

Chapter VII

Nilpotent Groups and Extensions

This chapter addresses the class of (finitely generated) nilpotent groups and

their finite extensions. In section 7.1 it is shown that the word problems of nilpotent

groups are in uTCo. The algorithm is based entirely on the commutator collection

process. In section 7.2 the results of Chapter 5 are applied giving classifications to the

groups that are extensions of nilpotent groups by finite solvable and finite nonsolvable

groups. Both of these classes turn out to have interesting alternative characterizations

based on the "growth function" of the group, which are discussed. Lastly, it is shown

that straightforward application of conjugate collection cannot give NC circuits for

any other groups than these.

VII.A Nilpotent Groups

We begin by repeating the definition of nilpotent given in Chapter 2. The

lower central series is defined recursively by

G1 - G

Gi+l - [Gi , G]

G is nilpotent if there exists an a such that G Of. = {1}.

The following lemma expresses the critical property of nilpotent groups upon

61

62

which the algorithm is based. As before, for any m Em = {gfl, gfl , ... , g!:/ }.

Lemma 7.1: It is possible to choose a sequence of generators gl,g2, ... ,gm

of G such that for every x E G there exist integers PI, ... , Pm such that x =

g~mg~":ll ... gi l
, and further such that for all e,s E {±l} and all i,j with i > j

we have gjeg!gjg't' E 1:1_1'

Proof. Suppose G (Y. = {I}. It is a well known fact about finitely generated

nilpotent groups that for all j the quotient group Gj /Gj+l is finitely generated abelian.

It is straightforward to prove the lemma by induction on i, but a less formal presen

tation is a bit easier to follow.

Suppose for example that the set {h1G2, h2G2, ... , hkG2} generates Gt/G2.

Since Gt/ G2 is abelian it follows that each element is equal to h ~l h~2 ... h:" 12 for some

sequence of exponents e and some 12 E G2. Similarly we can write g2 in the form

qt1 q:2 ... q;z'3 for some set {qb q2, . .. , qz} of coset representatives of GdG31 some

sequence of exponents I and some 13 E G3 • We can continue in this fashion until we

reach G(y', the trivial group. The sequence (in reverse order) is then gm, gm-},' .. ,gl =

hI, h2' ... , hk, q}, q2, ... qZl ' ...

To see that i > j implies gjegigjg't' E 1:i-l simply observe that if gj E

GI3 - GI3-1 then any commutator involving gj is in GI3+1 and thus can be represented

by generators all with indices lower than j. 0

The important thing to notice is that the commutator is shown to be in Ei-ll

not just in 1:;_1'

The general idea is to use commutator collection to eliminate all occurences of

the symbol gm' For readability let z = gm' For each y = g;-1 with i < m and s = ±1
we have "replacement rules" of the form

where iii is a string in the alphabet 1:m - 1 U {I}. Since each string can be padded

with the character 1 without changing its value, we can assume that for all y and s,

63

Iwl = p for the same integer p.

We need to convert zky z-k to a string in the alphabet bm-l U {I}, and it

has to be done in such a way that the length of the new string is bounded by a

polynomial in k. It turns out that the most straightforward approach of simply

applying the replacement rules repeatedly works. For example, if we have the rule

zyz-l = YWIW2 ••• W p , then (assuming for this example that k > 0)

Thus the exponent k is reduced by one and this process can be continued until the

exponents reach zero.

Now we want to formalize this by defining the function R(i,e,s, k) = the

transformation of zBkgiz-B\ where e,s E {±1} and k ~ O. For each e,s E {±1} and

1 S; i < m we have a replacement rule

zSgiz-B = gfw(i,e,s)

where w(i,e,s) is a string of length p in the alphabet bm-l U {I}. To these we add

for s E {±1}. Note that the right hand side of this rule is not of length p. For the

sake of exposition let go = 1.

Now we can formally define the function R recursively by

R(O,e,s,l) - 1 (. ale -a 1) - - I.e., z z =
R(i,e,s,O) g;

R(i,e,s,k+ 1) - [R(i,e,s,k)] 0 ([R(it,el,s,k)] 0 .•• 0 [R(jp,ep,s,k)])

h -+(.) - el e2 ep were W ~,e,s - gitgi2 .. ·gip •

As stated before, it is a necessary condition to do this reduction that the

length of the string produced from a conjugate of the form zakgf z-ak be bounded by

64

a polynomial in the variable n. (Note that k will always be ~ n.) The following

function defined for 0 ~ i < m and k ~ 0 will serve as that bound.

f(O,k) - 1

f(i, k) - C ~ l)P;-t + (i ~ 2)P;-' + ... + (~)po for i ?: 1

Note that for fixed i and p, f is a polynomial in the variable k.

Lemma 7.2: The function f has the following properties:

1. 'IO~i<m f(i,O) 1

2. 'Ii'lk~I f(i+l,k+I)=f(i+I,k)+pf(i,k)

Proof. Property 1 follows from the fact that (~) is 0 if a =F 0 and 1 if a = O. As

to property 2 we show that for all j ~ 0 the coefficient of pi on the left side is equal to

the corresponding coefficient on the right side. The coefficient of pO is 1 on both sides.

For j > 0 the coefficient of pi on the right side is e) + G:l) while the coefficient on

the right side is er). Since e) + C:l) = er) is a binomial coefficient identity,

both sides are equaLD

Lemma 7.3: The length of the string R(i,e,s,k) is bounded by f(i,k).

Proof Induction on k.

If k = 0 then IRI = 1 and f = 1, so the bound holds.

For the induction step, observe that if i =F 0 then R(i, e, s, k + 1) is a con

catenation of p + 1 strings. The induction hypothesis states that the length of first

string is bounded by f(i, k) and that the others are bounded by functions bounded

by f(i -I,k). Thus the total length is bounded by f(i,k) +pf(i -I,k) = f(i,k + 1).

For the special case of i = 0 we have R(O, e, s, k + 1) = 1, and the bound holds. 0

So the conversion of zsk 9f Z-sk will have length :5 f(i, k) :5 f(i, n) since we will

always have k :5 n. The function f is the length of the string that would be obtained

65

if all of the replacement rules were of the form zBgfz-B = gf(gi-d:!:P: that is, if the

indices of the elements of w(i, e, s) were always the largest possible (i - 1).

We are now ready to state and prove the main theorem:

Theorem 7.4: If G is nilpotent then the word problem for G is in uTCo.

Proof: The proof will be by induction on the m of lemma 7.1. The subgroup

H = (gI, ... , gm-I) of G is nilpotent and the elements {gil"" gm-d form a set of

m - 1 generators of H with the properties described in lemma 7.1. Thus, after the

base case is proved it will be sufficient to show that G $ucd {H, ~}. To be more

explicit: we need to show that G $ucd {H,~} :::::} G $ucd Majority and this can be

done with the following chain of implications:

G $ucd {H,~} :::::} G $ucd {H,~,Majority}

:::::} G $ucd {H,Majority} since ~ $ucd Majority

:::::} G $ucd Majority by induction hypothesis

First the base case:

Claim 1: If m = 1 then G E uTCO.

proof: If m = 1 then G is a cyclic group and by example 2 of Chapter 4

G E uTCo. q.e.d. claim 1.

Next the induction step.

Claim 2: G $ucd {H,~}.

proof: If the index of H is finite (i.e., G is a finite extension of H) then Q ~ ~P

for some p. By theorem 5.2 G $ucd {H,~p}. Thus G $ucd {H,~p,~} and since

~P $ucd ~ we have G $ucd {H,~} (lemma 4.1). The rest of the proof deals with the

case of G / H being infinite; i.e., G / H ~ ~.

The algorithm uses the conjugate collection process, which is based on the fact

that the input x = XIX2 ••• Xn can be rewritten in the form

where

{

Xi if Xi =I Z±I

Yi =
1 if Xi = Z±I

ki - the absolute value of the net count of z in XIX2 ••• Xi,

Si the sign of the net count of z in XIX2 ••• Xi.

66

Each of the conjugates is in H so X E H if and only if z"nkn E H, which is to say, if

and only if kn = o.
The oracle Turing machine that computes G from oracles for Hand IZ is

outlined as follows:

1. Universally verify

1a) that kn = 0, and

1 b) the conjugate string = 1 in H.

These two parts will be treated separately. As for part 1a let IZ be represented

by the alphabet {a, a -I, I}. Then if S = the set of inputs that make kn = 0 then

S ~hom IZ via the mapping

Xi 1---+ 1 for Xi =I z

So by lemma 4.3 there is a ucd(lZ) program for part 1a.

The problem of verifying that the conjugate string = 1 in H requires more

explanation. Generally, what needs to be done is quite simple. The conjugate string

is equivalent to a string in Em - I U {1} of length polynomial in n and thus so is

the product of all the conjugate strings. The Turing machine will simply make a

polynomial size invocation using oracle H and present that polynomial length string

to the oracle. The only question is whether we can determine easily enough what the

ith input to the oracle should be.

Earlier we defined a mapping zSkgfz-sk 1---+ R(i, e, s, k) taking conjugates to

strings in Em - I (in fact for a given i the mapping is to strings in Ei). Then the

67

function f(i,k) was defined as an upper bound on the length of R(i,e,s,k). In the

algorithm the exact string R(i, e, s, k) will not be used but rather a string of length

exactly f(i, k) that is R(i, e, s, k) with l's inserted in various places. Recall that

R(i,e,s,k) = [R(i,e,s,k -1)] 0 ([R(jI,el,S,k -1)] 0 ... 0 [R(jp,ep,s,k -1)])

a concatenation of p + 1 blocks. The first f(i, k - 1) bits are reserved for the first

block, the next f(i-I, k - 1) bits are reserved for the second block, and for each of

the remaining blocks f(i-I, k - 1) bits are reserved as well.

The most straightforward way to determine the tth character of the conversion

of zsk gf z-sk would be to 1) determine which block t should fall into, 2) reset t to the

relative position of the character within the block, and 3) reset s, e, i, and k to the

values corresponding to the particular block and loop. In particular k would be reset

to k - 1. Since k can be as large as n this is a problem: this process would take linear

time. Our salvation lies in the observation that for all 0 ~ v ~ k the conversion of

zS1lgfz-S1l is a prefix of the conversion of zskgfz-sk. The algorithm we will use begins

by finding v such that t is in the space allocated for zS1Igfz-S1I but not in that for

Z8(1I-1)gfz-S(1I-1). So the character we are looking for is the tth in the conversion of

and it must be in a block other than the first. The happy fact is that all of the other

blocks are conjugates of generators with indices strictly less than i. So if we apply

this process iteratively we will reach a point in which we are taking conjugates of

go = 1 and we can fill that whole block with the character 1, and this point will be

reached in ~ m = O(1) steps.

We now present the algorithm formally. It is split into two parts: subroutine
;

Ib performs the conjugate conversion and the main program Ie does the computation

needed before 1 b is called.

Subroutine 1 b: determine the tth character of the conversion of zsk g; z-sk

Input: s,e E {±1}, 0 ~ i ~ m, 0 ~ k ~ n

Output: h E Em - 1 U {I} ; that is, in the end the correct tth character will

; be on worktape h

68

1) If t > f(i, k) output h = 1 j the space beyond the end of the conversion is filled

with l's

2) If k = 0 or t = 1 then output h = 9f j the "base cases" are handled

j The next two lines determine the smallest prefix of the form zStl9fz-Stl that t

; 18 m.

3) Invoke Existential(k, v)

4) If f(i,v -1) < t::; f(i,v) then continue else Reject

5) t := t - f (i, v-I) ; t is reset to its relative position after the first block

6) 6:= rt/f(i -1,v -1)1 ; t is in the 6th block

7) t := t - (6 - 1)f(i-I, v-I) ; t is reset to relative position within the 6th block

. N (.) - el e2 ep , ow suppose w t, e, S - 9i1 9i2 ... 9ip

; Then the character we are seeking is the tth character of the conversion

. of z8(tI-l)9~"Z-8(tI-l)
, .11> •

; Now reset variables and loop

8) k := v-I

9) e := eb

10) i := jb

11) go to line 1

To see that this is a ucd program first observe that most of the steps are basic

arithmetic operations on O(log n)-bit numbers. The determination of w(i, e, s) is just

a finite table look-up. As for the loop, on each pass the value of i is decreased, so

there can be at most m passes.

We now give program Ie, which basically just invokes the H oracle and then

for each oracle input bit determines the proper values of i, e, s, and k for the call

to subroutine lb. There is a slight complication in that the input to the oracle is

69

a string of generators encoded in binary, so after the subroutine call it is necessary

to make that transformation. Let c be the length of the binary codes of the generators.

Program Ic: determine whether the conjugate string = 1 in H.

1) Compute n in binary

2) Compute f:= cnf(m, n) ; space for n conjugates with generators coded by c

; bits each

3) Invoke H(J, q)

4) Compute r:= rq/cf(m,n)1 ; oracle input q comes from the rth conjugate

5) Compute s := q - (r -l)cf(m, n) ; oracle input q is the 8 th bit of the conversion

; of the rth conjugate

6) Compute t := rs/cl ; input q belongs to the tth character of the conversion of

; the rth conjugate

7) Compute u := s - c(t - 1) ; it is the u th bit of the character code

8) Compute k := the absolute value of the net occurence of z in XIX2." Xr ; see

; examples 3 and 5 of Chapter 4

9) Compute s := the sign of the net occurence of z in XIX2'" Xr

10) Find i and e such that Xr = 9[

; Thus the relevant conjugate is zsk9f z-sk

11) Run subroutine 1 b ; output h = tth character of the conversion

12) Accept of Reject according to whether the u th bit of the binary code of h is 1

or 0 resp.

As in program 1 b most steps here are O(1og n)~ bit arithmetic operations. Lines

8 and 9 can be performed easily using the counting subroutine of chapter 4. There

are no loops in the program, so the number of alternations is bounded. Each step is

ued, so the program is ued.

That completes the proof of claim 2, and thus the proof of the theorem. 0

70

VII.B Groups of Polynomial Growth Rate

For G = (g1,"" gm) let a(n) = the number of elements of G definable by

strings of length less than or equal to n in the alphabet {9f1, ... , g!1 }. This function

a is called the growth function of G (with respect to the given set of generators). In

[34] and [27] it is proved that for finitely generated solvable groups a grows either

polynomially or exponentially, and that which of these two categories a group's word

proble~ falls into is not affected by the choice of generators. Thus the finitely gener

ated solvable groups can be divided into two classes: the polynomial growth and the

exponential growth. The following result of Wolf allows us to classify the complexity

of the polynomial growth solvable groups.

Theorem 7.5 (Wolf, 1968 [34]): A solvable group G has a polynomial growth

function if and only if G is an extension of a finitely generated nilpotent group by a

finite solvable group.

This leads to an easy extension of Theorem 7.4.

Theorem 7.6: If G is a solvable group of polynomial growth rate, then the

word problem for G in in uTCO.

Proof: By theorem 7.5 G has a nilpotent subgroup H of finite index. Lemma

2.6 tells us that there exists a subgroup N of H such that N <I G and N is of finite

index in G. Since N is a subgroup of a nilpotent group it is nilpotent as well, so by

theorem 7.4 N E uTCo. Thus, by 5.2 G ~ucd {N,Q} and since both Nand Q are

ucd-reducible to Majority it follows that G E uTCo. 0

A result of Gromov which generalizes the Wolf-Milnor theorem allows us to

classify the nonsolvable polynomial growth rate groups.

71

Theorem 7.7 (Gromov, 1981 [14]): If G has a polynomial growth function

then G has a nilpotent subgroup of finite index.

Theorem 7.8: If G is a group with polynomial growth function then G E

Alogtime.

Proof: By reasoning similar to that of the proof of theorem 7.6 G is an exten

sion of a nilpotent group by a finite (nonsolvable) group. Thus by theorem 7.4 and

theorem 5.2 its word problem is in Alogtime. 0

The next theorem shows roughly that the sort of algorithm used in the proof

of Theorem 7.4 will only work for polynomial growth groups.

Theorem 7.9: Let G be a finitely generated group. Suppose there exist

generators {gI,'" ,gm} and a polynomial F(k) such that for all i < j and all k there

exists a word v in the alphabet Ei of length ~ F(k) such that g1gigi k = v. Then G

is of polynomial growth rate.

Proof: By manipulating conjugates as in the proof of theorem 7.4, any word

of length n can be shown equal to gil g~2 ... g~7n for some PI, P2, ... Pm such that

IPII + Ip21 + ... + IPml ~ q(n) for a polynomial q. On the other hand the number

of elements of the form gilg~2 ... g~m with IPII + Ip21 + ... + IPml ~ n is bounded by

a polynomial in n, (call it r(n)). Thus every w of length n is equivalent to one of

r(q(n)) elements, giving a polynomial bound on the growth rate of G.O

Theorem 7.9 shows that if G is not of polynomial growth rate, then trying

to eliminate one variable at a time using conjugate collection will inevitably cause

an exponential blow-up in the size of the intermediately produced strings on some

inputs.

The last theorem of this chapter addresses lower bounds for polynomial growth

groups. A language L is defined to be ucd-hard for a class X if for all L' EX,

72

L' 5ucd L. This is not the same as hard with respect to some many-one reduction

but it has most of the same interesting properties: e.g., if Majority is ucd-hard for

Alogtime then uTCo = Alogtime.

Theorem 7.10: If Gis nonsolvable and of polynomial growth then the word

problem for G is ucd-complete for Alogtime.

Proof: Let G I H '" Q with Q finite and non solvable and H nilpotent. If

L E Alogtime we need to find a ucd{ G) program that accepts x = Xl X2 ••• Xn if and

only if X E L.

Since L E Alogtime and Q is nonsolvable we know that L 5D1ogtime Q, (by

theorem 3.2). Let f(x) be the Dlogtime function that maps strings to strings with

the property that f(x) = 1 in Q if and only if x E L. Now let R be a set of coset

representatives for G/H. If we define f'{x) to be the same as f(x) except with the

corresponding elements of R in place of those of Q then we have f'(x) E H if and

only if x E L. The basic idea is to guess all the possible H -elements that f'(x) could

be, multiply f'(x) by the inverse of that, and present this concatenation of strings

to the oracle. There exists some such guess that causes the oracle to output 1 if and

only if x E L.

The main task then is to produce these strings of H-elements. The first thing

to notice is that the number of strings needed is polynomially bounded. The reduction

f(x) produces a string of length PI{n) for some polynomial Pl. Should one perform

conjugate collection on f(x) the resulting string is increased in size by another poly

nomial P2. SO if x E L then f'(x) is equal to an H-string of length P2(Pl(n». Since

H is nilpotent it has a growth function P3 that is polynomial. Thus f'(x) could have

at most P4. = P3(P2(Pl(n») values. This is sufficient to show that L 5cd G because

the inverses of these P4. (n) strings could all be separately appended to f' (x) and the

resulting string tested for membership in G. To see that this can be done uniformly,

recall lemma 7.1 which shows that the elements of H can be put into a nice normal

form hq1 hq2 ••• hqrn • For the H -elements we are interested in, the sum of the lengths

73

of the qi will be O(log n). The ucd algorithm would existentially guess sequences

(ql, q2,·· ., qm) in binary and then make a G-oracle invocation. The input to the

oracle would be f'(x) followed by ql copies of hI, q2 copies of h2' etc. To determine

exactly what the iell input to the oracle should be is a matter of binary arithmetic,

details of which are omitted.O

Chapter VIII

Polycyclic Groups

In this chapter it will be shown that the polycyclic groups, a class that con

tains all of the finitely generated nilpotent groups, have their word problem in Teo.

In contrast to the theorem for nilpotent groups, the circuits given here are not shown

to be uniform. We begin by recalling the definition of the polycyclic groups.

Definition: A group G is polycyclic if it has a subnormal series G = HI t>

H2 l>... t> Hn = {I} such that for all i Htl Hi+! is cyclic.

That the finitely generated nilpotent groups are contained in the class of poly

cyclic groups is shown by lemma 7.1. The group (a, bj a2, b2) discussed in lemma

6.9 gives an example of a non nilpotent solvable group with polynomial growth func

tion. In order to assure the reader that the polycyclic groups are in fact a new class of

groups we give an example of a polycyclic group with an exponential growth function.

Lemma 8.1: The group with presentation

is polycyclic and has exponential growth function.

Proof: It will be convenient to write the element bPcq in the form [: 1 because

conjugating by a

74

75

has the same effect as the following matrix multiplication.

[
2 1 1 [p 1 [2P+ q 1
3 2 q = 3p+2q

A theorem of Higman, Neumann and Neumann [20] tells us that when the

element a is adjoined in this manner to a previous group (the free abelian group

(b, C; bc = cb) in this case) the subgroup corresponding to the previous group is un

changed. Specifically, in the case of this group it says that band c are free generators

of a free abelian subgroup, and thus for all p and q, the vectors [: 1 are distinct.

Claim: Let e = ele2 ... en E {O,l}n. (Call e a length n exponent vector.) For

distinct e the elements We = (bela-l)(be2a-l) ... (bena-l)bcan are distinct.

Pf: Note that w, = [: 1 forsome P and q. Let [::] < [:] mean PI < p,

and ql < q2. Since all the components of the matrix [: : 1 are positive, it is evident

that a maximum vector derived from a length n exponent vector is obtained by setting

e = 11 ... 1. Call this maximum vector m n •

subclaim: if e is any exponent vector of length n + 1 then mn < We'

pf of subclaim: By induction on n.

Base case: rno = be = [:]. On the other hand if lei = 1 then either

w, = a-lbaa = [: :] [:] = [:] if el = 0

or w, = ba-Ibca = [~l + [: :][: 1 [:] if el 1

Induction step: suppose the subclaim holds for lei = n. It needs to be shown

that if We is obtained from any exponent vector e of length n then bOa-1wea and

ba-1wea are both greater than m n. (That they are distinct from each other is obvious.)

By induction hypothesis Wn > m n-}, so a-1wna exceeds a-1mn_la by at least

2 in each component. (This is easily seen from inspection of the matrix.) Thus

bOa-1wna and ba-1wna exceed ba-1mn_la = mn by at least 1 in each component.

q.e.d. subclaim/claim

76

Thus there are at least 2n distinct elements representable by strings of length

~ 3n+2. 0

Several interesting characterizations of the polycyclic groups exist, (see [34] for

a concise summary). One that will be of use is given in the following theorems.

Theorem 8.2 (Auslander, 1967 [2]): A solvable group G is polycyclic if and

only if it is isomorphic to an integer matrix group.

The Auslander characterization of polycyclic groups allows us to conclude the

following immediately from the Lipton-Zalcstein theorem (6.4).

Theorem 8.3: If G is polycyclic then G E Dlogspace.

Lemma 8.4: If G is polycyclic with chain length m and H <I G then G / H is

polycyclic with chain length ~ m.

Proof: This follows straightforwardly from the third isomorphism theorem,

(see Rotman [29] pp. 24-27). To give a more combinatorial proof, we can view the

statement that G is polycyclic with chain length ~ n as equivalent to saying that G

has a presentation with certain sorts of relations. For example, if HI! H2 is gener

ated by element a then relations such as a-1ya = R(x) should hold, where y is any

string, and R(x) is a string representing an element of H 2• On the other hand we

can consider G/ H to be G with more relators added to its presentation (namely the

infinite set of strings {w : W E H}). Thus the same set of relations that show G to

be polycyclic with chain length ~ m show the same for G / H. 0

Theorem 8.5: If G is a finitely generated polycyclic group then the word

problem for G is in Teo.

Proof: Assume G and the Hi are as given in the definition of polycyclic group.

17

It will be convenient to use the characterization from theorem 8.2 and assume that

the generators are given as k x k integer matrices.

Let the input be a string of G-generator matrices A1A2 ••• An and let A be

their product. From the proof of theorem 6.4 we know that A = 1 (the identity

matrix) if and only if A :: 1 mod p for p = 2,3, ... ,J(n) for some polynomial J.

The circuit consists of the conjunction of these predicates. For a fixed p the usual

collection process will be used. Note that by lemma 8.4 G mod p (or more precisely

GIGp where Gp is the elements of G equal to 1 mod p) is polycyclic of chain length

m. Thus for each i we can translate a string of Hi mod p matrices into an equivalent

string of Hi+! mod p matrices (if such a string exists; if not, then set a "reject" flag).

It will be sufficient to show that a string of HI mod p matrices (not necessarily

from a restricted set of generators) can be transformed into an equivalent sequence

of H2 mod p matrices (or a reject flag is set) in constant depth and polynomial size.

(This is sufficient because the process of converting from H2 to H3 , H3 to H4 , etc. is

the same.) It is important to note that we need the same constant depth to work for

all p simultaneously.

Given: n k x k integer matrices A 1A2 ••• An with entries in the range [O,p) and

all in the group HI mod p. Let A denote their product mod p.

Let a represent a generator of (HI mod p)/(H2 mod p).

Step 1: translate each Ai into aqj Bi for some integer qi encoded in binary and

some Bi E H2 mod p.

Step 2: for j = 1,2, ... , n + 1 compute Tj = E1=1 qi.

Step 3: if arn+1 ¢ H2 mod p then set the reject flag.

Step 4: Replace the conjugates and the leftover portion (a rn+1) with equivalent

matrices C1 C2 ••• Cn +! with entries in the appropriate range. Each C j is in H2 mod

p as desired (assuming the reject flag did not have to be set, in which case it doesn't

matter).

Before analyzing this for size and depth we need to observe that the size of

the largest finite group dealt with is polynomially bounded. A group of k x k (mod

78

p)-matrices can have at most pk
2

elements. Since p is bounded by a polynomial in

n and since k is fixed the group is polynomially bounded. We have then that each

matrix encountered here will be represented by O(log n) bits, and that the length of

the qi found are likewise bounded. Now to analyze the algorithm:

Step 1 just transforms O(log n) bit blocks into O(log n) bit blocks. This can

be done with a depth 3 DNF circuit of polynomial size.

Step 2 is n+ 1 iterated addition circuits set up in parallel. Since each addend is

O(n) in size, (in fact O(log n)), corollary 2.4 says this can be computed with constant

depth polynomial size threshhold circuits.

Steps 3 and 4 both deal with only O(log n) bits at a time and so can be done

by depth 3 DNF circuits.

Putting all this together, each mod-p subcircuit is polynomial size and constant

depth. By stacking m such circuits on top of each other the input can step by step

be translated into the empty string. The reject flags of each level are linked by an

unbounded fanin OR. This is then negated giving us an output of 1 if and only if the

input is equal to 1 mod p. There are polynomially many of these mod subcircuits

and thus they can be linked by one unbounded fanin AND, adding 1 to the depth.

An additional bit of preprocessing is needed: the input matrices have to be

reduced mod p before this process can start. This is a matter of transforming 0(1)

length strings to 0(1) length strings (in almost all cases this will be the identity

transformation) and does not present a problem. 0

. A class of groups similar in definition to the polycyclic are the M-groups.

Definition: A group is an M-group if it has a subnormal series G = HI t>

H2 t> ... t> Hm = {I} such that for all i Hd Hi+} is either infinite cyclic or finite.

Lemma 8.6: If G is an M-group then G is an extension of a polycyclic group

by a finite group.

79

Proof: See Scott [32], p. 153. 0

Theorem 8.7: If G is an M-group then G ENCl.

Proof: By theorem 5.2 and lemma 8.6 G <ucd {H, Q} for some polycyclic

group H and some finite group Q. We can simply view the ucd-reduction as a regular

constant depth reduction, and then the fact that the word problems for Hand Q are

in NCI gives the theorem.D

Chapter IX

Other Groups

The previous two chapters constitute the main part of the thesis. This chapter

contains miscellaneous results that point in the direction of extending the main results,

and provide a starting point for continued research.

The first theorem shows that the polycyclic groups are not the only groups in

Teo. The proof will make use of a classic theorem due to Dehn, the proof of which

is quite long and can be found in [26].

Definition: If a word is freely reduced and its first and last characters are not

inverses of each other, then the word is called cyclically reduced.

Theorem 9.1 (The Freiheitsatz): Let R(aI, a2, ... , an) be a cyclically reduced

word in all a2, ... , an which involves an. Then the subgroup of

generated by aI, a2, ... ,an-l is freely generated by them; in other words, every non

trivial relator of G must involve an.

Also, a characterization of the polycyclic groups due to Hirsch will be needed.

81

Definition: A group G satisfies the maximal condition if it has no infinite

ascending chain of subgroups HI C H2 C '" .

Theorem 9.2 (Hirsch, 1938 [21.]): If G is solvable then G is polycyclic if and

only if it satisfies the maximal condition.

Theorem 9.3: The group with presentation G = (a, b : b-Iab = a2) is solv

able, but not polycyclic, and its word problem is in TCO.

Proof: We first establish that G is solvable.

Claim 1: G(1) ~ {bnakb-n : n 2: 0, k E ~}.

Pf: Every element of G(1) is a product of commutators and thus has a representation

in which the net number of occurences of b, (b counting positively and b- l counting

negatively), is O. The relation b-Iab = a2 implies the relations ab = ba 2, a-Ib =
ba-2, b-Ia = a2b-t, and b-Ia- l = a-2b- l . Using these and the trivial relation b-Ib =

bb- l we can push all occurences of b to the left and all occurences of b- l to the right

without changing the net occurences of b.

Claim 2: G(2) = {I}.

Pf: It will be shown that two arbitrary elements of G(l) commute. Let n 2: O.

Then

bn1 (ak1 bn2)(b-n1 ak2)b-n2

bn1 (bn2akl·2n2)(ak2·2nl b-n1)b-n2

The result here is clearly the same as if the two factors were reversed.

Thus G is solvable. The next claim establishes that G is not polycyclic.

Claim 3: Let Hi = {bnakb-n : 0 ~ n ~ i, k E ~}. Then for all i 2: 0:

(a) Hi is a subgroup of G,

(b) Hi CHi+!.

Pf: (a) The identity element is in Hi: bOaob-o = 1. To establish that each

82

element has an inverse: (bnakb-n)(bna-kb-n) = 1. Lastly, to show that Hi is closed

under multiplication, let bnlaklb-nl and lI'2ak2b-n2 be arbitrary elements of Hi, (so

o ~ nl, n2 ~ i).

Case 1: nl ~ n2. Then

Case 2: nl > n2. Then

bn1 (ak1 bn2-n1)ak2 b-n2

_ bn1 (bn2-n1 akl·2n2-nl)ak2 b-n2

bn2ak2+kl·2n2-nl b-n2

bn1ak1 (ak2·2nl-n2 bn2-n1)b-n2

bn1 ak1 +k2 ·2n l-n 2 b-n1

Since both nl and n2 are less than i, in either case the result is in Hi.

(b) It will be shown that bi+lab-(i+l) is not in Hi. If it were then it would have

to have an inverse bnakb-n E Hi. But as in claim 2:

Making use of claim 6 ahead, the latter is the identity if and only if 2n + k· 2i+1 = O.

But since n < i + 1 this equation has no solution for k an integer.

Thus G does not have the maximal condition and by theorem 9.2 is not poly-

cyclic.

Next we show that G E TCo. Let wE {a±l,b±l}"'.

Claim 4: if w = 1 then the number of occurences of b is O.

Pf: Going back to the definition of a group presentation we have that w = 1

if and only if we can obtain the empty string by insertion and deletion of b-1aba-2

and the trivial relators aa-1, bb-1 , etc. None of these operations change the net

occurences of b so if we are to possibly transform w into the empty string (which has

no occurences of b, of course), w must start with a net of 0 b's.

Claim 5: H w has 0 net occurences of b then w = bnaicb-n for some n ;::: O.

Pf: as explained in claim 1.

Claim 6: bnaicb-n = 1 if and only if k = O.

Pf:

bnaicb-n = 1 => b-n(bnaicb-n)bn = b-n(l)bn = 1

=> aic = 1

=> k = 0 by the Freiheitsatz

83

The algorithm to decide the word problem for G will 1) check that the net

occurences of b is 0, and 2) if so, put the string into the form bnaicb-n, n ;::: 0 and test

for k = O.

Claim 7: Let g = glg2 ... gn E {a±l, b±l }*. Then g = broaicb-so where

ri = the total # of occurences of b+I to the right of gi.

Si = the total # of occurences of b-1 to the left of gi.

{ 2'; if gi = a±l
Pi =

if gi = b±l 0

qi = {
2Si if gi = a±I

0 if gi = b±1

ei = {
+1 if gi = a+1

-1 if gi = a-I

Proof' As in claim 1, all occurences of b+I will be pushed to the left and all

occurences of b-1 will be pushed to the right.

We first deal with the b+I. Whenever b+I is pushed past an a±l, the a±l

doubles. (I.e., ab is replaced by ha 2 and a-1b is replaced by ba-2.) Thus after all

the b+I are pushed, we have bro on the far left, each gi = a ei is replaced by aeiPi ,

and the b- l are still in place. Similarly, when b-1 is pushed to the right past an a±\

84

the a:l:1 doubles. Since b-1ae;p; is equal to a2e;P;b-I, ultimately a eiPi is replaced by

aeip;2"j = aejp;I];, and we have b-so at the far right.

Claim 8: G E Teo.

PI: We only need to be able to compute the above k. The ri and 8i are obtained

by counting. Since these will be O(log n) in length, the Pi and qi can be obtained via

a look-up table. Finally, as Pi and qi are O(n) in length, k can be computed using

multiplication and vector addition circuits. As stated previously, 9 E G if and only if

k=O.O

Lastly, we mention some recent results on hyperbolic groups, (see [15] or [13]

for a general exposition on the topic).

Hyperbolic groups are defined by viewing a group as a metric space. Let G be

a group generated by a finite set E, and assume that for all 8 in E, 8-1 is also in E.

For 9 E G define

IIgll = the length of the shortest word over E that defines 9

Then we define the distance between two elements 9 and h by

d(g,h) = IIg-lhll

A path between two elements 9 and h is a sequence of group elements go, gl, ... gm

such that go = g, gm = h and for all i, gi+l = gi8 for some 8 E E. A path is a geodesic

between 9 and h if there exists no shorter path linking these two points. The length

of such a geodesic is necessarily d(g, h).

For Ii ;::: 0, a Ii-neighborhood of a path is the set of all group elements within

distance Ii of some point on the path.

Definition: A group G is hyperbolic if there exists a Ii > 0 such that for

any three group elements gl, g2 and g3 and any three geodesics PI2, P13 and P23 link

ing them, each path is contained in the union of the Ii-neighborhoods of the other two.

85

Examples include free groups, context free groups and the small cancellation

groups (see [13], Appendix). Examples of nonhyperbolic groups include any group

with a free abelian subgroup of rank 2, (i.e., Z X Z).

Theorem 9.4 (Cai, 1992 [9]): The word problem for any finitely generated

hyperbolic group is in NC2.

In looking to extend Cai's result, a natural next class to examine would be the

Markov groups. That class contains the hyperbolic groups and the polycyclic groups

(and thus Z x Z) and is closed under extensions and free products ([13], Ch. 9). The

Markov groups are also interesting because their definition relates to formal language

theory.

Definition: A Markov grammar r is a Deterministic Finite Automaton (see

[22]) with the restriction that no arrow points from a nonaccepting state to an ac

cepting state. The language accepted by r in denoted by L(r).

Definition: A group G is a Markov group if there exists a set of generators

E for G and a Markov grammar r with alphabet E such that the natural map from

L(r) to G is a bijection.

Thus L(r) is a set of unique normal forms for G with respect to E. It is not

hard to see that a free group is Markov: using a set of free generators and their

inverses as the alphabet, the DFA needs only to assure that no symbol is followed

immediately by its inverse. It is equally easy to see that polycyclic groups are Markov

by using the fact that each element can be written uniquely in the form X~l X~2 ••• x~

for some set of generators {Xl, X2, ••• , X m}.

The Markov groups then provide a candidate for a larger class to show to be

in NC.

Chapter X

Conclusion

Many interesting open problems remain to be looked at in this area. Some,

such as determining exactly which groups have their word problem in TCo, entail

solving major open questions in circuit theory. In the case of that example, just

determining which finite groups are in TCo would answer the question of whether

TCo NCl since the finite nonsolvable groups are complete for NCI. But many

good problems without such large-scale implications exist as well.

Many of the results of this dissertation leave room for improvement. Some

feasible-looking questions are:

1) Are the free group word problems in Alogtime/NCl?

2) Are the polycyclic word problems in uTCO?

3) Are the polynomial growth nonsolvable groups complete for Alogtime with

respect to Dlogtime reductions?

4) Is the word problem for an extension of a group H by an infinite cyclic

group uTCo-reducible to the word problem for H?

5) Can the free products theorem be improved? A possible conjecture is that

G ® H :::;'ucd {G, H, F} for F a nonabelian free group.

6) Can the Markov groups be shown to be in N C or hard for P?

Another general question that could be explored is which groups' word prob

lems are hard for NCI. One might suspect that all nonsolvable groups word problems

86

87

would be hard for NCI since they seem "harder" than the finite nonsolvable group

word problems. Of course, it is possible that a group's word problem could be neither

in N Cl nor hard for N Cl. A theorem of J. Tits [33] may be helpful here; it states

that a nonsolvable linear group over a field of characteristic 0 either has a nonabelian

free subgroup or is an extension of a solvable group by a finite nonsolvable group.

Most of the groups looked at here have been such that they can be built up

from less complex groups by extensions, and the algorithms have been based on this

structure. In [19] and [31] examples of an infinite simple groups are given, (groups with

no nontrivial normal subgroup). Approaching such groups would require techniques

different from any employed here.

•

1

Bibliography

[1] A. V. Anisimov. On group languages. Cybernetics, 7:594-601, 1971.

[2] Louis Auslander. On a problem of Philip Hall. Annals of Math, 86:112-116,
1967.

[3] David A. Barrington. Bounded-width polynomial-size branching programs recog
nize exactly those languages in NCt. Journal of Computer and System Sciences,
38:150-164, 1986.

[4] David A. Mix Barrington and James Corbett. On the relative complexity of
some languages in NCt. Information Processing Letters, 32:251-256, 1989.

[5] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On unifor
mity within NCt. Journal of Computer and System Sciences, 41:274-306, 1990.

[6] Paul W. Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for
division and related problems. SIAM Journal on Computing, 15:994-1003, 1986.

[7] W. W. Boone. Certain simple unsolvable problems of group theory. Indig. Math.)
16,17 and 19, 1955.

[8] Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. 19th
ACM STOC Symp., pages 123-131, 1987.

[9] Jin-yi Cai. Parallel computation over hyperbolic groups. 24th Annual ACM
Symposium on the Theory of Computing, pages 106-115, 1992.

[10] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
Journal of the ACM, pages 114-133, 1981.

[11] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth re
ducibility. SIAM Journal on Computing, 13:423-439, 1984.

[12] M.J. Dunwoody. The accessibility of finitely presented groups. Inventiones Math
ematicae, 81:449-457, 1985.

[13] E. Ghys and P. de la Harpe, editors. Sur les Groupes Hyperboliques d'apres
Mikhael Gromov. Birkhauser, 1990.

2

[14] M. Gromov. Groups of polynomial growth and expanding maps. Pub!. Math.
I.H.E.S., 53:53-73, 1981.

[15] M. Gromov. Hyperbolic groups. In S.M. Gersten, editor, Essays in Group The
ory. Springer-Verlag, 1987.

[16] Philip Hall. Some word problems. J. London Math. Society, 33:482-496, 1958.

[17] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, London, 4th edition, 1959.

[18] O. G. Harlampovic. A finitely presented solvable group with unsolvable word
problem. Math. USSR Izvestija, 19:151-169, 1982.

[19] Graham Higman. A finitely generated infinite simple group. Journal of the
London Mathematical Society, 26:61-64, 1951.

[20] Graham Higman, B. H. Neumann, and Hanna Neumann. Embedding theorems
for groups. J. London Math. Society, 24:247-254, 1949.

[21] K. A. Hirsch. On infinite soluble groups, I. Proc. London Math. Soc., 44:53-60,
1938.

[22] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Publishing Company, Inc., 1979.

[23] Oscar H. Ibarra, Tao Jiang, and Bala Ravikumar. Some subclasses of context-free
languages in NCI. Information Processing Letters, 29:111-117,1988.

[24] Richard J. Lipton. Model theoretic aspects of computational complexity. IEEE
19th Annual Symposium on Foundations of Computer Science, pages 193-200,
1978.

[25] Richard J. Lipton and Yechezkel Zalcstein. Word problems solvable in logspace.
Journal of the ACM, 24:522-526, 1977.

[26] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial Group
Theory: presentations of groups in terms of generators and relations. Dover
Publications, Inc., 1976.

[27] John Milnor. Growth of finitely generated solvable groups. Journal of Differential
Geometry, 2:447-449, 1968.

[28] David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context
free languages. Journal of Computer and System Sciences, 26:295-310, 1983.

[29] Joseph Rotman. Theory of Groups. Allyn and Bacon, Inc., 1965.

•

•

•

3

[30] Walter L. Ruzzo. On uniform circuit complexity. Journal of Computer and
System Sciences, 22:365-383, 1981.

[31] E. A. Scott. A tour around finitely presented infinite simple groups. In G. Baum
slag and C. F. Miller III, editors, Essays in Group Theory. Springer-Verlag, 1987.

[32] W. E. Scott. Group Theory. Prentice-Hall, Inc., 1964.

[33] Jacques Tits. Free subgroups in linear groups. Journal of Algebra, 20:250-270,
1972.

[34] Joseph A. 'Wolf. Growth of finitely generated solvable groups and curvature of
riemannian manifolds. Journal of Differential Geometry, 2:421-446, 1968 .

