directly with infinite sets. It can however reason indirectly about definable in-
finite sets. For instance, Peano Arithmetic can formalize the notions of Turing
machines and computations of Turing machines. It can thus indirectly reason
about Turing decidable sets and Turing enumerable sets in the sense that it can
reason about the members of the sets (rather than about the sets themselves).1

This permits Peano Arithmetic to formalize a version of the Completeness The-
orem. However, Peano Arithmetic cannot formalize the definition of truth in
a general way. Hence, it cannot even state the general form of the Soundness
Theorem.

The second traditional way to prove the First Incompleteness Theorem is the
“extensional” approach. For this, we use a very weak subtheory Q of PA (called
“Robinson’s theory Q”) of , for even stronger results, we use an even weaker
subtheory called R. The language of both Q and R is LPA. The axioms of Q
state simple defining properties of zero, successor, addition, and multiplication,
but Q has no induction axioms. The theory Q is quite weak; unlike PA, it
cannot even prove elementary things such as that addition is commutative,
∀x∀y (x + y = y + x). In the intensional approach, PA does prove this. In the
extensional approach, we have only that Q can prove particular instances of
x+ y = y + x; e.g., Q can prove 3+ 4 = 4+ 3 where “3” and “4” denote the terms
S(S(S(0))) and S(S(S(S(0)))).

We shall see later that Q can “represent” every Turing decidable set R in
an extensional fashion. What this means is that there is a formula GR(x)
defining membership in R such that for any particular integer n, Q can prove
either GR(n) or ¬GR(n) depending on whether n is in R or not. Similarly,
every Turing computable function f can be represented by a formula Gf in Q.
This means that, for any n ∈ N, if f(n) = m, then Q can prove the sentence
∀x (Gf(n,x) ↔ x = m). (The precise definitions for “represent” are given
below.)

Perhaps surprisingly, the converse holds too and any set which is repre-
sentable in Q is Turing decidable. This has a very general proof that has little
to do with Q itself. Namely, since Q is finitely axiomatized, its logical conse-
quences CnQ are Turing enumerable. Thus, to decide whether n ∈ R, one can
enumerate the consequences of Q until obtaining either GR(n) or ¬GR(n). One
of these must appear, and it tells us whether n is in R or not. A similar proof
shows that every representable function of Q is Turing computable.

1In fact, Peano Arithmetic can define many sets beyond decidable, c.e. and co-c.e. sets.
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From these results, it will follow that a set is representable in Q if and only
it is Turing decidable. In light of the Church-Turing Thesis, we have that any R
is decidable if and only if it is representable in Q.

The First Incompleteness Theorem will be proved from this fact. Specifi-
cally, a diagonal construction rather similar to the Diagonal Theorem V.57 for
decidable sets can be used to form an LPA-sentence D that asserts it is not
a consequence of Q. From the consistency of Q, it will follow that neither D
nor ¬D is a consequence of Q.

Nearly all the claims just made about Q are also true for the weaker theory R.
In particular, R also represents precisely the relations which are decidable and
the functions which are computable. The First Incompleteness Theorem also
applies to R.

In fact, the same arguments apply to any consistent, axiomatizable theory T
containing R. In particular, for any such theory T , the sets representable in T
are precisely the Turing decidable sets. The diagonal method thus implies that
there is no complete, consistent, axiomatizable theory T containing R. From
this, it follows that ThN is not axiomatizable and hence not (Turing) decidable.

This chapter will carry out the extensional approach in full detail. There
are several reasons for using the extensional approach. The first, and most im-
portant reason, is that it is technically easier than the intensional approach.
Second, it provides more justification for the Church-Turing Thesis, since it
shows that the decidable sets can be robustly defined in terms of any consis-
tent axiomatizable theory T ⊇ R. In other words, stronger theories do not give
more decidable sets. Third, by working with R and Q, we delineate more-or-
less exactly where undecidability kicks in. After carrying out the extensional
approach, Section VII.9 will sketch a high-level proof of how the intensional ap-
proach proceeds. This high-level proof will be based on Peano Arithmetic PA.2

.

VII.2 Four Theories of Arithmetic

We now define three axiomatizations for arithmetic. There are two quite weak
theories, called Q and R. We also define the quite strong theory PA of Peano
Arithmetic. These are all subtheories of ThN , so they give partial axiomatiza-
tions of truth over the integers.3 This gives four theories R, Q, PA and ThN ,
in order of increasing strength.

All four theories use the language LPA = {0, S,+, ⋅}. As usual, we write +
and ⋅ in infix notation. We often omit parentheses when applying the successor

2The best way to carry out the intensional approach is to base it on Q, not PA. This is
done by interpreting the bounded arithmetic theory PV or S12 into Q and carrying out the
intensional proof of the Incompleteness Theorem in PV or S12. For this, see Cook [1975] and
Buss [1986] for intensional formalizations of metamathematics in PV and S12, and see Pudlák
[1985] and Nelson [1986] for interpretations in Q. These developments are beyond the scope
of the present textbook, however.

3By “integer”, we continue to always mean “nonnegative integer”.
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function S. For example S0 and SSx are shorthand notations for S(0) and
S(S(x)); the intuition is that they denote 1 and x + 2.

Definition VII.1. The theory Q is the theory with the following seven axioms

Q1: ∀x∀y (Sx = Sy → x = y)
Q2: ∀x (Sx ≠ 0)
Q3: ∀x (x ≠ 0→ ∃y (Sy = x))
Q4: ∀x (x + 0 = x)
Q5: ∀x∀y (x + Sy = S(x + y))
Q6: ∀x (x ⋅ 0 = 0)
Q7: ∀x∀y (x ⋅ Sy = xy + x)

The first three axioms give properties of the successor function S. Since S
is a function symbol, every object has a unique successor. Axioms Q1 and Q3

state that every nonzero element as a unique predecessor. Axiom Q2 states
that 0 has no predecessor; this reflects the fact that we are axiomatizing the
nonnegative integers.

Axioms Q4 and Q5 give a kind of characterization of addition x+y based on
induction on y. Axioms Q6 and Q7 give a similar characterization of multipli-
cation. For instance, informally speaking, Q7 states that x ⋅ (y + 1) = xy + x.

As we shall see, Q is strong enough to represent all Turing decidable sets
and functions; nonetheless Q is very weak. The much stronger theory of Peano
Arithmetic is obtained by adding induction axioms for every formula A(x):
Definition VII.2. Let A = A(x) be a formula. The induction axiom IndA is
the sentence equal to the universal closure of the statement

A(0) ∧ ∀x (A(x)→ A(Sx))→ ∀xA(x).

Example VII.3. Let A(x) be the formula 0 + x = x. The induction axiom
for A(x) is

IndA: 0 + 0 = 0 ∧ ∀x (0 + x = x→ 0 + Sx = Sx)→ ∀x (0 + x = x).
For an example where there are free variables other than x, let B(x) be x+y = y+x.
Then the induction axiom for B(x) is the sentence

IndB: ∀y [0+y = y+0∧∀x (x+y = y+x→ Sx+y = y+Sx)→ ∀x (x+y = y+x)].
Definition VII.4. The theory PA of Peano Arithmetic is axiomatized with the
seven axioms of Q plus the induction axioms IndA for every LPA-formula A.

Example VII.5. We prove that the induction axioms enable PA to prove
∀x (0 + x = x). Let A be 0 + x = x, so that that IndA is the formula displayed
above in Example VII.3. It is obvious that PA ⊢ 0 = 0, since that is an instance of
an equality axiom. Second, we claim that PA proves 0+x = x→ 0+Sx = Sx. By
the refined Deduction Theorem IV.14(b) it will suffice to prove that PA,0+x=x ⊢
0+Sx = Sx without using generalization on the variable x. This is easily proved
by reasoning as follows:
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0 + Sx = S(0 + x) By axiom Q5

= Sx By the induction hypothesis that 0 + x = x .

We have shown that PA proves the hypotheses of IndA. Therefore, PA proves
its conclusion, ∀x (0 + x = x).

The theory Q is too weak even to prove that 0 + x = x. Exercise VII.2 asks
for a proof of this. Therefore Q is a proper subtheory of PA.

The next definition is needed before we can define the third theory R.

Definition VII.6. Let n ≥ 0 be an integer. The notation S(n)t denotes the
term S(S(⋯S(S(t))⋯)) where there are n many applications of S. For n = 0,
S(n)t is just the term t.

The numeral n is the term S(n)0.

Thus, S(3)x is the term S(S(S(x))), and S(4)0 is the term S(S(S(S(4)))).
These are often written as SSSx and SSSS0 for short. The numerals 0, 1,
2 and 3 are equal to the terms 0, S0, SS0 and SSS0, etc. Of course, in the
standard model, these terms represent the integers 0,1,2,3, . . .. It is important
to note that the notations S(n)t and n are used only if n denotes a particular
integer. That is to say, the terms S(n)t and n do not involve n as a variable;
instead, n is hardcoded in these terms via n many appearances of the unary
function symbol S.

Example VII.7. The atomic formula 3 + 2 is the same as SSS0 + SS0. The
theory Q can prove 3 + 2 = 5 by reasoning as follows:

SSS0 + SS0 = S(SSS0 + S0) by Axiom Q5

= SS(SSS0 + 0) by Axiom Q5 again

= SSSSS0 by Axiom Q4

Similar reasoning shows that Q can prove m + n = m + n for all m,n ∈ N. For
this, see Theorem VII.33.

Notation VII.8. For the rest of this chapter, the notation s ≤ t denotes the for-
mula ∃x (x+s = t) where x is a variable that does not appear in s or t. The nota-
tion s < t denotes the formula s ≤ t∧s ≠ t, namely the formula ∃x (x+s = t)∧s ≠ t,
where again x does not appear in s or t.

We can view ≤ as being added to the language PA via an extension by
definitions in the sense of Definition III.113. From Theorem III.115, it does not
change the power of a theory to add ≤ as a defined symbol.

The point of including ≤ as a defined symbol is that it makes the axioms
of R much more natural to state. In this regard, it is important ∃x (x+ s = t) is
used instead of ∃x (s + x = t) as the definition of s ≤ t: this makes a difference
because Q cannot prove x + s = s + x.

Now that we have defined the weak theory Q, we also define the even weaker
theory R.
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Definition VII.9. The theory R uses the language {0, S,+, ⋅} and has the
following infinite set of axioms.

R≠: For each n ≠m ∈ N, the formula n ≠m is an axiom of R.

R+: For each n,m ∈ N, the formula n +m = n +m is an axiom of R.

R●: For each n,m ∈ N, the formula n ⋅m = n ⋅m is an axiom of R.

R≤: For each n ∈ N, the formula ∀x (x ≤ n ∨ n < x) is an axiom of R.

R′≤: For each n ∈ N, the formula

∀x [x ≤ n → x = 0 ∨ x = 1 ∨ ⋯ ∨ x = n−1 ∨ x = n ]

is an axiom of R.

Recall that r ≤ s is an abbreviation for ∃x(x + r = s) and that r < s is an
abbreviation for r ≤ s ∧ r ≠ s.

Example VII.10. With n = 3 and m = 2, the following are axioms of R:

SSS0 ≠ SS0 SS0 + SSS0 = SSSSS0

SS0 ⋅ SSS0 = SSSSSS0 ∀x (x ≤ SSS0 ∨ SSS0 ≤ x)
∀x (x ≤ SSS0→ x = 0 ∨ x = S0 ∨ x = SS0 ∨ x = SSS0).

The theory R is really very weak. Indeed, it does not prove any of the axioms
of Q. As a small example of something that can be proved in R, we have

Theorem VII.11.

(a) Let m ≤ n ∈ N. Then R ⊢m ≤ n.
(b) Let n ∈ N. R ⊢ ∀x (x ≤ n↔ x = 0 ∨ x = 1 ∨⋯ ∨ x = n−1 ∨ x = n).
(c) Let n ∈ N. R ⊢ ∀x (x < n↔ x = 0 ∨ x = 1 ∨⋯ ∨ x = n−1).
(d) Let n ∈ N. R ⊢ ∀x (x < n ∨ x = n ∨ n < x).

Proof. To prove part (a), let m ≤ n and set p = n −m ≥ 0. By the axiom R+,
the theory R proves that p + m = n. Therefore, by the definition of ≤ (see
Notation VII.8), R proves m ≤ n.

The forward implication of (b) is just Axiom R′≤. The reverse implication is
immediate from part (a).

The forward implication of (c) follows from part (b) and the definition of <
in Notation VII.8. The reverse implication of (c) follows from the definition
of <, part (b), and from the the fact that Axiom R≠ implies that R ⊢m ≠ n for
all m < n.

Part (d) follows directly from R≤ and parts (b) and (c).

Section VII.5 will show R is a subtheory of Q. Sections VII.6-VII.8 will
show many more things that are provable in R, most notably that all Turing
decidable relations and Turing computable functions are representable in R.



VII.3. Representability 243

Axioms of Q

Q1: ∀x∀y (Sx = Sy → x = y)
Q2: ∀x (Sx ≠ 0)
Q3: ∀x (x ≠ 0→ ∃y (Sy = x))
Q4: ∀x (x + 0 = x)
Q5: ∀x∀y (x + Sy = S(x + y))
Q6: ∀x (x ⋅ 0 = 0)
Q7: ∀x∀y (x ⋅ Sy = xy + x)

Axioms of R

R≠: For each n ≠m ∈ N, the formula n ≠m is an axiom of R.

R+: For each n,m ∈ N, the formula n +m = n +m is an axiom of R.

R●: For each n,m ∈ N, the formula n ⋅m = n ⋅m is an axiom of R.

R≤: For each n ∈ N, the formula ∀x (x ≤ n ∨ n < x) is an axiom of R.

R′≤: For each n ∈ N, the formula

∀x [x ≤ n → x = 0 ∨ x = 1 ∨ ⋯ ∨ x = n−1 ∨ x = n ]

is an axiom of R.

s ≤ t is an abbreviation for ∃x (x + s = t), where x is a variable not
appearing in s or t.
s < t is an abbreviation for s ≤ t ∧ s ≠ t.

VII.3 Representability

To state results in full generality, we let T be a consistent theory in the language
LPA = {0, S,+, ⋅}. Generally, T will contain Q, or at least R, as a subtheory.
However, it is not required that T is a subtheory of ThN . In other words,
T must be consistent but might contain sentences that are not true in N .

Informally, a relation R or function f is “representable” in T if every par-
ticular numeric instance of R or f is provable in T . (For this reason, the
terminology “numeral-wise representable” is sometimes used instead.) This is
formally defined as follows.

Definition VII.12. A k-ary relation R on N is representable in T if there is a
formula AR(x1, x2, . . . , xk) such that for all n1, . . . , nk in N,

(a) If R(n1, n2, . . . , nk) holds, then T ⊢ AR(n1, n2, . . . , nk), and

(b) If R(n1, n2, . . . , nk) is false, then T ⊢ ¬AR(n1, n2, . . . , nk).
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In this case, we say that R is represented by AR in T .

Since T is consistent, it follows immediately from these conditions that
T proves AR(n1, n2, . . . , nk) iff R(n1, n2, . . . , nk) is true. Similarly, T proves
¬AR(n1, n2, . . . , nk) iff R(n1, n2, . . . , nk) is false.

Example VII.13. As two simple examples, we show that the binary relations =
and ≤ are representable in the theory R. The formula A=(x, y) that represents =
is the formula x = y. To prove that A=(x, y) represents the binary equality
relation =, we must show two things: (a) for all n ∈ N, R ⊢ n = n, and (b) for all
n ≠m, R ⊢ ¬n =m. The first item, (a), is just an instance of an equality axiom.
The second item, (b), is just an R≠ axiom.

Now let A≤(x, y) be the formula x ≤ y; in other words, ∃z(z + x = y). To
show that the formula A≤(x, y) represents ≤, we must show two things: (a) for
all m ≤ n, R proves m ≤ n, and (b) for all m > n, R proves ¬m ≤ n. Item (a)
is the same as part (a) of Theorem VII.11. To prove item (b) let m > n. For
each m′ ≤ n, axiom R≠ gives that R proves m ≠ m′. Therefore part (b) of
Theorem VII.11 implies that R proves ¬m ≤ n.

Definition VII.14. A k-ary function f on N is representable in T if there is
a formula Af(x1, x2, . . . , xk, y) such that for all n1, . . . , nk in N, and for m =
f(n1, n2, . . . , nk), the theory T proves

∀y [Af(n1, n2, . . . , nk, y)↔ y =m ]. (VII.1)

In this case, we say we say that f is represented by Af in T .

The next theorem gives an equivalent formulation of representability for
theories T ⊇ R.

Theorem VII.15. Suppose the theory T extends R. A k-ary function f is
represented in T by Af if and only if the following three conditions hold for all
n1, . . . , nk in N and m = f(n1, n2, . . . , nk).

(a) T proves Af(n1, n2, . . . , nk,m).
(b) T proves ¬Af(n1, n2, . . . , nk,m

′) for all m′ ≠m.

(c) T proves ∀x∀y (Af(n1, n2, . . . , nk, x) ∧Af(n1, n2, . . . , nk, y)→ x = y).

Proof. The formulas of (a) and (c) taken together are logically equivalent to
the formula (VII.1. Thus Af represents f if and only if conditions (a) and (c)
hold. To complete the proof of the theorem, we must show that, for T ⊇ R, if
conditions (a) and (c) hold, then condition (b) holds.

Suppose (a) and (c) hold and m′ ≠m. By (c), T proves

∀x∀y (Af(n1, n2, . . . , nk,m) ∧Af(n1, n2, . . . , nk,m
′)→m =m′).

Therefore, by (a) and by the fact that T ⊢m ≠m′ from Axiom R≠, we get that
T proves ¬Af(n1, n2, . . . , nk,m

′). That establishes (b).
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Example VII.16. As three simple examples, the successor, addition, and mul-
tiplication functions are representable in R. The formula AS(x1, y) that repre-
sents the successor function n ↦ n + 1 is just the formula S(x1) = y. To verify
this, we must show that for every n ∈ N, the theory R proves S(n) = n+1 and
∀y (S(n) = y → y = n+1). These both follow immediately by equality axioms
(without needing any axioms of R) since S(n) and n+1 are the same term,
namely the term formed from n + 1 applications of the function symbol S to 0.

The formula A+(x1, x2, y) that represents the addition function ⟨n1, n2⟩↦ n1+n2

is just the formula x1 + x2 = y. To verify this, we must show that, for all
n1, n2 ∈ N, R proves n1 + n2 = n1 + n2 and ∀y (n1 + n2 = y → y = n1 + n2). The
first formula is an R+-axiom. The second formula follows from the first formula
via an equality axiom.

The formula A⋅(x1, x2, y) that represents the multiplication function ⟨n1, n2⟩↦ n1⋅n2

is just the formula x1 ⋅x2 = y. This is verified by the same argument as was used
for the addition function.

Theorem VII.17. Suppose T is a consistent theory in the language LPA.
(a) Suppose R is a k-ary relation represented by AR in T . Then, for all

n1, . . . , nk ∈ N, T proves AR(n1, n2, . . . , nk) if and only if R(n1, n2, . . . , nk)
is true. Similarly, T proves ¬AR(n1, n2, . . . , nk) if and only if R(n1, n2, . . . , nk)
is false.

(b) Suppose f is a k-ary function represented by Af in T . Then for all
n1, . . . , nk and m = f(n1, . . . , nk), T proves Af(n1, . . . , nk,m) and for all
m′ ≠m, T proves ¬Af(n1, . . . , nk,m

′).

Proof. This is immediate from the definitions of “representability”.

Theorem VII.18. If the theory T extends the theory R, then every relation
representable in R is representable in T and every function representable in R
is representable in T .

Proof. This is also immediate from the definitions.

We shall prove in the sequel that the representable relations of the theory R
are precisely the decidable relations and that the representable functions of R
are precisely the computable functions. It will follow immediately that the same
holds for any axiomatizable theory T ⊇ R. For the moment, we can prove one
direction of the inclusions:

Theorem VII.19. Suppose T is a consistent, axiomatizable theory and T ⊇ R.

(a) Suppose S is a representable relation of T . Then S is decidable.

(b) Suppose f is a representable function of T . Then f is computable.

In particular, since R is axiomatizable and consistent, (a) and (b) hold for R
itself.

Proof. By Theorem V.41, the theory T is computably enumerable. Let AS

represent S in T . To decide whether S(n1, . . . , nk) holds, form the sentence
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AS(n1, . . . , nk) and enumerate the members of the theory T until one of the
sentences AS(n1, . . . , nk) or ¬AS(n1, . . . , nk) is enumerated. Since AS repre-
sents S, one of these must be enumerated, and since T is consistent, it indicates
whether or not S(n1, . . . , nk) holds.

For (b), let Af represent f in T . To compute the value of f(n1, . . . , nl), enu-
merate the members of T until producing a formula of the form Af(n1, n2, . . . , nk,m).
Since Af represents f , such a formula must appear and then since T is consis-
tent, f(n1, . . . , nk) =m.

Note that the above theorems hold even if T is not a subtheory of ThN . In
other words, the theorems hold even for theories T that might contain sentences
that are false for the integers.

VII.4 The First Incompleteness Theorem

We now give the statement and proof of Gödel’s First Incompleteness Theorem.
We will prove several forms of the First Incompleteness Theorem for theories T
that extend R. This includes theories T such as Robinson’s theory Q and Peano
arithmetic PA, since we shall later show (in Theorem VII.33) that Q ⊧ R.

The proof of the First Incompleteness theorem will depend on the following
theorem, which will be proved later in Section VII.8:

Theorem VII.20. Every Turing decidable relation on N is representable in the
theory R. Every Turing computable function on N is representable in R.

By Theorem VII.18, the same holds for every axiomatizable theory T ex-
tending R. In particular, it holds for the theory Q. Accordingly, the rest of this
section will work with an arbitrary axiomatizable, consistent theory T ⊇ R.

We will first discuss how to encode an LPA-term t or an LPA-formula A with
an integer ⌜t⌝ or ⌜A⌝, which is called the “Gödel number” of t or A. We will also
discuss the representability of the substitution function Sub(A,x, t). We then
state and prove the Incompleteness Theorem. In fact, we will give three proofs.
The first proof works directly off the undecidability of the halting problem; it
proves the First Incompleteness Theorem for true theories and more generally
for “ω-consistent” theories. The second and third proofs establish a stronger
form of the First Incompleteness Theory. These two proofs are variations of
each other, they both use Cantor-style diagonalization. The third proof gives
the full construction of “self-referential” formulas that can be obtained via a
new version of the Diagonal Theorem that applies to first-order formulas.

VII.4.1 Gödel numbering, numerals, and substitution.

Theories of arithmetic such as R, Q and PA deal only with integers; however,
it is possible for them to deal indirectly with syntactic metamathematical ob-
jects such as terms, formulas, and proofs by using Gödel numbers to represent
metamathematical objects. Section V.5 already discussed representing meta-
mathematical objects with strings of symbols over a finite alphabet. We now
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want to represent metamathematical object with integers: this will be done
similarly to Section V.5, but differs by using strings over the alphabet {0,1}
which are interpreted as binary representations of integers.

The details of how Gödel numbers represent terms, formulas, and proofs are
not terribly important, as long as it is sufficiently constructive so that algorithms
(Turing machines) can recognize, parse, and manipulate them. For concrete-
ness, we propose one possible way to define Gödel numbers for the first-order
language LPA. Terms, formulas, and FO-proofs in the language LPA can be
viewed straightforwardly as strings of characters over the 14 symbol alphabet

∆ = {¬, →, ∀, (, ), x, /0, 1, 0, S, +, ⋅, =, comma}

There are two different zeroes in the list: the symbol /0 is used when writing in-
dices of variables in binary notation, whereas 0 is used as the non-logical symbol
whose standard interpretation is the integer 0.4 Variables xi are represented by
a string x followed by the binary representation of i; e.g., the terms x0, x3 and x5

are represented by the strings x/0, x11 and x1/01. This convention for coding
variables and their subscripts allows terms, formulas, sentences, and proofs over
the language of PA to be straightforwardly written as strings over ∆∗.

To further convert strings from ∆∗ to integers, we use a fixed length 4-bit
binary encoding of symbols in ∆ to encode a string in ∆∗ as a base 2 integer.
There are 14 symbols in ∆. Each symbol of ∆ can be represented by a distinct 4-
bit fixed length code word; e.g. “¬” is encoded by “0001”, and “→” by “0010”,
“∀” by “0011”, etc., up through “1110” encoding a comma. (The commas
are used to separate formulas in Gödel numbers of proofs.) For example, the
formula x2 = 0 would be encoded as in string ∆∗ as “x1/0=0”, and then further
encoded by the binary string “0110 1000 0111 1101 1001”. This is the base 2
representation of the base 10 number 427993. Thus, the Gödel number ⌜x2 = 0⌝
of “x2 = 0” is the integer 428009.

Gödel numbers of terms, formulas, proofs, etc. can certainly be handled
by algorithms (Turing machines). For instance, the set of integers that are
valid Gödel numbers of PA terms is decidable. This is simply because there
are algorithms for recognizing and parsing terms. Similarly, the sets of Gödel
numbers of formulas and of sentences are decidable.

Theorem V.38 already discussed a variety of decidable relations and com-
putable functions acting on Gödel numbers of formulas. We will need several
additional computable functions that act on Gödel numbers of terms and for-
mulas. The first one is the 3-ary substitution function Sub which accepts as
input the Gödel numbers ⌜A⌝, ⌜xi⌝ and ⌜t⌝ of a formula A, a variable xi and a
term t and produces the Gödel number ⌜A(t/xi)⌝:

Sub(⌜A⌝, ⌜xi⌝, ⌜t⌝) ∶= ⌜A(t/xi)⌝.

4So we are using four different concepts of zero: “/0” is the alphabet symbol used for zeros
in subscripts, and “0” is is used variously as a non-logic symbol, as an alphabet symbol, or as
the actual integer zero.
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Computable functions: Sub(⌜A⌝, ⌜xi⌝, ⌜t⌝) ∶= ⌜A(t/xi)⌝.
Num(n) ∶= ⌜n⌝.

Decidable relations: Proof T ∶= {⌜P ⌝ ∶ P is a T -proof}.
Prf T ∶= {⟨⌜P ⌝, ⌜A⌝⟩ ∶ P is a T -proof of A}.

Computably enumerable set: ThmT ∶= {⌜A⌝ ∶ T ⊢ A}.

Figure VII.1: Some definable metamathematical functions and relations.

Another important function is the Num function that computes the Gödel num-
bers of numerals. Namely,

Num(n) ∶= ⌜n⌝.
For instance, Num(3) = ⌜S(S(S(0)))⌝.

The set of Gödel numbers of valid proofs of an axiomatizable theory is also
decidable. More precisely, let T be an axiomatizable theory in the language
of PA. We define Proof T , the set of (Gödel numbers of) T -proofs, to be the
unary relation defined by

Proof T (n) ⇔ n is the Gödel number of a valid T -proof.

This is decidable since there is an algorithm for recognizing syntactically correct
T -proofs. We further define Prf T to be the binary relation which holds for
exactly the pairs ⟨⌜P ⌝, ⌜A⌝⟩ such that P is a valid T -proof of the formula A;
namely,

Prf T (n,m) ⇔ n is valid T -proof P and the final formula in P has Gödel number m.

Prf is also decidable since there is an algorithm which can recognize valid T -
proofs and extract their final formula.

Finally, we define the set ThmT of theorems of T . This set however is not
in general decidable, only computably enumerable. Specifically,

ThmT (m) ⇔ m = ⌜A⌝ for a formula A such that T ⊢ A.

ThmT is computably enumerable since it can be semidecided by an algorithm
that does a brute force search for a T -proof of the formula A with Gödel num-
ber n. An alternate way to define ThmT is:

ThmT (m) ⇔ ∃yPrf T (y,m).

This definition of ThmT as an existential quantification of Prf T shows that
ThmT is computably enumerable (by Exercise V.8).

VII.4.2 Undecidability of true theories of arithmetic

We are now ready to give the first proof of the First Incompleteness Theorem.
This proof will apply to “true” theories of arithmetic, and more generally to
“ω-consistent” theories. It is based on a direct many-one reduction to HaltTM

0 ,
the halting problem for Turing machines.



VII.4.2. Undecidability of true theories of arithmetic 249

Definition VII.21. A theory T is a true theory of arithmetic if it has lan-
guage LPA and contains only sentences that are true about N . The latter
condition is equivalent to T ⊆ ThN .

Definition VII.22. Let T be a theory with language LPA. The theory T is
ω-inconsistent provided the following holds for some formula A(xi) with one
free variable xi:

(a) T proves ∃xiA(xi), and

(b) For all n ∈ N, T proves ¬A(n).
We say that T is ω-consistent provided that T is not ω-inconsistent.

It is clear that ThN is ω-consistent. Hence any true theory of arithmetic
is ω-consistent. This is because it cannot be the case that every A(n) is false
in N while ∃xiA(xi) is true. Also, note that a ω-consistent theory must be
consistent.

The next theorem states our first version of the First Incompleteness The-
orem. It is stated for ω-consistent theories, but of course applies to any true
theory that extends R.

Theorem VII.23 (First Incompleteness Theorem — version 1). Suppose T ⊇ R
is an axiomatizable, ω-consistent theory. Then T is not decidable.

Proof. Since T extends R, Theorems VII.18 and VII.20 tell us that every de-
cidable relation is representable in T . Section VI.4 earlier defined the Gödel
number ⌜M⌝ of a Turing machine M to be a binary string. The initial symbol
of ⌜M⌝ is 1, so we can view ⌜M⌝ also as being the integer whose base 2 repre-
sentation is given by ⌜M⌝. We write ⌜M⌝ to be the numeral for the integer ⌜M⌝;
namely, if i = ⌜M⌝ ∈ N, then ⌜M⌝ denotes the numeral i.

Let HS be the decidable binary relation such that, for ⌜M⌝ the Gödel number
of a Turing machine M ,

HS(⌜M⌝, n) ⇔ M(ϵ) halts in ≤ n steps.

Here “HS” stands for “Halts-Steps”. HS is a decidable relation, since it can be
decided by using a universal Turing machine U and running U(⌜M⌝, ϵ) until it
has simulated M(ϵ) for n steps. This will discover whether M has halted within
at most n steps. Since HS is decidable, it is representable in T , by a formula
AHS(x, y).

The predicate HaltTM
0 , expressing the halting problem for Turing machines,

is undecidable. We claim that HaltTM
0 (⌜M⌝) is true if and only if T ⊢ ∃yAHS(⌜M⌝, y).

To prove this, first suppose that HaltTM
0 (⌜M⌝) holds and M(ϵ) halts. Then

M(ϵ) halts within some number n of steps. Since AHS represents HS, this
means T ⊢ AHS(⌜M⌝, n) and thus of course T ⊢ ∃yAHS(⌜M⌝, y).

To prove the converse direction, suppose that T ⊢ ∃yAHS(⌜M⌝, y) but that

HaltTM
0 (⌜M⌝) does not hold. The latter condition implies that HS(⌜M⌝, n) is
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false for all n. Since AHS represents HS, that implies that T ⊢ ¬AHS(⌜M⌝, n).
This contradicts the ω-consistency of T and finishes the proof of the claim.

We have shown that HaltTM
0 (⌜M⌝) is true if and only if T ⊢ ∃yAHS(⌜M⌝, y).

In other words, HaltTM
0 (⌜M⌝) is true if and only if ⌜AHS(⌜M⌝, y)⌝ ∈ ThmT . Since

the function mapping ⌜M⌝ to the Gödel number of the formula AHS(⌜M⌝, y) is

computable, and since HaltTM
0 is undecidable, it must be that ThmT is unde-

cidable. That proves Theorem VII.23.

VII.4.3 Undecidability via diagonalization

We now prove a stronger version of the First Incompleteness Theorem that
applies to theories that may be not true or even ω-consistent.

Theorem VII.24 (First Incompleteness Theorem — version 2). Suppose T ⊇ R
is an axiomatizable, consistent theory. Then T is not decidable.

Corollary VII.25. There is no consistent and decidable theory T extending R.

Proof of the corollary. Any decidable theory is axiomatizable since the theory T
itself can be taken as the set of axioms. Thus the corollary follows immediately
from Theorem VII.24.

Proof of Theorem VII.24. ] Suppose for the sake of a contradiction that T is
decidable, that is, the set ThmT is decidable. Define the unary function SelfSub
by

SelfSub(m) ∶= Sub(m, ⌜x1⌝,Num(m)).
To understand this, recall that Num(m) is equal to ⌜m⌝, the Gödel number of
the numeral m. We are interested in the case where m is the Gödel number ⌜C⌝
of a formula C = C(x1) with x1 the only variable appearing free in C. In this
case, SelfSub(⌜C⌝) is equal the Gödel number of the formula C(⌜C⌝/x1); i.e.,

SelfSub(⌜C⌝) = Sub(⌜C⌝, ⌜x1⌝,Num(⌜C⌝)) = ⌜C(⌜C⌝)⌝ .

Define ThmSS to be the unary relation on N defined by

ThmSST (m) ⇔ ThmT (SelfSub(m)).

Since SelfSub is a computable function and since we have assumed that ThmT

is decidable, the relation ThmSST is also decidable. Hence ThmSST is repre-
sentable in R, and hence representable in T , by some formula AThmSST

(x1).
Let BThmSST

(x1) be the formula ¬AThmSST
(x1).

We obtain a contradiction as follows:

T ⊢ BThmSST
(⌜BThmSST

⌝)
⇔ T ⊢ ¬AThmSST

(⌜BThmSST
⌝) Definition of BThmSST

⇔ ⌜BThmSST
⌝ ∉ ThmSST AThmSST

represents ThmSST

⇔ T ⊬ BThmSST
(⌜BThmSST

⌝) Definition of ThmSST
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That completes the proof of Theorem VII.24.

The intuition behind this proof is that the formula BThmSST
(⌜BThmSST

⌝) is
indirectly referring to itself and saying that it is not a theorem of T . This is
reminiscent of Cantor’s diagonal argument for the uncountability of the reals.
The next section gives another proof, which uses a self-referential formula DA

based on a strengthened form of the diagonal argument.

VII.4.4 Undecidability via self-reference

We now give a second proof of the second version of the First Incompleteness
Theorem, Theorem VII.24. This proof is based on a self-referential formula.
This proof can be viewed as analogous to the second proof of the undecidability
of the halting problem in Section V.6.3. Indeed, it uses a Diagonal Theorem
that is very similar in spirit to the Diagonal Theorem V.57 for Turing machines.

Theorem VII.26 (Diagonal Theorem for Theories of Arithmetic).
Let A(x1) be an LPA-formula. There is a formula DA such that R proves

DA ↔ A(⌜DA⌝).

Thus, provably in R, the formula DA expresses the condition that the prop-
erty defined by A(x) holds for x equal to the Gödel number of DA itself. It
is somewhat remarkable that this equivalence of DA and A(⌜DA⌝) is provable
in the very weak theory R. This illustrates, however, how fundamental the
Diagonal Lemma is.

Proof. Recall the function SelfSub from the previous proof. We would like to
define EA(x1) to be the formula A(SelfSub(x1)); however, it is not possible
to do this directly since SelfSub is an integer function, not a function symbol
of first-order logic. Instead, we let the formula ASelfSub(x1, y) represent the
function SelfSub in R, and define EA(x1) by

EA(x1) ∶= ∃y [ASelfSub(x1, y) ∧A(y)]. (VII.2)

Note how EA(x1) states indirectly that A(SelfSub(x1)) holds.
Let DA be the formula EA(⌜EA⌝), so that the Gödel number ⌜DA⌝ of DA is

equal to SelfSub(⌜EA⌝), and DA is the formula

∃y [ASelfSub(⌜EA⌝, y) ∧A(y)].

Since ASelfSub(x1, y) represents SelfSub,

R ⊢ ASelfSub(⌜EA⌝, y)↔ y = ⌜DA⌝.

Therefore, by Theorem III.61(b) on substitution, R proves DA ↔ A(⌜DA⌝).
That finishes the proof of the Diagonal Theorem.
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The second proof of Theorem VII.24 is in essence the same as the first proof,
but it uses the Diagonal Theorem explicitly:

Second proof of Theorem VII.24. Suppose for the sake of a contradiction that
T is decidable, that is, the set ThmT is decidable. Hence the complement ThmT

is also decidable. Let the formula A(x1) represent ThmT in the theory R and
hence in the theory T . The intuition is that A(x1) says

“x1 is not provable in T”,

or more accurately,

“x1 is not the Gödel number of a theorem of T”.

Let DA be the formula from the Diagonal Theorem VII.26 such that R proves
DA ↔ A(⌜DA⌝). Then

T ⊢DA ⇔ ⌜DA⌝ ∈ ThmT Definition of ThmT

⇔ T ⊢ ¬A(⌜DA⌝) A represents ThmT

⇔ T ⊢ ¬DA R ⊢DA ↔ A(⌜DA⌝) and T ⊇ R.

This contradicts the consistency of T and thereby completes the second proof
of Theorem VII.24.

Note how the formula DA was chosen to express the condition that DA is
not a theorem of T . Loosely speaking, DA says of itself, “I am not T -provable”.
The above proof uses this fact, plus the hypothesis that the property of being
“T -provable” is decidable to obtain a contradiction.

Corollary VII.27.
(a) R, Q and PA are not complete and not decidable.
(b) ThN is not axiomatizable and not decidable.

Proof. Part (a) follows from the fact that R, Q and PA are axiomatizable and
consistent and by Theorems V.46 and VII.24.

Part (b) follows by the fact that ThN is complete and consistent, and again
by Theorems V.46 and VII.24.

Alternatively, since all four theories ω-consistent, the corollary can be proved
using Theorem VII.23 instead of Theorem VII.24

Corollary VII.28. Let T be a consistent, axiomatizable theory extending R.
There is a true sentence C (that is, N ⊧ C) such that T ⊬ C.

Thus, for instance, PA does not prove all sentences that are true about the
integers. We will see some explicit examples of such formulas C when discussing
the Second Incompleteness Theorem in Section VII.9.
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Proof. By the First Incompleteness Theorem, T is not complete. Hence there
is some sentence B such that neither B nor ¬B is a consequence of T . One of
B and ¬B is true and is the desired formula C.

Definition VII.29. Work with an arbitrary first-order language L. A sen-
tence B is independent of T if neither B nor ¬B is a consequences of T .

Note that T is not complete if and only if there is an independent sentence B.

The previous proof established:

Corollary VII.30. Let T be a consistent, axiomatizable theory extending R.
Then there is a sentence C which is independent of T .

VII.4.5 Undecidability of pure first-order logic

An immediate consequence of the undecidability of the finitely axiomatized
theory Q is that the pure first-order logic in the language of PA is undecidable.
This is established by the next theorem.

Theorem VII.31. The set of valid LPA-sentences is undecidable.

Proof. Let Q1−7 be the conjunction of the seven axioms of Q,

Q1−7 ∶= Q1 ∧Q2 ∧Q3 ∧Q4 ∧Q5 ∧Q6 ∧Q7.

A sentence A is provable in Q if and only if Q1−7 → A is valid. Therefore the
mapping ⌜A⌝↦ ⌜Q1−7 → A⌝ is a many-one reduction from theory Q to the set of
logically valid LPA-sentences. Since Q is undecidable, the set of logically valid
LPA-sentences is undecidable.

The statement of Theorem VII.31 does not depend on any properties of the
integers at all. All it uses is the fact that the language contains a constant
symbol and two binary function symbols. In fact, the same theorem holds even
for the case where there the language L consists of a single binary predicate
symbol. This can be proved by letting the only non-logical symbol be ∈ and
showing that there is a finitely axiomatized fragment of Zermelo-Fraenkel set
theory that can interpret the theory Q. Describing Zermelo-Fraenkel set the-
ory and what it means to interpret Q is beyond the scope of the present text
however.5

5For the reader with knowledge of set theory: One way to argue this is that Zermelo-
Fraenkel set theory ZF can interpret PA. Hence, a priori, some finite fragment of ZF can
interpret Q.
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VII.4.6 Undefinability of truth

The above results imply that the theory ThN is not decidable, so there is
no algorithm that can decide whether an arbitrary given sentence is true in
the integers. Of course, there are many properties that can be defined in N
that are not decidable. A prominent example is the set of logical consequences
of PA itself. Namely, let PrfPA(x1, x2) be a formula that represents the binary
predicate Prf PA in R.6 Then let ThmPA be the formula

∃yPrfPA(⌜A⌝, y).

Clearly, ThmPA is an LPA-formula that defines the set of formulas provable
from the axioms of PA. So this set is definable in N even though, by the First
Incompleteness Theorem, it is not decidable.

This raises the question of whether the theory ThN is definable in N . That
is, the question of whether there is a formula Tr(x1) such that N ⊧ Tr(⌜A⌝)
holds for exactly the sentences A which are true in N .

Such a formula would be called a “definition of truth”. Tarski’s theorem on
the undefinability of truth shows that such a definition of truth does not exist.

Theorem VII.32 (Undefinability of Truth). There is no formula Tr(x1) such
that for all sentences A, N ⊧ Tr(⌜A⌝) holds if and only if N ⊧ A.

In other words, there is no formula Tr(x1) such that for all sentences A,
N ⊧ A↔ Tr(⌜A⌝).

Proof. The proof is by contradiction. Assume that there is a definition of
truth Tr(x1). By the Diagonal Theorem VII.26, there is a sentence D¬Tr such
that R proves

D¬Tr ↔ ¬Tr(⌜D¬Tr ⌝).
Since R is a true theory, this equivalence holds in N . We have

N ⊧D¬Tr ⇔ N ⊧ ¬Tr(⌜D¬Tr ⌝) By choice of D¬Tr

⇔ N ⊭D¬Tr Tr is a definition of truth

This is a contradiction and finishes the proof of Theorem VII.32.

VII.5 Q implies R

This section is devoted to proving that Q ⊧ R, i.e., Q ⊃ R. Consequently, the
First Incompleteness Theorems apply to the theory Q.

Theorem VII.33. Q ⊧ R.

The theorem is proved with a sequence of simple lemmas. The first states
that Q proves the R+ axioms:

6Earlier we would have used the notation APrfPA
instead of PrfPA.
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Lemma VII.34. Let m,n ∈ N. Then Q ⊧ m + n = m + n. Equivalently, Q ⊧
Sm0 + Sn0 = Sm+n0.

Proof. Fix m ∈ N. We prove that Q ⊧ m + n = m + n by induction on n. The
base case, where n = 0, is that Q ⊧m+0 =m. This is an immediate consequence
of axiom Q4. (See page 243 for the axioms of Q.)

For the induction step, let n ≥ 0 and note that Q can prove the following
equalities:

m + n+1 = m + S(n) n+1 and S(n) are the same term
= S(m + n) By axiom Q5

= S(m + n) By the induction hypothesis
= m + n + 1 S(m + n) and m + n + 1 are the same term.

The lemma was proved using induction. Of course, the induction axioms are
not axioms of Q; rather, the induction is carried out outside the theory Q.

Lemma VII.35. Let m ≤ n. Then Q ⊧m ≤ n.

Proof. This is immediate from the previous lemma, which states that Q ⊧
n −m + m = n and the fact that m ≤ n is an abbreviation for the formula
∃x (x +m = n).

The next lemma states that Q proves the R● axioms:

Lemma VII.36. Let m,n ∈ N. Then Q ⊧ m ⋅ n = m ⋅ n. Equivalently, Q ⊧
Sm0 ⋅ Sn0 = Sm⋅n0.

Proof. Fix m ∈ N. We prove that Q ⊧m ⋅n =m ⋅ n by induction on n. The base
case, where n = 0, is that Q ⊧ m ⋅ 0 = 0. This is an immediate consequence of
axiom Q6.

For the induction step, let n ≥ 0 and note that Q can prove the following
equalities:

m ⋅ n+1 = m ⋅ S(n) n+1 and S(n) are the same term
= m ⋅ n +m By axiom Q7

= m ⋅ n +m By the induction hypothesis
= m ⋅ n +m By Lemma VII.34
= m ⋅ (n + 1) m ⋅ n +m and m ⋅ (n + 1) are the same term.

The next lemma states that Q proves the R≠ axioms:

Lemma VII.37. Fix m ≠ n. Then Q ⊧m ≠ n.

Proof. Without loss of generality, m > n. We prove the lemma by induction
on n. In the base case where n = 0, m is the same as S(m−1). And Axiom Q2

implies m ≠ 0. For the induction step, n > 0. The terms m and n are the same
as S(m−1) and S(n−1). Therefore, Axiom Q1 implies that m = n→m−1 = n−1
The induction hypothesis states that Q ⊧m−1 ≠ n−1; hence Q ⊧m ≠ n.

The above lemmas have shown that Q proves the axioms R≠, R+, and R●.



256 Arithmetic and Incompleteness (Draft B.2.e)

Lemma VII.38. Fix m > n. Then Q ⊧m /≤ n. Hence also Q ⊧m /< n.

Proof. Recall that m /≤ n is an abbreviation for ¬∃x (x +m = n). Thus, since
we can let p = m − n − 1, we must prove that for all n ≥ 0 and p ≥ 0, Q ⊧
¬∃x (x + n + p + 1 = n). Since S(n + p) is the same term as n + p + 1, we must
prove Q ⊧ ¬∃x (x + S(n + p) = n). By axiom Q5, x + S(n + p) = S(x + n + p).
Thus it suffices to show that

Q ⊧ ¬∃x (S(x + n + p) = n).

This is proved by induction on n.
The base case, where n = 0, is immediate by axiom Q2. For the induction

step, we must show that Q ⊧ ¬∃x (S(x + n + 1 + p) = n+1). Axiom Q5 implies

S(x + n + 1 + p) = S(S(x + n + p)).

Also, n+1 is the same as S(n). Axiom Q1 implies that

S(S(x + n + p)) = S(n) → S(x + n + p) = n.

From this, the induction step follows immediately from the induction hypothesis,
which states that Q ⊧ ¬∃x (S(x + n + p) = n).

The next two lemmas establish the axioms R≤ and R′≤ in Q.

Lemma VII.39. Let n ∈ N. Then Q ⊧ ∀x (x ≤ n ∨ n < x).

Recall again that x ≤ n is an abbreviation for ∃z (z +x = n) and further that
n < x is an abbreviation for n ≤ x ∧ n ≠ x.

Proof. First note that Q proves n + 0 = n and thus Q proves x = 0 → x ≤ n.
Therefore it suffices to prove that

Q ⊧ ∀x (x ≠ 0→ x ≤ n ∨ n < x).

This is proved by induction on n. The base case is n = 0. In this case, note that
x + 0 = x by axiom Q3, whence 0 ≤ x. From x ≠ 0, it follows that 0 < x.

For the induction step, let n ≥ 0. We need to show x ≠ 0→ x ≤ n+1∨n+1 < x.
We argue informally using reasoning that can be formalized in Q. The assump-
tion that x ≠ 0 implies that there is a y such that x = S(y) by axiom Q3. The
induction hypothesis states that y ≤ n ∨ n < y. (The induction hypothesis is
needed only to handle the case y ≠ 0.) If y ≤ n, then x = S(y) ≤ S(n) = n+1 by
axiom Q5. On the other hand, if n < y, then n ≠ y (since n /< n) and there is a z
such that z +n = y. From n ≠ y, axiom Q1 gives n+1 ≠ S(y) = x. From z +n = y,
axiom Q5 gives z + n+1 = z + S(n) = S(y) = x, so n+1 ≤ x. From these n+1 < x
is immediate.

Lemma VII.40. Let n ∈ N. Then Q proves

∀x [x ≤ n → x = 0 ∨ x = 1 ∨ ⋯ ∨ x = n−1 ∨ x = n ]
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Proof. This is proved by induction on n. Again, we argue informally in Q,
namely using reasoning that can be formalized by Q. Note that we can always
assume that x ≠ 0, in which case, there is a y such that S(y) = x by axiom Q3.
For the base case, it will suffice to assume that x = S(y) ≠ 0 and prove that
x /≤ 0. This follows as axioms Q4 and Q2 imply that z +S(y) = S(z + y) ≠ 0 and
hence z + x = 0 cannot hold.

For the induction step, we assume that x ≤ n+1 and prove that

x = 0 ∨ x = 1 ∨ ⋯ ∨ x = n ∨ x = n+1. (VII.3)

The assumption x ≤ n+1 means that there is a z so that z + x = n+1. Using
x = S(y) and axiom Q5, we have S(z+y) = S(n). Then from axiom Q1, z+y = n,
so y ≤ n. The induction hypothesis implies that

y = 0 ∨ y = 1 ∨ ⋯ ∨ y = n−1 ∨ y = n.

If y = i for some i ≤ n, we get x = S(y) = S(i) = i+1. In other words, x = k for
some k ≤ n + 1 as desired.

The above lemmas complete the proof of Theorem VII.33.

VII.6 Techniques for Representability

The main goal of the next three sections is to prove Theorem VII.20, that every
decidable predicate and every computable function is representable in R. We
have so far established only a few things to be representable in R. This includes
the equality (=) and less-than-or-equal-to (≤) relations, and the successor, ad-
dition, and multiplication functions. We shall ramp up rather quickly to show
that many other relations and functions are representable.

Our theorems about representability will be expressed in terms of repre-
sentability in R, but of course apply also to any consistent theory T ⊇ R. Since
R is a true theory, any formula AS(x1, . . . , xk) that represents a k-ary relation S
also defines that relation in the non-negative integers N (in the sense of Defi-
nition III.106). Likewise, any formula Af(x1, . . . , xk, y) that represents a k-ary
function f also defines the function f in N .

Boolean combinations of relations.

Boolean combinations of relations are formed by taking set complementation,
union, intersection, etc. These operations preserve the property of being repre-
sentable:

Theorem VII.41. Let k ∈ N and suppose S1 and S2 are k-ary relations and
representable in R. Then the following relations are also representable in R:

(a) S1 ∶= Nk ∖ S1 = {⟨n1, . . . , nk⟩ ∈ Nk ∶ ⟨n1, . . . , nk⟩ ∉ S1}.
(b) S1 ∩ S2.



258 Arithmetic and Incompleteness (Draft B.2.e)

(c) S1 ∪ S2.

(d) S1 ∖ S2.

Proof. Let A1(x1, . . . , xk) and A2(x1, . . . , xk) represent S1 and S2 in R. For (a),
we claim that ¬A1 represents S1. To prove this, we must show that, for all
n1, . . . , nk ∈ N,

(i) If S1(n1, n2, . . . , nk) is false, then R ⊢ ¬A1(n1, n2, . . . , nk), and

(ii) If S1(n1, n2, . . . , nk) is true, then R ⊢ ¬¬A1(n1, n2, . . . , nk).
These follow immediately from the definition of what it means for A1 to repre-
sent S1.

For (b), we claim that A1 ∧A2 represents S1 ∩ S2. To prove this, we must
show that, for all n1, . . . , nk ∈ N,

(i) If S1(n⃗) and S2(n⃗) are both true, then R ⊢ A1(n⃗) ∧A2(n⃗) and

(ii) If S1(n⃗) and S2(n⃗) are not both true, then R ⊢ ¬(A1(n⃗) ∧A2(n⃗)),
where n⃗ and n⃗ are shorthand notations for n1, . . . , nk and n1, n2, . . . , nk. By the
definition of the representability of S1 and S2, if S1(n⃗) and S2(n⃗) are both true
then R proves both A1(n⃗) and A2(n⃗). Thus (i) holds. Otherwise, if S1(n⃗) and
S2(n⃗) are not both true, then R proves at least one of ¬A1(n⃗) or ¬A2(n⃗). Thus
(ii) holds.

Part (c) can be proved by showing similarly that A1 ∨A2 represents S1 ∪S2.

Alternatively, part (c) follows from (a) and (b), since S1∪S2 = S1 ∩ S2. Part (d)
is proved by a similar argument.

Example VII.42. We show that the greater-than (>) relation, the less-than (<)
and the greater-than-or-equal-to (≥) relation are representable in R. The greater-
than relation is {⟨m,n⟩ ∶ m > n}. This is the complement of the less-than-or-
equal-to (≤) which was shown to be representable in Example VII.13. Hence,
by Theorem VII.41, the greater-than (>) relation is representable.

The less-than < relation is the set difference of the less-than-or-equal-to ≤
relation and the equality = relation. Those two relations are represented by
x1 ≤ x2 and x1 = x2. Hence, by Theorem VII.41, the less-than < relation is
represented by the formula x1 ≤ x2 ∧ x1 ≠ x2. As specified in Notation VII.8,
this is the same as the formula x1 < x2.

Composition with representable functions

We now take the topic of composition and representability. The goal is to
have flexibility in combining representable relations and functions to form new
representable relations and functions. As a simple example, we would like to be
able to say that the 2-ary relation defined by x1 ≤ x2 ∧ x2 ≤ x3 is representable,
just because ≤ is representable. Note this does not quite fit the framework of the
previous theorem on Boolean combinations, since x1 ≤ x2 and “x2 ≤ x3 involve
different sets of variables. For another example, we would like to know that
P (x) ⋅ P (y) ≤ x + y defines a representable relation, just because the relation ≤
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and the functions P and + are representable. All of these will follow from the
following general theorem.

Theorem VII.43. (Composition with Representable Functions) Work in the
theory R. Suppose g1, g2, . . . , gℓ are k-ary representable functions. Let each gi
be represented by the formula Agi(x1, . . . , xk, y). We write x⃗ and n⃗ to denote
x1, . . . , xk and n1, . . . , nk.

(a) Suppose S is an ℓ-ary representable relation and is represented by the
formula AS(y1, . . . , yℓ). Then there is a formula AS′(x1, . . . , xk) that rep-
resents the k-ary relation S′ defined by

S′(n⃗) ⇔ S(g1(n⃗), g2(n⃗), . . . , gℓ(n⃗)).

(b) Suppose f is an ℓ-ary representable function and is represented by the
formula Af(y1, . . . , yℓ, z). Then there is a formula Af ′(x1, . . . , xk, z) that
represents the k-ary function f ′ defined by

f ′(n⃗) = f(g1(n⃗), g2(n⃗), . . . , gℓ(n⃗)).

Proof. By the definition of representability, for all i = 1, . . . , ℓ and all n1, . . . , nk ∈ N,

R ⊢ ∀y [Agi(n1, . . . , nk, y)↔ y = gi(n1, . . . , nk)] (VII.4)

To prove (a), we know that for all m1, . . . ,mℓ ∈ N,

(i) If S(m1, . . . ,mℓ) holds, then R proves AS(m1, . . . ,mℓ).
(ii) If S(m1, . . . ,mℓ) is false, then R proves ¬AS(m1, . . . ,mℓ).

The intuition is that we would like to let AS′ be the “formula”

AS(g1(x⃗), g2(x⃗), . . . , gℓ(x⃗)),

but this makes no sense the gi’s are not function symbols, they are functions.
Instead, we exploit the representability of the gi’s and define AS′(x1, . . . , xk) to
be the formula7

AS′(x1, . . . , xk) ∶= ∃y1 ∃y2⋯∃yℓ [(⋀ℓ

i=1Agi(x⃗, yi)) ∧AS(y1, . . . , yℓ)].

We need to show that, for all n1, . . . , nk ∈ N,

(i′) If S′(n1, . . . , nk) holds, then R proves AS′(n1, . . . , nk).
(ii′) If S′(n1, . . . , nk) is false, then R proves ¬AS′(n1, . . . , nk).

It is straightforward to prove (i′), since if S′(n1, . . . , nk) holds, then letting
mi = g(n1, . . . , nk) and using (VII.4) and condition (i) shows that R proves
AS′(n⃗). The proof that (ii′) holds is similar, using condition (ii) in place of (i).

7We could equally as well have used the formula

∀y1 ∀y2⋯∀yℓ [(⋀ℓ
i=1 Agi(x⃗, yi))→ AS(y1, . . . , yℓ)].
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The proof of (b) is similar to the proof of (a). By the representability of f ,
we have that for all m1, . . . ,mℓ ∈ N,

R ⊢ ∀z [Af(m1, . . . ,mℓ) = z ↔ z = f(m1, . . . ,mℓ)] (VII.5)

We let Af ′ be the formula8

Af ′(x1, . . . , xk, z) ∶= ∃y1 ∃y2⋯∃yℓ [(⋀ℓ

i=1Agi(x⃗, yi)) ∧Af(y1, . . . , yℓ, z)].

We need to show that, for all n1, . . . , nk ∈ N,

R ⊢ ∀z [Af(n1, . . . , nk, z)↔ z = f(n1, . . . , nk)].

Letting mi = gi(n1, . . . , nℓ), this follows from instances of (VII.4) and (VII.5).

To make good use of Theorem VII.43, we need to know that the “projection”
functions are representable.

Definition VII.44. Let 1 ≤ i ≤ k be integers. The projection function πk
i is the

k-ary function defined by

π(x1, . . . , xk) = xi.

Theorem VII.45. The projection functions πk
i are representable in R.

Proof. This is very simple to prove. Let Aπk
i
(x1, . . . , xk, y) be the formula y = xi.

The fact that Aπk
i

represents πk
i is easy to prove with the R≠ axioms.

Example VII.46. We show that the 3-ary relation S = {⟨n1, n2, n3⟩ ∶ n1 ≤ n2 ≤ n3},
which was discussed before the statement of Theorem VII.43, is representable.
Define the relations

S0 ∶= {⟨n1, n2⟩ ∶ n1 ≤ n2}
S1 ∶= {⟨n1, n2, n3⟩ ∶ n1 ≤ n2}
S2 ∶= {⟨n1, n2, n3⟩ ∶ n2 ≤ n3}.

Example (VII.13) showed that S0 is representable. Since for all n1, n2, n3

S1(n1, n2, n3) ⇔ S0(π3
1(n1, n2, n3), π3

2(n1, n2, n3))
S2(n1, n2, n3) ⇔ S0(π3

2(n1, n2, n3), π3
3(n1, n2, n3)),

Theorem VII.43(a) gives that S1 and S2 are representable. Since S = S1 ∩ S2,
Theorem VII.41 implies that S is also representable.

8Similarly to before, we could equally as well have used the formula

∀y1 ∀y2⋯∀yℓ [(⋀ℓ
i=1 Agi(x⃗, yi))→ Af (y1, . . . , yℓ, z)].
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Example VII.47. Now consider S = {⟨n1, n2⟩ ∶ P (n1) ⋅ P (n2) ≤ n1 + n2}.
We show this is representable using Theorem VII.43. Since the predecessor
function P and the multiplication function ⋅ are representable, Theorems VII.43
and VII.45 tell us that

h(x1, x2) = P (x1) ⋅ P (x2) = P (π2
1(x1, x2)) ⋅ P (π2

2(x1, x2))

is a representable function. Then, with S0 the relation ≤ as in the previous
example,

S = {⟨n1, n2⟩ ∶ S0(h(n1, n2), n1 + n2)}

is representable by Theorem VII.43 since addition (+) is representable.

As a general principle, if L is a first-order language for the integers con-
taining functions symbols interpreted by representable functions and containing
predicate symbols interpreted by representable relations, then any L-term de-
fines a representable function, and any atomic L-formula defines a representable
relation. This should be clear from the last two examples, so we omit the proof.
(A formal proof would first use induction on the complexity of terms along
with Theorems VII.43 and VII.45, and then use induction on the complexity of
quantifier-free formulas using Theorem VII.41.)

Bounded quantifiers

We now show that bounded quantifiers can be used freely when defining repre-
sentable functions relations.

Definition VII.48 (Bounded quantifiers). Let A be a formula, x be a variable
and t be a term not involving x. The notations ∀x≤tA and ∃x≤tA are abbre-
viations for the formulas ∀x (x ≤ t → A) and ∃x (x ≤ t ∧A). The constructions
“∀x≤t” and “∃x≤t” are called bounded quantifiers.

The notations ∀x<tA and ∃x<tA are defined similarly.

Example VII.49. Here are some examples of properties that can be expressed
with the aid of bounded quantifiers:

y ∣ x ∃z≤x (y ⋅ z = x) x is a multiple of y, or y divides x

⌊x/y⌋ = z ∃r<y (y ⋅ z + r = x) x divided by y rounded down

Rem(x, y) = r r < y ∧ ∃z≤x (z ⋅ y + r = x) Remainder of x divided by y

The second and third examples only make sense for non-zero values of y. Our
convention is that ⌊x/0⌋ = 0 and Rem(x,0) = 0.

Theorem VII.50. Suppose that S is a k-ary representable relation, represented
in R by the formula AS(x1, . . . , xk, y). Then the formulas

∀y≤xk AS(x1, . . . , xk, y) and ∃y≤xk AS(x1, . . . , xk, y)
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represent, in R, the k-ary relations

S∀ ∶= {⟨m1, . . . ,mk⟩ ∶ for all n ≤mk, S(m1, . . . ,mk, n)}

and

S∃ ∶= {⟨m1, . . . ,mk⟩ ∶ for some n ≤mk, S(m1, . . . ,mk, n)}

The theorem also holds for bounded quantifiers ∀y<xk A and ∃y<xk A with
strict inequality.

Proof. We prove the ∀ case. First suppose m1, . . . ,mk ∈ N and S∀(m1, . . . ,mk)
is true. Since A represents S, this implies that, for all n ≤ mk, R proves
AS(m1, . . . ,mk, n). Let AS∀(x1, . . . , xk) be the formula ∀y≤xk AS(x1, . . . , xk−1, y).
Recall from Theorem VII.11(b) that R proves that

y ≤mk ↔ y = 0 ∨ y = 1 ∨⋯ ∨ y =mk.

It thus follows that R proves ∀y≤mk AS(m1, . . . ,mk). In other words, R proves
AS∀(m1, . . . ,mk).

Second, suppose that S∀(m1, . . . ,mk) is false. Thus there is some n ≤ mk

such that S(m1, . . . ,mk, n) is false and by the representability of S, the the-
ory R proves ¬AS(m1, . . . ,mk, n). Since R ⊢ n ≤ mk, it follows that R proves
¬AS∀(m1, . . . ,mk) as desired.

The ∃ case of the theorem follows immediately from the ∀ by duality since
∃y≤xk AS(x1, . . . , xk, y) is logically equivalent ¬∀y≤xk ¬AS(x1, . . . , xk, y) and
since Theorem VII.41 states that the set of representable relations is closed
under complementation.

Corollary VII.51. The following relations are representable in R (the first
three are from Example VII.49):

(a) The binary relation y ∣ x.
(b) The graph of the binary function ⌊x/y⌋.
(c) The graph of the binary function Rem(x, y).
(d) The unary relation Power2 ∶= {n ∶ n is a power of 2} = {2i ∶ i ∈ ⋉}.

Proof. The representability of y ∣ x follows from the formula in Example VII.49,
and from Theorem VII.50. The representability of the graph of ⌊x/y⌋ also follows
from Example VII.49, but adjusted to handle the case where y = 0. Namely, the
3-ary relation ⌊x/y⌋ = z can be defined by

[y ≠ 0 ∧ ∃r<y (y ⋅ z + r = x)] ∨ [y = 0 ∧ z = 0].

The representability of the 3-ary relation Rem(x, y) = z is proved similarly.
The representability of the property Power2 (x) follows from the fact it can

be expressed as:

(∀z≤x)[z ∣ x → z = 1 ∨ 2 ∣ z].
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The earlier mentioned “general principle” discussed after Example VII.47
can now be updated to allow bounded quantifiers to be used in formulas repre-
senting relations and functions. As before, suppose L is a first-order language
for the integers containing function symbols interpreted by representable func-
tions and predicate symbols interpreted by representable relations. Then any
L-formula formed from atomic L-formula using propositional connectives and
bounded quantifiers represents a relation (in R). This can be proved formally by
induction on the complexity of formulas using Theorems VII.41, VII.43, VII.45
and VII.50.

Graph of a function.

We next show that a function f is representable if and only if its graph Gf is a
representable relation.

Example VII.52. The predecessor function P (n) = n � 1 was defined in The-
orem VI.21. Its graph is the set of ordered pairs

GP ∶= {⟨m,n⟩ ∶ P (m) = n} = {⟨m,n⟩ ∶ S(n) =m ∨ (m = 0 ∧ n = 0)}.

The graph GP of P is a binary relation. We claim it is represented by the
formula AGP

defined by

AGP
(x1, x2) ∶= S(x2) = x1 ∨ (x1 = 0 ∧ x2 = 0).

To prove this, it is necessary and sufficient to show that R proves the following:

(i) R proves S(0) = 0 ∨ (0 = 0 ∧ 0 = 0).
(ii) For n ≠ 0, R proves ¬[S(n) = 0 ∨ (0 = 0 ∧ n = 0)].

(iii) For m > 0, R proves S(m−1) =m ∨ (m = 0 ∧m−1 = 0)
(iv) For m > 0 and n ≠m − 1, R proves ¬[S(n) =m ∨ (m = 0 ∧ n = 0)].

Items (i) and (iii) express the conditions that if n = P (m), then R proves AGP
(m,n).

Items (ii) and (iv) express the conditions that if n ≠ P (m), then R proves ¬AGP
(m,n).

All of (i)-(iv) are logical consequences of the R≠ axioms of R.

Example VII.53. Continuing the previous example, we claim that the prede-
cessor function is also representable. For this, we need a formula AP (x1, y) that
satisfies, for every m ∈ N,

R ⊢ ∀y [AP (m,y)↔ y =m � 1].

Such a formula must define the graph GP of P ; hence it is tempting to set AP

equal to the formula AGP
. This, however, does not work, as R does not prove

∀y (Sy ≠ 0) and hence does not prove ∀y [AGP
(0, y) → y = 0]. Nonetheless, the

predecessor function P is representable. The formula AP representing P can be
chosen to be

AP (x1, y) ∶= (x1 ≠ 0 ∧ S(y) = x1) ∨ (x1 = 0 ∧ y = 0).
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Exercise VII.7(a) asks you to prove that this choice of AP represents the prede-
cessor function P .

We have seen that both the predecessor function and the graph of the pre-
decessor relation are representable. This is an example of the next theorem.

Theorem VII.54. Let f be a k-ary function on N. The graph Gf of f is
representable in R if and only if f is representable in R.

Proof. It is easy to prove that if Af(x1, . . . , xk, y) is representable, then Af also
represents the graph Gf of f . This follows by the fact that the R≠ axioms
and the condition (VII.1) defining what it means for Af to represent f imply
the conditions (a) and (b) in Definition VII.12 about the representability of a
relation.

Conversely, suppose AGf
(x1, . . . , x,y) represents the (k+1)-ary relation Gf .

As the previous examples show, AGf
may not represent f . We instead define

Af(x1, . . . , xk, y) to be the formula

Af(x1, . . . , xk, y) ∶= AGf
(x1, . . . , xk, y) ∧ ∀z<y (¬AGf

(x1, . . . , xk, z)).

We claim that Af represents f . To prove this, we show that, for any n1 . . . , nk ∈ N
and for m = f(n1, . . . , nk),

(i) R proves Af(n1, . . . , nk,m), and

(ii) R proves Af(n1, . . . , nk, y)→ y =m.

To help prove (i) and (ii), we will also prove

(iii) R proves y <m→ ¬Af(n1, . . . , nk, y), and

(iv) R proves m < y → ¬Af(n1, . . . , nk, y).
Theorem VII.11(c) states that R proves that y <m→ y = 0∨y = 1∨⋯∨y =m−1.
Since AGf

represents the graph of f , we have that R proves AGf
(n1, . . . , nk,m)

and that R proves ¬AGf
(n1, . . . , nk,m

′) for each m′ < m. Items (i) and (iii)
follows immediately from these facts and the definition of Af .

Item (iv) holds since R proves AGf
(n1, . . . , nk,m) and by the definition

of Af .
Theorem VII.11(d) established that R proves y <m ∨ y =m ∨m < y. There-

fore, item (ii) follows from (iii) and (iv).

Example VII.55. The functions ⌊x/y⌋ and Rem(x, y) are representable in R.
This is because their graphs are representable by Corollary VII.51.

Example VII.56. The functions z = max(x, y) and z = min(x, y) are repre-
sentable since their graphs are represented by the formulas

(x ≤ y ∧ z = y) ∨ (¬x ≤ y ∧ z = x) and (x ≤ y ∧ z = x) ∨ (¬x ≤ y ∧ z = y).

The � function z = x � y is representable since its graph G� is represented by
the formula (y ≤ x ∧ z + y = x) ∨ (¬y ≤ x ∧ z = 0).
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Regular minimization

The minimization operator µx (⋯) is used to define a (partial) computable func-
tion, letting “µx(⋯)” mean “the least x such that ⋯”. We have already en-
countered three different forms of the minimization operator in Example V.31
Exercises V.43 and V.44. To repeat the definitions, we have:

Definition VII.57. Let S(x1, . . . , xk, y) be a (k + 1)-ary relation. Then

g(x1, . . . , xk) = µy S(x1, . . . , xk, y) (VII.6)

defines the k-ary partial function such that g(n1, . . . , nk) = m provided that m
is the least value (if any) such that S(n1, . . . , nk,m) holds. If there is no such y,
then g(n1, . . . , nk) is undefined (diverges).

Let f(x1, . . . , xk, y) be a (k + 1)-ary function. Then

h(x1, . . . , nk) = µy (f(x1, . . . , xk, y) = 0) (VII.7)

defines the k-ary partial function such that h(n1, . . . , nk) = m provided that m
is the least value (if any) such that f(n1, . . . , nk,m)↓ = 0 and such that for all
m′ < m, f(n1, . . . , nm) converges and is non-zero. If there is no such y, then
h(n1, . . . , nk) is undefined (diverges).

If g and h are total functions, the definitions (VII.6) and (VII.7) are called
regular minimization. For instance, the function g is defined by regular mini-
mization provided that for all n⃗ ∈ N, there is an m ∈ N such that S(n1, . . . , nk,m).

The method of Example V.31 shows that if S is decidable, then the function g
defined by (VII.6) is partial computable. If (VII.6) is a regular minimization,
then g is computable. In both cases, the algorithm for computing g(n1, . . . , nk)
acts by successively checking whether S(n1, . . . , nk,m) holds for m = 0,1,2, . . ..
Similarly, the function h defined by (VII.7) is partial computable if f is partial
computable.

Theorem VII.58.

(a) Let g be a k-ary function defined by regular minimization from a relation S
by (VII.6). Suppose that S is representable in R. Then g is representable
in R.

(a) Let h be a k-ary function defined by regular minimization from a function f
by (VII.7). Suppose that S is representable in R. Then h is representable
in R.

Proof. Let AS(x1, . . . , x,y) represent S. Then g(x1, . . . , xk, y) is represented by

AS(x1, . . . , xk, y) ∧ ∀z<y (¬AS(x1, . . . , xk, y)).

That proves part (a). Part (b) follows from part (a), since if f is representable,
then Gf is representable (by Theorem VII.54) and µy (f(x1, . . . , xk, y) = 0) is
equal to µyGf(x1, . . . , xk, y,0).
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Example VII.59. The greatest common divisor and least common divisor are
representable, since

lcm(x, y) = µz (x = 0 ∨ y = 0 ∨ (0 < z ∧ x ∣ z ∧ y ∣ z))

gcd(x, y) = max{z ≤ x ∶ z ∣ x ∧ z ∣ y} = x − µw ((x −w) ∣ x ∧ (x −w) ∣ y).

The definition of gcd using the construction “x−µw (⋯)” illustrates the use
of bounded maximization.

Example VII.60. Corollary VII.51 showed that the set Power2 of powers of 2
is representable. The unary function that gives the least power of 2 greater
than x is equal to

2⌊log2 x⌋+1 = µw (Power2 (w) ∧ x < w).

(The left-hand side does not make sense for x = 0.) The greatest power of 2
that is less than or equal to x is equal to

2⌊log2 x⌋ = µw (Power2 (w) ∧ x < 2 ⋅w).

We adopt this last equation as the definition of 2⌊log2 x⌋. This is tantamount to
adopting the convention that ⌊log2 0⌋ = 1.

The function 2⌊log2 x⌋ is defined with regular minimization and thus is repre-
sentable. This will be an important function for representing functions associ-
ated with sequence coding.

VII.7 Representability of Sequence Coding

We are still working towards proving Theorem VII.20 that all decidable rela-
tions and computable predicates are representable. This section takes a key
step toward that proof by describing a method of assigning Gödel numbers to
variable-length sequences of integers and how to represent functions that ma-
nipulate these sequences.

Consider a sequence of integers ⟨n1 . . . , nk⟩. Mathematically, we can formu-
late this as a function from f ∶ {0, . . . , k−1} → N, with f(i) = ai+1. We wish
to encode the sequent with a single integer, called a Gödel number. Instead
of using corner quote marks ⌜⋯⌝, we will instead write the Gödel number of a
sequence as ⟪n1, . . . , nk⟫.

Our goal is to define functions that manipulate Gödel numbers of sequences
in natural ways, and show that these functions are representable. The functions
we are interested include the binary Gödel β function, the unary Len (sequence
length) function, and the binary function ⌢ for sequence concatenation.

● β(i,⟪n0, . . . , nk−1⟫) ∶= ni.

● Len(⟪n0, . . . , nk−1⟫) ∶= k.

● ⟪n1, . . . , nk⟫⌢⟪m1, . . . , nℓ⟫ ∶= ⟪n1, . . . , nk,m1, . . . ,mℓ⟫ .
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and the function n ↦ ⟪n⟫, where ⟪n⟫ is the Gödel number of a sequence of
length one.

Composition allows defining further functions such as the binary function

⟪n1, . . . , nk⟫ ∗ nk+1 ∶= ⟪n1, . . . , nk, nk+1⟫⌢⟪nk+1⟫ = ⟪n1, . . . , nk, nk+1⟫.

and the unary function

Last(⟪n1, . . . , nk⟫) ∶= β(Len(⟪n1, . . . , nk⟫) � 1,⟪n1, . . . , nk⟫) = nk.

The unary relation IsSeq(w) will be true if w is the Gödel number of a sequence,

IsSeq(w) ⇔ w = ⟪n1, . . . , nk⟫ for some n1, . . . , nk.

The β function is the crucial one of the above, but it will convenient to also use
IsSeq , Len, and Last .

There are several common ways to define the Gödel number of a sequence.
Gödel’s original definition used a generalization of the Chinese remainder theo-
rem. Another common approach is to use the exponents in prime factorizations
to code sequence elements; for instance, the sequence ⟨n1, n2, n3, n4⟩ could have
the integer with prime factorization 2n13n25n37n411 as its Gödel number.

A third popular approach, and the one we prefer, is to use a base w encoding
with w greater than the sequence elements. For convenience, we’ll use a power of
two as the base w. Specifically, a Gödel number for the sequence ⟨n0, . . . , nk−1⟩
will be equal to

n0 + n1 ⋅ 2p + n2 ⋅ 22p + n3 ⋅ 23p +⋯ + nk−1 ⋅ 2(k−1)⋅p + 2k⋅p + 2(k+1)⋅p. (VII.8)

For this, it is necessary that ni < 2p for all i. Figure VII.2 illustrates this.

Definition VII.61. For any p such that 2p > ni for all i, the integer (VII.8) is
called a Gödel number of the sequence ⟨a0, . . . , ak−1⟩. This value is not unique,
as it is a Gödel number as long as p is sufficiently large.

The notation ⟪n0, . . . , nk−1⟫ denotes the least such Gödel number of the
sequence, namely the value (VII.8) where p is chosen so that maxi{ni} < 2p ≤
2 ⋅maxi{ni}.

Example VII.62. Let’s compute the Gödel number for the sequence ⟨7,0,11⟩.
The binary expansions of 7, 0, and 11 are 111, 0, and 1011. Thus, 2p = 16 and
p = 4. Therefore ⟪7,0,11⟫ has binary representation

1 0001 1011 0000 0111

In decimal form, this is 216 + 212 + 11 ⋅ 28 + 0 ⋅ 24 + 7 = 72455.

We need to show that the β function, the Len function, etc. are repre-
sentable. The primary difficulty turns out to be showing that the base 2 ex-
ponential function i ↦ 2i is representable. But, pending showing this, we can
work directly with powers of 2.
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1 00 ⋯ 01 nk nk−1 ⋯ n2 n1

p bits p bits p bits p bits p bits

Figure VII.2: The binary representation of a Gödel number of ⟨n1, . . . , nk⟩ has
a leading 1 and then k + 1 blocks, of p bits, containing successively the binary
representations of 1 and nk, . . . , n1. The high order bits “100⋯01” serve to
determine the value of 2p with the aid of the TwoExpP function.

As a first step, we define a function TwoExpP(u) which, given a Gödel
number u of the form (VII.8), computes the value of 2p by

RMSB(u) = u − 2⌊log2 u⌋

TwoExpP(u) = 2⌊log2 u⌋/2⌊log2 RMSB(u)⌋.

Here “RMSB” stands for “remove most significant bit”, and RMSB(u) is the
value obtained from the binary representation of u after removing its most
significant bit. TwoExpP(u) gives the power of two 2p such that u is equal
to (2p + 1)2q + a for some a and q with a < 2q. “TwoExpP” stands for “two
exponent p”. The function TwoExpP is used to locate the first two 1’s in the
binary representation of u.

Example VII.63. Suppose u = 81 with binary representation 101001. Then
RMSB(u) = 17 with binary representation 1001. Also, 2⌊log2 u⌋ = 64 and 2⌊log2 RMSB(u)⌋ = 16
with binary representations 100000 and 1000. From this, TwoExpP(u) equals 4,
with binary representation 100. This reflects the fact that the binary represen-
tation of u starts with 101⋯.

The strategy for defining the β function will be to set β(i, u) = Rem(⌊u/2i⋅p⌋,2p),
where 2p = TwoExpP(u). This will work, since the function u ↦ ⌊u/2i⋅p⌋ strips
away i ⋅ p many low order bits of u, and the remainder function v ↦ Rem(v,2p)
extracts the p many low order bits of v.

The difficulty is showing that 2i⋅p can be computed by a representable func-
tion. For this, the first step is to show that the set of powers of 2p is repre-
sentable. We define the relation PowPow2 (w,y) to be true if w is a power of 2
and y is a power of w. (“PowPow2” is short for “power of a power of two”.)
This is done with

PowPow2 (w,y) ⇔ Power2 (w)∧Power2 (y)∧∃z≤2y (Rem(z,w) = 1∧z = y+⌊z/w⌋).

This definition works since z can be taken to equal

2i⋅p + 2(i−1)⋅p +⋯ + 22p + 2p + 1

when w = 2p and y = (2p)i = 2i⋅p. Conversely, it is easy to check that for w and y
powers of 2, there is a value z satisfying the conditions of PowPow2 (w,y) only
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1 00 ⋯ 01 i i − 1 ⋯ 2 1 0

1 00 ⋯ 01 2i 2i−1 ⋯ 3 2 1

x:

v:

Figure VII.3: The values x and v needed for the formula (VII.9) representing
the function z = 2i. The Gödel numbers for these can use p = i+1 many bits per
block, so the binary representations of x and v can have length (i + 1)2 + i + 1,
which is ≤ 3i + 3 for all i. Thus x, v are less than 23i+3 = 8z3.

if y is a power of w. This can be verified by considering the binary expansion
of z: The condition “Rem(z,w) = 1” forces the low order p bits of z to be 0⋯01,
and the operation z ↦ ⌊z/w⌋ performs a “shift-right” by p bits.

For example, if w = 16 with binary representation 1000, and y = 163 = 1024
with binary representation 1 000 000 000, then z = 163 + 162 + 16 + 1 with binary
representation 1 001 001 001. This value for z shows that y is a power of w.

As mentioned already, we shall define β(i, u) = Rem(⌊u/2i⋅p⌋,2p). As a
preliminary definition, note that the 3-ary function

βWY (w,y, u) = Rem(⌊u/y⌋,w)

is representable. If w = TwoExpP(y) = 2p and y = wi = 2i⋅p, then β(i, u) =
βWY (w,y, u) and β(i + 1, u) = βWY (w,y ⋅w,u).

The graph of the exponentiation function 2i can be defined with the aid of
the βWY function by:

z = 2i ⇔
∃x≤8z3 ∃v≤8z3 ∃w≤x

[w = TwoExpP(v) ∧ βWY (w,1, x) = 0 ∧ βWY (w,1, v) = 1

∧ ∀y≤z3 [PowPow2 (w,y) ∧ y ⋅w3 ≤ x (VII.9)

→ βWY (w,y ⋅w,x) = βWY (w,y, x) + 1

∧βWY (w,y ⋅w, v) = 2 ⋅ βWY (w,y, v)]
∧ βWY (w,2⌊x⌋/w2, x) = i ∧ βWY (w,2⌊x⌋/w2, v) = z ].

As shown in Figure (VII.3), the intent is that v encodes a sequence containing
successive powers of 2, namely that v is the Gödel number

⟪1,2,4, . . . ,2i−1,2i⟫ = 2(i+2)(i+1) + 2(i+1)
2

+
i

∑
j=0

2j ⋅ 2j⋅(i+1).

The equalities “βWY (w,1, v) = 1” and “βWY (w,y⋅w, v) = 2⋅βWY (w,y, v)” in (VII.9)
ensure that the sequence encoded by v starts with 1 and its successive values
increase by a factor of 2. Since largest value in the sequence is 2i and has i + 1
bits, the block size p can be as small as i + 1; this allows w = TwoExpP(v) to
equal 2i+1.
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Furthermore, x is intended to be a Gödel number for ⟨0,1,2, . . . , i−1, i⟩, using
the same values for w and p:

x = 2(i+2)(i+1) + 2(i+1)
2

+
i

∑
j=0

j ⋅ 2j⋅(i+1).

The equalities “βWY (w,1, x) = 0” and “βWY (w,y ⋅ w,x) = βWY (w,y, x) + 1”
in (VII.9) ensure that the sequence encoded by x starts with 0 and its suc-
cessive values increment by 1.

The conditions βWY (w,2⌊x⌋/w2, x) = i and βWY (w,2⌊x⌋/w2, v) = z ensure that
the sequence encoded by x ends with i and the sequence encoded by v ends
with z. When all these conditions hold, z must equal 2i.

Thus the graph of the exponentiation function is representable by (VII.9).
Hence the exponentiation function is representable.

Since the graph of the exponentiation function i ↦ 2i is representable, so
is the graph of the base 2 logarithm function x ↦ ⌊log2 x⌋. Thus ⌊log2 x⌋ is
representable as a function. (Recall that ⌊log2 0⌋ is equal to 1 by convention.)

We can now show that the β function, the Len function and the IsSeq relation
are representable. First, IsSeq is defined as

IsSeq(u) ⇔ PowPow2 (TwoExpP(u),2⌊u⌋)

which checks that u has the form 2(k+1) + 2k + a for some a < 2k. The Len
function is defined by

Len(u) = ⌊log2 u⌋/⌊log2TwoExpP(u)⌋ − 1.

and hence is representable. Finally, the Gödel β function is defined by letting
β(i, u) = 0 if IsSeq(u) is false or Len(u) ≤ i, and otherwise setting

β(i, x) ∶= βWY (TwoExpP(u),2i⋅⌊log2 TwoExpP(u)⌋, u).

Hence the Gödel β function is representable. We have shown:

Theorem VII.64. The following are representable:
(a) The binary Gödel β function.
(b) The unary sequence length function Len.
(c) The unary relation IsSeq.

The other sequence functions mentioned earlier are also representable, e.g.,
see Exercise VII.10. Some useful ones include the unary function ⟪n0⟫, the
binary function ⟪n0, n1⟫, and the the 3-ary function ⟪n0, n1, n2⟫. For instance
to see that the last one is representable, note that

⟪n0, n1, n2⟫ = 24p + 23p + n222p + n12p + n0

where p = ⌊log2(max{n0, n1, n2})⌋.
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⟨n0, n1, . . . nℓ−1⟩ Informal notation for a sequence.

⟪n0, n1, . . . nℓ−1⟫ Gödel number of a sequence.
β(i,⟪n0, n1, . . . nℓ−1⟫) = ni Gödel β function.
Len(⟪n0, n1, . . . nℓ−1⟫) = ℓ Length of the sequence.

Last(⟪n0, n1, . . . nℓ−1⟫) = nℓ−1 Last entry of the sequence
IsSeq(u) u is a Gödel number of a sequence

Figure VII.4: The important notations for sequence coding functions.

Another useful representable function is the function Bit(i, x) which gives
the value of the i-th in the binary representation of x:

Bit(i, x) ∶= Rem(⌊x/2i⌋,2).

Bit(i, x) is equal to the i-th bit of x, counting bits starting with the low order
bit of x as bit number 0. For example, Bit(0, x) = 1 if and only if x is odd.

VII.8 Representability of Turing Computations

This section shows that Turing machine computations can be defined by rep-
resentable functions and relations. This is the final main step in proving The-
orem VII.20, that every decidable relation and every computable function is
representable in R.

Theorem VI.24 lets us make some simplifying assumptions about Turing
machines that act on integers. Namely, w.l.og., any Turing machine uses the
input alphabet Σ = {1} and the tape alphabet be Γ = {#,1}, and its inputs and
outputs (if any) are coded in unary notation with the string 1n denoting the
integer n.

Fix a Turing machine M satisfying these conditions. Recall that a “config-
uration” for M is a complete description of a stage in the execution of M .

Definition VII.65. A configuration (also called an instantaneous description)
of M consists of a specification of (a) the tape contents of M , (b) the current
state of M , and (c) the head position of M .

Suppose v,w ∈ {#,1}∗ and that the tape contents consists of vw on an
otherwise blank tape. Further, suppose that the tape head is positioned on the
first (leftmost) symbol of w and that the current state is qi. Then the triple
⟨v, i,w⟩ encodes the configuration of M .

We view a string in {#,1}∗ as being equivalent to a binary string by implic-
itly replacing #’s with 0’s.

Definition VII.66. Let w0/# denote the string obtained from w by replacing
each # with 0. Recall that num(u) is the integer with binary representation u.
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⋯ # 1 # 1 1 1 # 1 # 1 1 #⋯

q0

Figure VII.5: The Turing machine configuration for Example VII.67.

Suppose C = ⟨v, i,w⟩ encodes a configuration of M . Then the integer ⌜C⌝ ∶=
⟪num(v0/#), i,num(wR

0/#)⟫ is the Gödel number of the configuration.

Recall that ⟪⋯⟫ is the notation for the Gödel number of a sequence. Thus
⟪v, i,w⟫ is the encoded triple that contains: first the integer with binary nota-
tion as specified by v interpreting #’s as 0’s; second the index i of the current
state; and third the integer with binary notation as specified by the reversal wR

or w, again interpreting #’s as 0’s.

Example VII.67. Suppose the tape contains “⋯##1#111#1#11##⋯” as
shown in Figure VII.5 and is otherwise all blank, with the tape head placed
over the fourth 1 and the Turing machine in state q7. Then a triple ⟨v, i,w⟩
encoding this configuration C must satisfy the following.

(a) The string v can be “1#11” or “#1#11” or “##1#11”, etc, with any
number of leading blanks.

(b) The string w can be “1#1#11” or “1#1#11#” or “1#1#11##”, etc,
with any number of trailing blanks.

Then the binary strings v0/# and wR
0/# satisfy the following.

(a′) The string v0/# can be “1011” or “01011” or “001011” , etc, with any
number of leading 0’s. In any event, these are binary representations of
the (decimal) integer 11.

(b′) The string wR
0/# can be “110101” or “0110101” or “00110101” , etc, with

any number of leading 0’s. These are all binary representations of 53.

Then ⌜C⌝ is equal to the integer ⟪11,7,53⟫.
Note that for both v and w, the inclusion of extra #’s translates to including

extra leading 0’s in the binary representations v0/# and wR
0/#. The leading

zeros of course make no difference to the integers they represent, and thus no
difference in the value of ⌜C⌝. This corresponds to the fact that having extra
leading blanks in v or trailing blanks in w does not change the Turing machine
configuration.

Now that Gödel number of configurations have been defined, we can define
the Gödel number of a complete computation of the Turing machine M as the
sequence of configurations for M at every step in the computation. Specifically,
a computation C that takes ℓ steps and uses the configurations C0,C1, . . . ,Cℓ is
encoded by the sequence

⟪⌜C0⌝, ⌜C1⌝, ⌜C2⌝, . . . , ⌜Cℓ⌝⟫. (VII.10)
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This is called the Gödel number ⌜C⌝ of the computation C. Recall that the no-
tation ⟪⋯⟫ is used to denote an integer that encodes a variable length sequence,
as handled with the Gödel β function.

We now need to argue that there are representable functions and relations
which can be used to parse the correctness of a Gödel number ⌜C⌝ of a compu-
tation and even to compute ⌜C⌝ as a function of M ’s inputs; that is, assuming
M halts on all inputs.

Let’s start with exhibiting a formula representing the initial configuration C0.
If M computes a unary function or a unary relation, and its input is the inte-
ger n, then C0 should be ⟨ϵ,0,1n⟩. This indicates that M starts in (w.l.o.g.)
state q0 with the tape completely blank except for a string of n 1’s starting at
the initial tape head position. The function n ↦ ⌜C0⌝ is clearly representable
because ⌜C0⌝ is equal to

Init1(n) ∶= ⟪0,0,2n − 1⟫

and because the base 2 exponentiation function and the sequence triple function
are representable.

If M takes two inputs, n1, n2, then initial configuration C0 should be ⟨ϵ,0,1n1#1n2⟩;
hence wR

0/# equals 1n201n1 and ⌜C0⌝ should equal Init2(n1, n2) = ⟪0,0, (2n1+n2+1−1)−2n2⟫.
This is again a representable function. Similar constructions work to define Initk
when M accepts k inputs.

Now let’s consider extracting the output value from the final configura-
tion Cℓ. First suppose M has two halting states qacc and qrej, which w.l.o.g. have
indices n − 1 and n − 2. So Cℓ is a halting configuration if and only β(1, ⌜Cℓ⌝)
is equal to either ∣Q∣ − 1 or ∣Q∣ − 2 where Q is the set of M ’s states. Note that
since M is fixed, so is ∣Q∣. In this vein, there are representable relations that
check whether x is equal to the Gödel number ⌜Cℓ⌝ of an accepting or rejecting
configuration:

AcceptM(x) ⇔ β(1, x) = ∣Q∣−1 and RejectM(x) ⇔ β(1, x) = ∣Q∣−2.

Let HaltingM(x) be defined by AcceptM(x) ∨RejectM(x). The subscript M is
used in the notation since these relations depend on the number ∣Q∣ of states
of M .

If M computes a function and has only one halting state, then w.l.o.g. the
halting state has index ∣Q∣ − 1, and there is a representable unary function
HaltingM that checks whether x is the Gödel number ⌜Cℓ⌝ of a halting config-
uration, namely,

HaltingM(x) ⇔ β(1, x) = ∣Q∣−1.

The halting configuration Cℓ will be a triple of the form ⟨v, ∣Q∣−1, 1m0w⟩ where
m is the value output by the configuration and v,w ∈ {#,1}∗. When forming
the Gödel number of Cℓ, the string wR

0/# has the form wR01m. We can extract
the value m by using the representable function

Output(x) ∶= µi (Bit(i, β(2, x)) = 0).
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To see that Output(⌜Cℓ⌝) correctly computes the integer output by the configu-
ration Cℓ, note that β(2, ⌜Cℓ⌝) is equal to the integer with binary representation
wR01m.

So far, we have handled computing the Gödel number ⌜C0⌝ of the initial
configuration as a representable function; and we have also handled detecting
whether a configuration ⌜Cℓ is accepting, or what the output of Cℓ is. We still
need to explain how to handle defining how the (i + 1)-st configuration Ci+1
follows from the ith-configuration. We shall define a representable binary rela-
tion NextM so that NextM(⌜C⌝, ⌜C ′⌝) holds if and only if the configuration C ′

follows by a single step of M from the configuration C.9

The transition function δ for M controls how the computation runs. There
are ∣Q∖QHalt∣ many non-halting states, and two symbols # and 1. Hence, there
2 ⋅ (∣Q ∖QHalt∣ many values of δ to consider, namely the values of δ(i, a) where
i is the index of a non-halting state and a ∈ {#,1} is a tape symbol.

We first define, for a fixed tape symbol a ∈ {#,1} and a state index i, the
relation Next i,aM so that Next i,aM (⌜C⌝, ⌜C ′⌝) holds if and only if the configura-
tion C ′ follows by a single step of M from C using the transition rule δ(i, a).
Let δ(i, a) = ⟨a′,D, i′⟩⟩ where D ∈ {R,L}. If D is equal to “R” (for “move
right”), then Next i,aM is defined so that

Next i,aM (⟪m,j, n⟫,⟪m′, j′, n′⟫) ⇔ j = i ∧ Bit(0, n) = na ∧ j′ = i′

∧n′ = ⌊n/2⌋ ∧ m′ = 2 ⋅m + na′ ,

where

na = { 0 if a is #
1 if a is 1.

and na′ = { 0 if a′ is #
1 if a′ is 1.

More formally, the relation Next i,aM can be expressed as

Next i,aM (x, y) ⇔ β(1, x) = i ∧ Bit(0, β(2, x)) = na ∧ β(1, y) = i′

∧ β(2, y) = ⌊β(2, x)/2⌋ ∧ β(0, y) = 2 ⋅ β(0, x) + na′ .

To understand the definition of Next i,aM (x, y) where x = ⟪m,j, n⟫ and y =
⟪m′, j′, n′⟫, note that it will be true if and only if

(a) j = i and j′ = i′

(b) The lower order bit of m = β(2, x) equal to na, as this indicates the symbol
being read;

(c) n′ = ⌊n/2⌋, so that n′ = β(2, y) is obtained from n = β(2, x) by shifting one
bit right, as this is what happens to the tape contents on the tape to the
right of tape head as the tape head shifts rightward; and

(d) m′ = β(0, y) is obtained from m = β(0, x) by shifting one bit left and
adding in the newly written bit na′ , as this is what happens when the
tape head shifts leftward. So m′ = 2m + na′ .

9This formalizes Definition VI.14 of how a Turing machine transitions from one configura-
tion to the next.
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Note items (b) and (c) used the fact that n and n′ were obtained by reversing
the strings w and w′ to the right of the tape head (since Gödel numbers of
configurations were defined with wR

0/# instead of with w0/#). This means that
a single step of the Turing machine updates the low-order bits of both m and n
to form m′ and n′. Without this trick, we would have had to work with the
high-order bits of n and n′.

If, on the other hand, D is L (for “move left”), so δ(i, a) = ⟨a′, L, i′⟩⟩, we
define

Next i,aM (x, y) ⇔ β(1, x) = i ∧ Bit(0, β(2, x)) = na

∧ β(1, y) = i′ ∧ β(0, y) = ⌊β(0, x)/2⌋
∧ β(2, y) = 4 ⋅ ⌊β(2, x)/2⌋ + 2 ⋅ na′ +Bit(0, β(0, x)).

This is similar to the previous case, but modified to shift the tape head leftward.
Finally, we define NextM(x, y) by

NextM(x, y) ⇔ IsSeq(y) ∧ Len(y) = 3 ∧⋁
i,a

Next i,aM (x, y).

This states that the triple x is obtained from x by one of the 2∣Q∖QHalt∣ many
transition rules of δ. The “IsSeq(y)∧Len(y) = 3” condition is included to make
the choice of y unique.

Now we are ready to show that all Turing decidable relations are repre-
sentable and all Turing computable functions are decidable. Let M be a Turing
machine that always halts: M either decides a relation and has two halting
states qacc and qrej or computes a function and has a single halting state qhalt.
Assume that M takes k-tuples as inputs; we again write n⃗ and x⃗ for n1, . . . , nk

and x1, . . . , xk. First define CompM(n⃗,m) to mean that m is the Gödel number
m = ⌜C⌝ of a complete computation of M that starts with input n⃗ and reaches
a halting configuration:

CompM(x⃗, y) ⇔ β(0, y) = Initk(x⃗) ∧HaltingM(β(Len(y) − 1, y) ∧
(∀j < Len(y)�1)[NextM(β(j, x), β(j + 1, x))].

In other words, CompM(x, y) holds if and only y is equal to ⟪⌜C0⌝, . . . , ⌜Cℓ⌝⟫,
where (a) C0 is the initial configuration for input x⃗, (b) ℓ = Len(w) + 1 and the
final configuration Cℓ is a halting configuration, (c) Each Ci+1 is the configu-
ration following from Ci after a single step by M . The relation CompM is a
representable since Initk, HaltingM and NextM are representable.

By assumption, M always halts. Therefore, for all inputs n⃗, there is a
m encoding a complete computation of M . The halting configuration can be
computed as a function of the input n⃗ by the function

FinalConfigM(x⃗) ∶= Last(µyCompM(x⃗, y) ) (VII.11)

since µyCompM(x⃗, y) is a total function that gives a value y that encodes
a complete, halting computation of M . By Theorem VII.58, the functions
µyCompM(x⃗, y) and hence FinalConfigM are representable in R.
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Theorem VII.68 (Restatement of Theorem VII.20). Every decidable relation
on N is representable in the theory R. Every computable function on N is rep-
resentable in R.

Proof. Let M be a Turing machine that always halts. If M decides a relation
and has two halting states qacc and qrej, then the relation decided by M is
definable by

AcceptM(FinalConfigM(x⃗));

therefore, it is a representable relation.
If M computes a function and has the single halting state qhalt, then the

function f(x⃗) computed by M is definable by

y = Output(FinalConfigM(x⃗)). (VII.12)

Therefore it is a representable relation.

The proof of Theorem VII.20 also gives a normal form for partial computable
functions:

Theorem VII.69 (Kleene Normal Form). Let f(x⃗) be a k-ary partial com-
putable function. Then there is a unary computable function U(y) and a decid-
able (k + 1)-ary relation T (x⃗, y) such that, for all n ∈ N,

f(n⃗) = U(µmT (n⃗,m) ).

Proof. Let M be a Turing machine that partial computes f . Let T (x⃗, y) be
CompM(x⃗, y). Let U(y) be the composition Output ○FinalConfig of the unary
functions Output and FinalConfig . Then by (VII.11) and (VII.12),

f(n⃗) = U(µy T (n⃗, y) ).

VII.9 The Second Incompleteness Theorem

The section proves the Second Incompleteness Theorem and some of its conse-
quences, including Löb’s Theorem. The proof uses the extensional approach as
discussed in Section VII.1. This means that the theory T needs to be substan-
tially stronger than R so that it can prove simple metamathematical assertions
about proofs and theorems.

For the first part of this section, let T be a fixed axiomatizable, consistent
theory T extending R. (Later in the section, we will need more assumptions
about T .) A sentence B is said to be independent of T if neither B nor ¬B
is a consequence of T . The First Incompleteness Theorem states that T is
not complete. However, the proofs of the First Incompleteness Theorem in
Section VII.4 were proofs by contradiction, and they did not give any example
of a sentence B which is independent of T . This section will address this by
providing examples of independent sentences.
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The first example will be essentially the diagonal formula DA used in the
proof of the First Incompleteness Theorem based on self-reference. The second
example will be a formula expressing the consistency of T . Thus the second
example will show that, with appropriate conditions, a theory T of arithmetic
cannot prove the self-consistency statement “T is consistent”. This fact is known
as the “Second Incompleteness Theorem”.

Recall that Proof T and Prf T are decidable relations with Proof T (w) ex-
pressing that w is the Gödel number of a T -proof, and Prf T (w, v) expressing
that w is the Gödel number of a T -proof of the formula with Gödel number v.
Since these predicates are decidable, Theorem VII.20 tells us they are repre-
sentable in R. We write ProofT and PrfT to denote the formulas which
represent Proof T and Prf T in R. So,

ProofT (x1) represents Proof T
PrfT (x1, x2) represents Prf T

The difference in fonts, as in “Prf T ” versus “PrfT ”, is just to stress that the
former is a binary relation on N where the latter is an LPA-formula.

Since R is a true theory and PrfT represents Prf T in R, it also defines Prf T
in N . Namely, for all n,m ∈ N,

N ⊧ PrfT (n,m) ⇔ ⟨n,m⟩ ∈ Prf T .

The formula ThmT (x) is defined to be the formula ∃yPrfT (y, x). Since
PrfT defines the relation Prf T in N , it follows that ThmT (x) defines the set
of theorems of T . Namely, for all m ∈ N,

N ⊧ ThmT (m) ⇔ m = ⌜A⌝ for some A such that T ⊧ A.

Let D be a formula obtained from the Diagonal Theorem VII.26 such that10

R ⊢ D↔ ¬ThmT (⌜D⌝). (VII.13)

Theorem VII.70 (Incompleteness Theorem — explicit unprovable true formula).
Let T be a consistent, axiomatizable extension of R. Suppose D satisfies (VII.13).
Then D is true in N and T ⊬D.

The formula D says “I am not provable in T”. The intuition for the proof of
Theorem VII.70 is as follows. First, for simplicity, let’s assume that T is a true
theory. If D is false, then T does prove D. But this would mean T proves a
false formula, contradicting the assumption that T is a true theory. So D must
be true and hence not provable in T .

To extend the intuition to the general case where we do not use the assump-
tion that T is true, we argue as follows. First, if T proves D, then T proves

10Note that this D is very similar to the DA used in the last proof of Section VII.4 of the
First Incompleteness Theorem, since in that proof, A was presumed to represent ThmT . The
difference is that the earlier proof was by contradiction, so the existence of A was based on
the (false) assumption that ThmT is decidable and hence representable in R. The definition
of D now uses just the fact that ThmT is definable in N .
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“T does not prove D”; this is by the self-referential choice of D. On the other
hand, if T proves D, there is a finite, explicit T -proof of D with some Gödel
number m. Examining this proof shows that it is indeed a proof; this can be
done in R and hence in T , showing that T proves “T proves D”. But T is
consistent, so it cannot prove both “T does not prove D” and “T proves D”.
Thus T cannot prove D.

The proof of Theorem VII.70 makes this informal argument formal:

Proof. From (VII.13), we have

T ⊢D ⇔ T ⊢ ¬ThmT (⌜D⌝).

On the other hand, we have

T ⊢D
⇔ N ⊧ ThmT (⌜D⌝) By definition of ThmT

⇔ N ⊧ PrfT (m, ⌜D⌝), for some m ∈ N By definition of ThmT

⇔ R ⊢ PrfT (m, ⌜D⌝), for some m ∈ N PrfT represents Prf T
⇔ R ⊢ ThmT (⌜D⌝) By definition of ThmT

and since R is a true theory
⇒ T ⊢ ThmT (⌜D⌝) Since T ⊇ R

We shown that if T ⊢ D, then both ThmT (⌜D⌝) and ¬ThmT (⌜D⌝) are
consequences of T , contradicting the consistency of T . Therefore T ⊬D.

Theorem VII.70 left open the possibility that T proves ¬D. This can be
ruled out if T is ω-consistent:

Theorem VII.71 (Incompleteness Theorem — explicit independent formula).
Let T be an ω-consistent, axiomatizable extension of R. Suppose D satis-
fies (VII.13). Then D is independent of T .

Proof. From the previous theorem, T ⊬D, so we only need to show that T ⊬ ¬D.
Suppose that T ⊢ ¬D. By (VII.13), T ⊢ ∃xPrfT (x, ⌜D⌝).

On the other hand, by the previous theorem, there is no T -proof of D, hence
Prf T (m, ⌜D⌝) is false for every m ∈ N. Since PrfT represents Prf T , we have
T ⊢ ¬PrfT (m, ⌜D⌝) for every m. This contradicts the ω-consistency of T .

Theorem VII.71 gives an independent sentence D. This works even for T a
very natural and strong theory such as Peano Arithmetic (PA). The problem
is that D is a somewhat strange, self-referential, formula. As such, one might
object to the importance of D as an independent sentence just because it is
self-referential. The Second Incompleteness Theorem addresses this by showing
giving an alternative formula ConT which is independent of T (after making
some additional, but natural, assumptions about T ). ConT express the prop-
erty that “T is consistent” so, informally, the Second Incompleteness Theorem
states that no arithmetic theory T can prove its own consistency (under suitable
assumptions about T ).
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The Second Incompleteness Theorem. The intuition for the Second In-
completeness Theorem comes from the observation that Theorem VII.70 can be
restated as follows:

Corollary VII.72. Let T be an axiomatizable extension of R. Then,

If T is consistent, then D is true in N .

We already know that T does not prove D. From the corollary, we can make
an intuitive leap and conjecture that since D is unprovable in T , also the con-
sistency of T is unprovable in T . Making this “intuitive leap” formal is exactly
what is needed to prove the Second Incompleteness Theorem. As we shall see
next, the notion of “T is consistent” can be formalized as a sentence ConT .
Then, with some additional assumptions on T , we will be able to establish that
T proves ConT →D and consequently that T does not prove ConT .

Definition VII.73. Let T be an axiomatizable theory in the language LPA.
Then ConT is the sentence

¬ThmT (⌜0 = 1⌝),

where we write “0=1” as a shorthand notation for “0=S(0)” or “0=1”. In other
words, ⌜0 = 1⌝ means the term Sm0 where m ∈ N is the Gödel number of the

formula 0 = S(0).
Similarly, ConT is the sentence ¬∃xPrfT (x, ⌜0 = 1⌝).

We need some extra conditions for the proof of the Second Incompleteness
Theorem. The idea is that T should not only contain R but should also be
strong enough to prove simple properties about the formulas PrfT and ThmT .
These are expressed by the Hilbert-Bernays-Löb conditions:

Definition VII.74. Let T ⊇ R be an axiomatizable theory in the language LPA.
The Hilbert-Bernays-Löb conditions for T state the following hold for all LPA-
sentences A and B:

HBL1: If T ⊢ A, then T ⊢ ThmT (⌜A⌝).
HBL2: T proves ThmT (⌜A⌝)→ ThmT (⌜ThmT (⌜A⌝)⌝).

HBL3: T proves ThmT (⌜A⌝) ∧ThmT (⌜A→ B⌝)→ ThmT (⌜B⌝).

It turns out that the Hilbert-Bernays-Löb conditions are very natural and
hold for many sufficiently powerful theories T of arithmetic, including PA. For
this, formulas such as PrfT and ThmT must be formulated in a sufficiently
straightforward and natural way.

It is not hard to see that the condition HBL1 holds for any axiomatizable
theory T that extends R. At least, this holds if ThmT is formalized as described
earlier, using a formula PrfT that represents Prf T in R. The argument is just
that if T ⊢ A, then there is a particular proof, with some Gödel number m, and
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then Prf T (m, ⌜A⌝) is true and hence T can prove that PrfT (m, ⌜A⌝) holds.

From this, T can prove ThmT (⌜A⌝).
The condition HBL2 can be viewed as a formalized version of HBL1. That is,

HBL2 states that the implication of HBL1 can be proved as a general principle
in T . The argument is formalizes the fact that if A has a T -proof P there is
a definable method to transform P into a proof of ThmT (⌜A⌝). The difficulty

is that the proof P is not known: it is just the (unknown) value of the leading
existential quantifier in ThmT . Carrying out the proof of HBL2 in a theory
such as PA can be detailed and lengthy; we do not present it here.

The condition HBL3 is simpler. Informally, it states that T can prove that if
A has a proof P1 and A→ B has a proof P2, then there is a proof P3 of B. The
intuition is that the proof of B is formed by concatenating the proofs P1 and P2,
and then appending the formula B as derived by a use of modus ponens. Viewed
in this way, the condition HBL3 is almost a triviality, as it is just a formalized
version of Modus Ponens. However, it does depend on the theory T being strong
enough to define — and prove properties of — predicates and functions that
parse and manipulate proofs.

We henceforth work with theories that satisfy the Hilbert-Bernays-Löb con-
ditions. One such theory is the theory PA of Peano Arithmetic. PA is a true
theory, but there are also non-true theories that satisfy the Hilbert-Bernays-Löb
conditions, for instance the theory PA + ¬ConPA.

Lemma VII.75. Suppose T is a consistent axiomatizable theory extending R
that satisfies the Hilbert-Bernays-Löb conditions. Let A be an LPA-formula.
Then

(a) T proves ¬ConT → ThmT (⌜A⌝).
(b) T proves

ThmT (⌜A⌝)→ ThmT (⌜¬A⌝)→ ThmT (⌜¬ConT ⌝).

Lemma VII.75 shows the theory T can formalize enough metamathematics
to prove that ConT properly formalizes the statement that T is consistent.
Namely, part (a) states that if T is inconsistent, then every formula A is a
consequence of T . And, part (b) states that if T proves directly contradictory
formulas, then T proves that T is inconsistent. Furthermore, these facts are
provable by T .

Proof. We prove (a) first. Since T ⊇ R, T ⊢ 0 ≠ 1. Therefore, T ⊢ 0 = 1→ A. By
HBL1, T proves ThmT (⌜0 = 1→ A⌝). By HBL3, T proves

ThmT (⌜0 = 1⌝)→ ThmT (⌜0 = 1→ A⌝)→ ThmT (⌜A⌝).

ConT is the same as ¬ThmT (⌜0 = 1⌝). Part (a) follows tautologically.

We now prove (b). By HBL1, T proves ThmT (⌜A→ ¬A→ 0 = 1⌝). By two
uses of HBL3,

T ⊢ ThmT (⌜A⌝) ∧ThmT (⌜A→ ¬A→ 0 = 1⌝)→ ThmT (⌜¬A→ 0 = 1⌝)
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and
T ⊢ ThmT (⌜¬A⌝) ∧ThmT (⌜¬A→ 0 = 1⌝)→ ThmT (⌜0 = 1⌝).

Putting these together proves part (b).

Theorem VII.76 (Second Incompleteness Theorem). Suppose T is a consistent
axiomatizable theory extending R that satisfies the Hilbert-Bernays-Löb condi-
tions. Then

T ⊬ ConT .

Proof. Let D be the unprovable self-referential formula of (VII.13), chosen so
that R ⊢ D ↔ ¬ThmT (⌜D⌝). Theorem VII.70 established that T ⊬ D. We
shall prove that T proves ¬D → ¬ConT . From this, it follows that T proves
ConT →D and therefore T ⊬ ConT .

Note that
T ⊢ ¬D → ThmT (⌜D⌝) (VII.14)

by choice of D. By HBL2,

T ⊢ ThmT (⌜D⌝)→ ThmT (⌜ThmT (⌜D⌝)⌝). (VII.15)

By choice of D again, T proves ThmT (⌜D⌝)→ ¬D. Hence by HBL1,

T ⊢ Thm(⌜ThmT (⌜D⌝)→ ¬D⌝). (VII.16)

From HBL3, (VII.16) gives that

T ⊢ Thm(⌜ThmT (⌜D⌝))→ Thm(⌜¬D⌝). (VII.17)

From (VII.14), (VII.15) and (VII.17), we obtain

T ⊢ ¬D → ThmT (⌜¬D⌝). (VII.18)

From (VII.14) and (VII.18) and by Lemma VII.75(b) with A equal to D and
B equal to 0 = 1, we obtain

T ⊢ ¬D → ¬ConT

as desired. This completes the proof of the Second Incompleteness Theorem.

We have established that T cannot prove ConT — at least assuming that
T is a consistent, axiomatizable extension of R. In this case, ConT is a true
statement that is not provable in T . Unlike the earlier formula D asserting its
own unprovability, Con is a natural statement, with an intuitive meaning that
does not depend on self-reference. As such, it is a very satisfying example of
the limitation of almost any useful strong theory of arithmetic.

One might still complain that ConT is metamathematical in nature, not
quite purely mathematical in the normal sense of mathematics. There other
statements that are independent of PA that are more natural in the sense that
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they do not explicitly involve metamathematical concepts. These other inde-
pendent statements are beyond the scope of the present text, but the interested
reader can seek them out by doing an internet search for the “Paris-Harrington
theorem”, the “hydra theorem”, the “Goodstein theorem”, and related con-
structions.

The next obvious question is whether ConT is always independent of T . The
answer is no. To see this, let T be any axiomatizable, consistent extension of R.
By the Second Incompleteness Theorem, T ⊬ ConT . Therefore, if we let T ′ be
the theory T ∪ {¬ConT }, it must be that T ′ is consistent. Clearly, T ′ is also
axiomatizable. It is in addition reasonable to assume that T ′ ⊢ ConT ′ → ConT

just because any T -proof is a T ′-proof.11 Therefore T ′ ⊢ ¬ConT ′ just because
T ′ ⊢ ConT ′ → ConT .

On the other hand, the extra condition of ω-consistency is enough to ensure
that ConT is independent of T .

Theorem VII.77. Suppose T ⊇ R is ω-consistent and axiomatiable and satisfies
the Hilbert-Bernays-Löb conditions. Then ConT is independent of T .

Proof. We already proved that T ⊬ ConT . So suppose that T ⊢ ¬ConT ; that
is, that T ⊢ ∃yPrfT (y, ⌜0 = 1⌝). Since T is consistent and T ⊇ R, and since

PrfT represents Prf T , we have that T ⊢ ¬PrfT (m, ⌜0 = 1⌝) for every m ∈ N.
This contradicts the ω-consistency of T .

VII.10 Löb’s Theorem

Löb’s Theorem is an interesting application of the Second Incompleteness The-
orem; loosely speaking, it says that if the provability of A implies the truth
of A, then A is true. Or more precisely, it states that if A can be proved with
the aid of the hypothesis that A has a proof, then A can proved without that
hypothesis:

Theorem VII.78 (Löb’s Theorem). Let T ⊇ R be consistent and axiomatizable
and satisfy the Hilbert-Bernays-Löb conditions. Suppose T proves ThmT (⌜A⌝)→ A.
Then T ⊢ A.

The formula ThmT (⌜A⌝) → A states that the provability of A implies the
truth of A; this is known as the reflection principle for A relative to T . The
Second Incompleteness Theorem implies that, under the hypotheses of Löb’s
Theorem, T ⊬ ¬A. This is because otherwise T ⊢ ¬ThmT (⌜A⌝) and hence, by

Lemma VII.75(a), T ⊢ ConT . Löb’s Theorem gives the stronger conclusion that
T ⊢ A.

11Strictly speaking, we need some extra assumptions. In particular, we want T to prove
ThmT ′(⌜A⌝) is equivalent to ThmT (⌜ConT → A⌝). This certainly holds for any straightfor-
ward way of formalizing metamathematics in a powerful theory such as PA. See also the
comments after the statement of Löb’s Theorem.
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The proof of Löb’s Theorem will proceed by letting T ′ be the theory T +¬A
and showing that T ′ is inconsistent. Before giving the proof, we explain how to
define the formula PrfT ′(w,x) that represents the Prf T ′ relation. (We glossed
over this point in the footnote on page 282; now we make it precise.) The idea
is that PrfT ′(w, ⌜B⌝) should hold exactly when PrfT (w, ⌜A→ B⌝). More for-

mally, let ImpA(x1, x2) represent, in R, the computable function ⌜B⌝↦ ⌜A→ B⌝.
Then let PrfT ′(w,x) be the formula

PrfT ′(w,x) ∶= ∃z (ImpA(x, z) ∧PrfT (w, z)).

Then define ThmT ′(x) to be the formula ∃yPrfT ′(y, x), and define ConT ′ to
be the sentence ¬ThmT ′(⌜0 = 1⌝).

Claim. Let T be as in the statement of Löb’s Theorem.
(a) PrfT ′(w,x) represents Prf T ′ .
(b) As formalized above, T ′ satisfies the Hilbert-Bernays-Löb conditions.
(c) T ′ ⊬ ConT ′ .

The proof of the claim is fairly straightforward and is left for the reader as
Exercise VII.19. Note that parts (a) and (b) mean that all the constructions
for the First and Second Incompleteness Theorems apply to T ′ without further
modification.

Proof of Löb’s Theorem VII.78. Let T ′ be the theory T + ¬A. It will suffice to
show that T ′ is inconsistent as that implies T ⊢ A. By the Second Incomplete-
ness Theorem for T ′, it suffices to prove that T ′ ⊢ ConT ′ .

By the hypothesis that T proves ThmT (⌜A⌝) → A and since T ′ ⊢ ¬A, we

obtain that T ′ proves ¬ThmT (⌜A⌝). By HBL1 and HBL3 we obtain

T ⊢ ThmT (⌜(¬A→ 0 = 1)→ A⌝)

and

T ⊢ ThmT (⌜(¬A→ 0 = 1)⌝) ∧ThmT (⌜(¬A→ 0 = 1)→ A⌝)→ ThmT (⌜A⌝).

Thus since T ′ ⊇ T , the theory T ′ proves ¬ThmT (⌜¬A→ 0 = 1⌝). In other words,

T ′ ⊢ ¬ThmT ′(⌜0 = 1⌝), namely, T ′ proves ConT ′ . From this, T ′ is inconsistent
and therefore T ⊢ A.

Exercises

Exercise VII.1. Prove that Q does not prove ∀x (x ≠ Sx). [Hint: Do this by
constructing a model of Q ∪ {∃x (x = Sx)}. The universe of the model can be
N ∪ {∞} where ∞ denotes an additional element. You will need to define the
model so that S∞ to equal ∞, and also define how addition and multiplication
act when one or both arguments are equal ∞.]
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Exercise VII.2. Prove that Q does not prove ∀x (0 + x = x) or ∀x (0 ⋅ x = 0).
[Hint: Find a model Q with universe N∪{∞1,∞2} in which both ∀x (0+x = x)
and ∀x (0⋅x = 0) are false.] Conclude that Q also does not prove ∀x∀y (x+y = y+x)
or ∀x∀y (x ⋅ y = y ⋅ x).
Exercise VII.3.

(a) Prove that PA proves ∀x (x ≠ Sx). Compare to Exercise VII.1.
(b) Prove that PA proves ∀x (x ≠ SSx).

Exercise VII.4. Prove that PA proves ∀x∀y (x + y = y + x). This will require
three steps, each using induction:

(a) Prove that PA proves 0 + x = x + 0. (You can use Example VII.5.)
(b) Prove that PA proves Sx + y = S(x + y). (Use induction on y.)
(c) Prove that PA proves x + y = y + x. (Use induction.)

Exercise VII.5. Let PA ∖ {Q3} be the theory with the same axioms as PA
except omitting the axioms Q3. Prove that PA ∖ {Q3} logically implies Q3.
Therefore, Q3 may be omitted from the list of axioms for PA, without changing
the theory. [Hint: Use induction on the formula x ≠ 0→ ∃y (Sy = x).]
Exercise VII.6. Consider replacing the definition of EA in Equation VII.2
with

EA(x1) ∶= ∀y [ASelfSub(x1, y)→ A(y)].
Revise the second proof of Theorem VII.24 so that it works with this definition
of EA.

Exercise VII.7. Prove the following claims from Example VII.53.
(a) AP (x1, y) represents the predecessor function P in R.
(b) R ⊬ ∀y (Sy ≠ 0). Therefore, AGP

does not represent the function P in R.

Exercise VII.8. Give a direct proof that a relation S is representable in R if
and only if its characteristic function χS is representable in R. By a “direct”
proof, we mean a proof that uses the definitions of R and representability, and
does not depend on Theorems V.17 and VII.20.

Exercise VII.9. Regular minimization was used to define the function 2⌊log2 x⌋,
but was not elsewhere used for the definition of the Gödel β function. Show
how to eliminate the use of regular minimization in the definitions used for the
Gödel β function by reworking the definition to use bounded quantification in
place of regular minimization.12

Exercise VII.10. Prove that the sequence concatenation function ⌢

⟪n1, . . . , nk⟫⌢⟪m1, . . . , nℓ⟫ ∶= ⟪n1, . . . , nk,m1, . . . ,mℓ⟫.

is representable. Give a proof using the techniques of Sections VII.6 and VII.7
including Gödel sequence coding, but not using Theorem VII.20.

12This result is usually stated as “exponentiation is ∆0-definable”, see Gaifman-
Dimitracopoulus [1980]. The gist is that addition, multiplication, Boolean operators and
bounded quantification suffice to form a formula that represents the graph of the exponenti-
ation function in R, and hence defines the graph of the exponentiation function in N .
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Exercise VII.11. If g is a k-ary function and h is a (k + 2)-ary function, then
a (k + 1)-ary function f can be defined by primitive recursion from g and h as

f(n⃗,0) = g(n⃗)

f(n⃗,m + 1) = h(n⃗,m, f(n⃗,m)).

Suppose g and h are representable. Give a direct proof that f is representable.
By a “direct” proof is meant a proof using Gödel sequence coding, and not using
Theorem VII.20.

Definition VII.79. Let T ⊇ R be consistent, and S be a k-ary relation. Define
that T semirepresents S provided that there is a formula AS(x1, . . . , xk) such
that for all n1, . . . , nk ∈ N,

(a) If S(n1, . . . , nk) is true, then T ⊢ AS(n1, . . . , nk); and
(b) If S(n1, . . . , nk) is false, then T ⊬ AS(n1, . . . , nk).

If other words, S(n1, . . . , nk) is true if and only if T ⊢ AS(n1, . . . , nk). Prove
that S is semirepresented by T if and only if S is semidecidable.

Exercise VII.12. Let T ⊇ R be consistent and axiomatizable. Prove that the
theory T = {A ∶ A ∈ T} and the set {A ∶ ¬A ∈ T} are computably inseparable.
[Hint: Use a proof by contradiction and a self-referential formula.]

Exercise VII.13. Let A be an arbitrary LPA-sentence. Prove that PA does
not prove ¬ThmPA(⌜A⌝).

Exercise VII.14. Let E be a self-referential formula such that R proves E ↔ ThmPA(⌜¬E⌝),
so that E states “I am refutable by PA.” Is E true or false? Justify your an-
swer. (For this and the next exercises, “true” or “false” means true or false in
the standard model of the integers.)

Exercise VII.15. Let F be a self-referential formula such that R proves F ↔ ThmPA(⌜F ⌝),
so that F states that “I am PA provable”. Is F true or false? Justify your an-
swer. A sentence F with this property is called a “Henkin sentence”. [Hint:
Use Löb’s Theorem.]

Exercise VII.16. Let G be a self-referential formula such that R proves G↔ ¬ThmPA(⌜¬G⌝),
so that G states that “PA cannot refute my negation”. Is G true or false? Justify
your answer. [Hint: Use Löb’s Theorem, or the previous exercise.]

Exercise VII.17. Let H be a self-referential formula such that R proves

H ↔ ¬ThmPA(⌜H⌝) ∧ ¬ThmPA(⌜¬H⌝),

so that H states that “I am independent of PA”. Is H true or false? Justify
your answer.

Exercise VII.18. Let J be a self-referential formula such that R proves

J ↔ ThmPA(⌜J⌝) ∨ThmPA(⌜¬J⌝),

so that J states that “I am not independent of PA”. Is J true or false? Justify
your answer. [Hint: Use Löb’s Theorem.]
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Exercise VII.19. Prove the claim stated on page VII.10 before the proof of
Löb’s Theorem VII.78.

Exercise VII.20. Suppose T ⊇ R is consistent, axiomatizable and satisfies the
Hilbert-Bernays-Löb conditions. Let D be a self-referential formula such that
R ⊢D↔ ¬ThmT (⌜D⌝).

(a) Prove T ⊢D↔ ConT .
(b) Suppose that E is another sentence such that R ⊢ E ↔ ¬ThmT (⌜E⌝).

Prove that T ⊢D↔ E.
(c) Show that there is a theory T such that T ⊢ ¬D. (This shows that the

assumption of ω-consistency in Theorem VII.71 cannot be weakened to
the assumption of consistency.)

Exercise VII.21. Let T ⊇ R be a consistent, axiomatizable theory. This exer-
cise asks you to carry Rosser’s construction of an independent sentence for T .
A Rosser proof of a formula A is defined to be a proof P of A such that there
is no proof P ′ of ¬A with ⌜P ′⌝ < ⌜P ⌝. More formally, let Neg(x1, x2) represent
the (computable) mapping ⌜A⌝↦ ⌜¬A⌝ in R, and define RprfT (w,x) to be the
formula

RprfT (w,x) ∶= PrfT (w,x) ∧ ∀v∀y (v < w ∧Neg(x, y)→ ¬PrfT (v, y)).

Let RthmT (x) be the formula ¬∃wPrfT (w,x). Finally, let DR be a self-
referential formula such that R proves DR ↔ ¬RthmT (⌜DR⌝). Also, let A be
an arbitrary formula. Prove:

(a) There is a Rosser T -proof of A if and only if there is a T -proof of A.
(b) If T ⊢ A, then T ⊢ RthmT (⌜A⌝).

[Hint: You will need to use T ⊇ R and Axiom R′
≤.]

(c) If T ⊢ ¬A, then T ⊢ ¬RthmT (⌜A⌝).
(d) Prove that T ⊬DR.
(e) Prove that T ⊬ ¬DR.
(f) Conclude that DR is independent of T .
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accept, 175, 213
accepting configuration, 213
addition, 224
adequacy, 25, 27, 28
adequate, 23, 30
admissible rule, see derived rule
α0, 159
algorithm, 165
alphabet, 171
alphabetic variant, 95, 99
ambiguously defines, 119
and (∧), see also big and, 7
archimedean, 163
arity, 24, 73
arrays, 115–116, 129
associativity, 22
at least (AtLeastk), 126, 155
at most (AtMostk), 126
atomic formula, 74, 83
axiom, see also PL, axioms and FO,

axioms, 22
axiomatizable, 188

big and (⋀), 26, 27
big or (⋁), 26, 27
big-Oh notation, 126
binary, 24
binary complement, 214
binary decision tree, see decision tree
binary representation, 222
blank symbol, 210, 211
Boolean function, 24
bound by, 95
bound by, 76, 77
bound variable, 71, 76
bounded maximization, 266
bounded quantifier, 261

breadcrumb, 219

captured by, 95
cardinality, 126, 155, 158, 160
Case, 32, 42
categorical, 159, 161, 164
center, 70
characteristic function, 175, 284
Church-Turing Thesis, 3, 169, 214–216,

218, 226, 227
clause, 27
closed, 74
closed formula, see sentence
closed term, 148
CNF, see conjunctive normal form
cofinite, 201
3-colorable graph, 65
commutativity, 22
Compactness Theorem, 62, 65, 91, 154–

157
compiler, 170
complement, 173
complementary, 64
complete, 3, 58, 60, 64, 113, 145, 150
completeness, 46, 132
Completeness Theorem, 3, 58, 59, 65,

131, 133, 145, 146, 160
computability, 165
computable, 3, 172, 174
computably enumerable, see also Tur-

ing enumerable, 3, 176, 177
computably inseparable, 199
computably separable, 199
compute, 222
concatenation, 172, 202
conclusion, 48, 135
configuration, 211, 271
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encoding, 271, 272
halting, 212, 213
initial, 212

conjunct, 27
conjunction, 7, 27
conjunctive normal form, 27, 28
consequences of (Cn), 160
conservative extension, 118
consistent, see also ω-consistent, 51
constant symbol, see also Theorem on

Constants, 67, 68, 73, 79
continuum, 163
contradiction, see proof by contradic-

tion
contrapositive, 22
converge, 179
countable, 158
countably infinite, 158
counterexample, 148
Craig’s Theorem, 184, 188, 204
current state, 210

data store, 226, 227
De Morgan’s law, 22, 28–30, 40
decidable, see also Turing decidable and

recursive, 3, 172, 174
decide, 172, 214, 222
decision tree, 20–21, 29
Deduction Theorem, 50–51, 57, 140–

142, 145
semantic, 17, 90

definable, 116, 117
defines, 118, 119

a function, 117
a relation, 116
an object, 117

defining axiom, 118, 119
definition of truth, see truth, definition

of
dense, 112
dense linear order, 112–114

without endpoints, 114, 159
derivation, see proof, 48, 135
derived rule, 51, 54, 57, 58, 137
diagonal argument, 191, 251
diagonal theorem, 197, 206

disjunct, 27
disjunction, 8, 27
disjunctive normal form, 26, 27
distributivity, 22, 29, 40, 112
diverges, 179
divides, 261
division, integer, 261
DLO, see dense linear order
DNF, see disjunctive normal form
domain, 79
double negation, 22
double turnstile (⊧), 15, 83, 87

negated (⊭), 83
dovetailing, 178
dual quantifier, 106
dyadic representation, 222

effective, 165, 169
effective algorithm, 18
effective procedure, see algorithm
eigenvariable, 135
elementarily equivalent, 114, 159
elementary, 111, 114
elementary class, 111, 128, 155
elementary class in the wide sense, 111,

128, 155
empty string, 171
enumerate, 176, 216, 222
enumerator, 176
equality, 103
equality axioms, 134
equality sign (=), 68, 73, 74, 94
equivalence, 8
equivalence relation, 151
even cardinality finite models, 126, 163
exactly (Exactlyk), 126
excluded middle, 22, 29
exclusive or, see also parity, 24, 32
existential introduction, 101, 103, 140

EI Rule, 140
exists unique (∃!), 117
expansion, 109
exponential time, 18, 168
exportation, 22
expression, 10, 34, 46, 72, 132, 171
extensional, 238
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extensionality, 116

false, nullary connective (⊥), 32
feasible algorithm, 168
field, 112
finite, 155, 158
finite control, 210
finitely axiomatizable, 164
finitely satisfiable, 62
First Incompleteness Theorem, 237, 238,

246–254
first-order logic, 2, 67
fixed length code, 229
FO, proof system, 133

axioms, 133, 137
derived rules, 145
FO-proof, 135
rules, 134, 137

formula, see also propositional formula,
74

free variable, 71, 76
function symbol, 67, 68, 73, 80

generalization, 86, 99, 138
Generalization (Rule), 134, 135, 137
generalization variable, 135
Gödel number, 189, 192, 246, 272, 273
graph, 111

directed, 111
undirected, 111, 128

graph of a function, 80, 180, 263
greatest common divisor, 125
group, 111, 113, 114
group identity, 70
group inverse, 70
group theory, 69–71, 81, 114

halting configuration, see configuration
halting problem, 1, 3, 165, 188, 191,

192
halting state, 210, 211
Henkin, 148
Henkin sentence, 285
Hilbert-style, 47, 133
human-centric, 46, 132
Hypothetical Syllogism, 23, 51, 56, 58,

63, 140

idealized computer, 165
idempotency, 22
if and only if (↔), 8
if-then (→), 8
if-then-else connective, see Case
image, 205
implication, 8
implies, 15
inclusive or, 8
Incompleteness Theorems, see also First

Incompleteness Theorem and
Second Incompleteness Theo-
rem, 1, 4, 157, 165, 237

inconsistent, 51, 142
independent, 253, 276
individual, see object
induction, see proof by induction
induction axiom, 240
inductive definition, see recursive defi-

nition
inequality (≠), 68, 75
initial configuration, see configuration
injective, 203
input alphabet, 210, 211
instance, 36
instantaneous description, see configu-

ration
instantiation, see universal instantia-

tion
integer, 71
integers, theory of, 71–73, 156
intensional, 237
interpretation, 2, 79, 80
interpreter, 170
irreflexivity, 112
isomorphic, 159
iterated concatenation, 172

Kleene normal form, 276
Kleene star, 202
Kochanski approximation, 167

language, 30, 73, 171, 213
Law of the Excluded Middle, 64
least common multiple, 125
left endpoint, 114
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length, 171
Lindenbaum’s Theorem, 59–61, 65, 148,

150, 204
linear order, 111
linear time, 168
literal, 26, 27
Löb’s Theorem, 282
logical consequence, 87, 89
logical symbol, 72
logically equivalent (⊧)), 88
logically implies, see also double turn-

stile, 87, 89
loop, see loop
 Loś-Vaught Test, 159, 161
Löwenheim-Skolem Theorem, 156, 160

majority, 33, 42
malleability, 189, 190, 195, 197, 204,

232, 233
many-one complete, 205
many-one reducible, 196
many-one reduction, 196
meta-algorithm, 170
metamathematics, 45, 50
minimization (µ), 180, 207, 265
model, 79, 87
models of (Mod), 111
Modus Ponens, 23, 45, 47, 48, 58, 134,

135
Modus Tollens, 23, 54, 56, 58, 140
multitape Turing machine, 231

nand (∣), 32
natural language, 8, 9, 68
negation, 7
non-archimedean, see archimedean
non-logical symbol, 72
non-trivial, 200
nonstandard integers, 72
nonstandard model, 4, 156, 158, 160
nor (↓), 32, 41
not (¬), 7
nullary, 32
numeral, 156, 163, 241, 248
numeral-wise representable, see repre-

sentable

object, 67
object assignment, 79, 82
ω-consistent, 249, 278
ω-inconsistent, 249
or (∨), see also big or, 7
order (group element), 70
ordered field, 112
output state, 210, 211
overspill, 156

PA, see Peano Arithmetic
palindrome, 172, 234
parity (⊕), 24, 31
partial computable, 180
partial computes, 222
partial function, 179
partial truth assignment, 20
Peano Arithmetic, 4, 73
Pierce’s Law, 23, 64
PL, proof system, 47

axioms, 23, 47
Modus Ponens, 47
PL-proof, 48

polynomial time, 168
precedence of connectives, 10, 75
predecessor, 223, 240, 263
predecessor function, 284
predicate symbol, 67, 68, 73, 79
preimage, 203
prenex formula, 90, 104, 105
primality testing, 168
prime factorization, 168
prime number, 71
primitive recursion, 285
principal connective, 19
procedure, 165
projection, 202, 260
proof by contradiction, 18, 52, 53, 91,

142
proof by induction, 11, 33–34
proof search, 46, 186
proof-by-cases, 54–56, 64, 142
propositional connective, 10
propositional formula, 9–12
propositional function, see Boolean func-

tion
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propositional logic, 2
purely existential, 129

Q, 240
quadratic time, 168
quantifier-free, 104
quine, 197

R, 242
real closed field, 112, 113
real numbers, 112
recognise, 175
recursive definition, 11, 12
reflection principle, 282
reflexivity, 104, 134, 151
regular minimization, 265
reject, 213
relation symbol, see predicate symbol
reminder, 261
represent, 24, 25, 238, 244
representable, 243, 244
restriction, 109
reversal, 172, 234
Rice’s Theorem, 200–201, 206
Robinson’s theory, see Q, 238
Roger’s Fixed Point Theorem, 206
Rosser proof, 286

satisfiable, 13, 14, 87, 89
satisfied by, 14, 87, 89
satisfies, 14, 89
satisfying assignment, 14
scope, 77, 105
Second Incompleteness Theorem, 238,

276–282
self-halting problem, 193
self-printing, 197
self-referential, 197
semidecidable, see also Turing semide-

cidable, 175
semidecide, 175, 213, 222
semirepresent, 285
sentence, 78
sequence coding, 182
set, 171
set theory, 67, 158

Sheffer stroke, see also nand, 32
signature, see language, 171
single turnstile (⊢), 45, 48
Skolem paradox, 158
sorted, 115
sound, 58, 145
soundness, 46, 132
Soundness Theorem, 3, 57–59, 131, 133,

145
square brackets, 47
standard model, 131
start state, 210, 211
state, 210, 211
state diagram, 212
string of symbols, 171
strongly Henkin, 148
structure, 79
substitutable, 95–97
substitution, 49, 95–97, 185

propositional, 35–38
relaxed notation, 102, 103

substitution instance, 22
Substitution Rule, 137
subtraction (�), 128, 174, 224
successor, 71, 223, 240
symbol, 171
symbol-doubling, 234
symmetric difference, 201
symmetry, 104, 111, 134, 151

tape alphabet, 210, 211
tape head position, 168, 210
tautological implication, 15
Tautological Implication (TAUT), 58,

140
tautologically equivalent (⊧)), 17
tautologically implies, see also double

turnstile, 15, 91
tautologically valid, 14
tautology, 13, 14, 91
term, 74, 82
theorem, 48, 135
Theorem on Constants, 143
theory, 113, 114
theory of (Th), 113, 114
torsion-free, 71, 111, 157
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total, 179, 180
total length, 177
transition function, 210, 211
transitivity, 104, 112, 134, 151
tricotomy, 112
true theory, 249
true, nullary connective (⊺), 29, 32
truncated subtraction, see subtraction
truth assignment, 13
truth functional, 9
truth table, 13, 14, 18–21

compact, 19
reduced, 19–21

truth, definition of, 12–13, 81–86, 254
Turing computable, 215
Turing decidable, 214
Turing enumerable, 3, 216
Turing machine, 1, 209–233

definition of, 209–211
input string(s), 212
output string(s), 214, 216

Turing partial-computable, 215
Turing semidecidable, 213
turnstile, see double turnstile and sin-

gle turnstile

unary, 24
unary notation, 174
uncountable, 158
undecidable, 172
unified representation of algorithms, 188,

191
unique readability, 12, 43, 78
universal algorithm, 170, 189
universal closure, 86, 87, 138
universal instantiation, 101, 103, 128,

134, 135, 137
UI axiom, 134
UI Rule, 137

universal Turing machine, 190, 228
universe, 79
unsatisfiable, 14
user-friendly, 46, 132

vacuous quantifier, 107
valid, 2, 86

valid in a model, 139
variable, 10
variant, see also alphabetic variant

pℓ-variant, 37
xi-variant, 83
{x, y}-variant, 100

Von Neumann architecture, 227
Von Neumann bottleneck, 227

well-defined, 152
well-founded, 163
witness, 148
word, 171

xor, see exclusive or
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