
Size-Depth Tradeoffs for Boolean Formulae

Maria Luisa Bonet
Department of Mathematics

Univ. of Pennsylvania, Philadelphia

Samuel R. Buss∗

Department of Mathematics
Univ. of California, San Diego

July 3, 2002

Abstract

We present a simplified proof that Brent/Spira restructuring of
Boolean formulas can be improved to allow a Boolean formula of
size n to be transformed into an equivalent log depth formula of size
O(nα) for arbitrary α > 1.
Keywords: theory of computation, Boolean formulas, formula
complexity, size-depth tradeoff

1 Introduction

A Boolean formula is constructed from variables x, y, . . . and from Boolean

functions (also called ‘gate types’) such as AND (∧), OR (∨), NOT (¬),

PARITY (⊕), etc. Equivalently, a Boolean formula is a Boolean circuit with

fanout one. A basis B is a finite set of Boolean gate types, and a B -formula is a

formula using only gate types from B . When deriving asymptotic size bounds

on Boolean formulas, we always work with a fixed basis B and consider only

B -formulas.

It has been known for some time (Spira [4] and Brent [1]) that a Boolean

formula of size n can be transformed into an equivalent O(log n) depth

formula. Examination of the methods of Brent and Spira shows that this

transformation can yield a log depth formula of size O(nα) with α = 2.1964.

We present a simple proof that for any α > 1 and arbitrarily close to 1, a

∗Supported in part by NSF grant DMS-9205181

1

Boolean formula of size n has an equivalent O(log n) depth formula of size

O(nα). We prove this for formulas over the basis AND, OR, NOT and also

for formulas over the basis PARITY, AND and 1. Our methods also for work

for other bases, e.g., B2 , the set of all binary gate types.

This improvement to arbitrary α > 1 has already been obtained by

Bshouty-Cleve-Eberly [2]. The advantage of our proof is that it is much

simpler. The reasons that our proof is simpler are (1) we deal only with

Boolean formulas while Bshouty-Cleve-Eberly deal with the more general

arithmetic case, and (2) we use a much simpler method of choosing break-

points in formulas based on a construction of Brent. Bshouty et.al. use a

more complicated extension of Brent’s construction. Our method of choosing

breakpoints could also be used in the algebraic case allowing simpler proofs

of the essential results of Bshouty,et.al.; however, we do not present this here.

2 Near-linear size, log depth transformations

We shall identify Boolean formulas with rooted trees in which each node is

labelled with a Boolean gate type and each leaf is labelled with a variable

name. The depth of a formula or a tree is the maximum number of nodes

(Boolean gates) of arity ≥ 2 on any branch of the tree. Note that unary gates,

such as negations, do not count towards the depth. The leafsize of a formula

is the number of occurrences of variables in the formula, which is also equal

to the number of leaves in the tree. We use log and ln to denote logarithms

base two and e , respectively.

For expository purposes, we begin by giving the proof of a well-known

theorem of Spira. For this, we need the following lemma about choosing

breakpoints in a tree (of fanin ≤ 2) that split the tree roughly into half.

Lemma 1 (Lewis-Stearns-Hartmanis [3]) If T is a tree with all nodes having

arity at most 2, and if the leafsize of T is m where m ≥ 2, then there is a

subtree S of T with leafsize s, where

d1
3
me ≤ s ≤ b2

3
mc.

We let B2 be the set of all binary Boolean gate types. Note that any

B2 -formula must be a binary tree.

2

Theorem 2 (Spira [4]) Let C be a B2 -formula of leafsize m. Then there is

an equivalent {∧,∨,¬}-formula C ′ such that,

depth(C ′) ≤ 2 · log3/2 m ≈ 3.419 log m

and such that

leafsize(C ′) ≤ mα

where α satisfies 1+2α

3α ≤ 1
2

(α ≥ 2.1964 suffices).

The proof of this theorem is by induction on the leafsize of C . The

induction step uses Lemma 1 to find a subformula D of C having leafsize s

satisfying d1
3
me ≤ s ≤ b2

3
mc .

We define C0 and C1 to be B2 -formulas obtained from C by the following

process: first replace the subformula D by 0 and 1, respectively. Now

eliminate the constants 0 and 1 by collapsing gates that contain a constant

as input (this removes at least one Boolean gate and might reduce the leafsize).

For a given truth assignment to the variables of C , if D has value 0 then

C has value equal to the value of C0 , and if D has value 1, then C has the

same value as C1 . Therefore C is equivalent to

E := (C0 ∧ ¬D) ∨ (C1 ∧ D).

r r r r

r

r

r
¡

¡
¡

¡ª

@
@

@
@R

¢
¢

¢
¢®

A
A
A
AU

¢
¢

¢
¢®

A
A
A
AU

¢
¢

¢
¢

A
A
A
A

¢
¢

¢
¢

A
A
A
A

¢
¢

¢
¢

A
A
A
A

¢
¢

¢
¢

A
A
A
A

∨

∧ ∧

C0 ¬D C1 D

Figure 1

Now apply the induction hypothesis to C0 , C1 , D and ¬D to get

equivalent formulas C ′
0 , C ′

1 , D′ and (¬D)′ of logarithmic depth. Clearly

C is equivalent to the formula

C ′ := (C ′
0 ∧ (¬D)′) ∨ (C ′

1 ∧ D′).

3

Also the leafsize of C ′ is equal to the sum of the leafsizes of C ′
0 , C ′

1 , D′ and

(¬D)′ . Its depth is two plus the maximum depth of these four formulas.

From this it straightforward to obtain the constants 2 log3/2 m and α :

we leave this calculation to the reader, as we shall do a similar, but more

complicated calculation below. 2

It is possible to make an improvement to the constants in Theorem 2 if we

assume that C is a {∧,∨,¬}-formula instead of a general B2 -formula. This

improvement depends on the fact that only one occurrence of subformula D

is picked as a breakpoint. Note that if D is a positively occurring subformula

of C then C0 tautologically implies C1 , and otherwise, if D is negatively

occurring then C1 tautologically implies C0 . In the first case, when C0

tautologically implies C1 , we have that C is equivalent to both of the formulas

(see Figure 2):

C0 ∨ (D ∧ C1) and (C0 ∨ D) ∧ C1.

In the second case, when C1 tautologically implies C0 , we have that C is

equivalent to both of the formulas:

C1 ∨ (¬D ∧ C0) and (C1 ∨ ¬D) ∧ C0.

r r

r

r

r
¢

¢
¢

¢¢

A
A
A
AA

¢
¢

¢
¢¢

¢
¢

¢
¢¢

A
A
A
AA

A
A
A
AA

¡
¡

¡¡ª

@
@

@@R

¡
¡

¡¡ª

@
@

@@R∧

∨

C0

D C1

Figure 2

The point is that, unlike in the proof of Spira’s theorem sketched above,

it is unnecessary to include the subformula D twice in the formula E . This

4

of course will improve the constant α and give a better bound on the leafsize

of C ′ . However, even better (smaller) values for α can be obtained if we also

change the choice of breakpoints so that instead of having D be approximately

one half the size of C , we choose D to be some larger fraction of C . Intuitively,

this will help because the larger piece (that is, D) will be used only once,

whereas the smaller piece (that is, C0 and C1) will be used twice.

The new breakpoints will be based on the following simple lemma:

Lemma 3 (Brent [1]) Let T be a tree with leafsize m, and 1 ≤ s ≤ m. Then

there is a subtree D such that D has leafsize ≥ s and such that its immediate

subtrees have leafsize < s.

Proof Any minimal subtree of T of leafsize ≥ s will suffice. 2

Theorem 4 (See also Bshouty-Cleve-Eberly [2]) Let C be a {∧,∨,¬}-

formula of leafsize m. Then for all k ≥ 2, there is an equivalent {∧,∨,¬}-

formula C ′ such that

depth(C ′) ≤ (3k ln 2) · log m ≈ 2.07944k log m,

and such that

leafsize(C ′) ≤ mα,

where α = 1 + 1
1+log(k−1)

.

Proof By induction on the leafsize m . If m = 1, C computes either xi or

¬xi , and C already has the desired leafsize and depth.

Let us assume now that the theorem applies to leafsizes up to m − 1,

and prove the theorem for m . Brent’s lemma provides a subformula D of

leafsize ≥ k−1
k

m and immediate subtrees DL and DR of leafsize < k−1
k

m :

let ∗ denote the gate type of D ’s root. Consider now the formulas C0

and C1 obtained from C by replacing the subformula D by the constants

0 and 1 respectively and then collapsing the gates that use them so that

leafsize(C0), leafsize(C1) ≤ 1
k
m . Now we use the induction hypothesis to

obtain formulas C ′
0 , C ′

1 , D′
L , and D′

R so that

leafsize(D′
L), leafsize(D′

R) <

(
k − 1

k
m

)α

5

leafsize(C ′
0), leafsize(C

′
1) ≤

(
m

k

)α

and

depth(D′
L), depth(D′

R) < (3 ln 2)k log
(

k−1
k

m
)

depth(C0), depth(C1) ≤ (3 ln 2)k log
(

m
k

)
Depending on whether D occurs positively or negatively as a subformula

of C , the formula C ′ is to be defined to be either C ′
0 ∨ ((D′

L ∗ D′
R) ∧ C ′

1) or

C ′
1 ∨ (¬(D′

L ∗ D′
R) ∧ C ′

0). In either case,

depth(C ′) = max{depth(D′
L) + 3, depth(D′

R) + 3, depth(C ′
0) + 2, depth(C ′

1) + 2}
< (3 ln 2)k log(k−1

k
m) + 3

= (3 ln 2)k log m + (3 ln 2)k log(k−1
k

) + 3

= (3 ln 2)k log m + 3k ln 2 log(k−1
k

) + 3

= (3 ln 2)k log m + 3k ln(1 − 1/k) + 3

< (3 ln 2)k log m + 3(−1) + 3

= (3 ln 2)k log m

The last inequality holds because ln(1 − 1/k) < −1/k .

For notational convenience, we now write ‖A‖ for the leafsize of A . We

can bound the leafsize of C ′ by:

‖C ′‖ ≤ 2(m − ‖DL‖ − ‖DR‖)α + ‖DL‖α + ‖DR‖α.

To study the worst case, let us set b = ‖D‖ = ‖DL‖ + ‖DR‖ . Thinking of b

as a constant, we can bound ‖C ′‖ by

f(‖DL‖) = 2(m − b)α + ‖DL‖α + (b − ‖DL‖)α.

The function f is concave up, so the above expression is maximized at the

endpoints which are (1) ‖DL‖ = k−1
k

m and ‖DR‖ = 0 and (2) ‖DL‖ = 0 and

‖DR‖ = k−1
k

m . In either case, ‖C ′‖ is bounded above by

2(m − ‖D‖)α +
(

k−1
k

m
)α

+
(
‖D‖ − k−1

k
m

)α
.

Again this is a concave up as a function of ‖D‖ , so the maximum values are at

the endpoints (1) ‖D‖ = m and (2) ‖D‖ = k−1
k

m . In this case, the maximum

6

is at ‖D‖ = k−1
k

m . So the worst case happens when ‖C0‖ and ‖C1‖ are m
k

,

‖DL‖ = k−1
k

m and ‖DR‖ = 0. Thus we have the bound

leafsize(C ′) ≤ 2
(

m
k

)α
+

(
k−1

k
m

)α
.

To finish the proof of Theorem 4 we must prove that for α = 1+ 1
log(k−1)+1

,

we have 2(m
k
)α + (k−1

k
m)α ≤ mα ; this is of course equivalent to showing that

2(1
k
)α + (k−1

k
)α ≤ 1. It is easy to see that the lefthand side of the inequality

is a decreasing function of α and to prove the inequality, it will suffice to let

α0 be the (unique) value, greater than 1, so that 2(1
k
)α0 + (k−1

k
)α0 = 1 and

prove that α0 < 1 + 1
log(k−1)+1

. Multiplying the equation defining α0 by kα0 ,

we get that

kα0 − (k − 1)α0 = 2. (1)

Now it must be that that α0 < 2, since k ≥ 2 and thus k2 − (k − 1)2 =

2k − 1 > 2. Define gα0(k) = kα0 . By the Mean Value Theorem, equation (1)

implies that there exists x , (k − 1) < x < k , such that

g′
α0

(x) = α0x
α0−1 = 2.

Since g′
α0

is increasing, g′
α0

(k − 1) = α0(k − 1)α0−1 < 2. Taking logarithms

yields:

log(α0(k − 1)α0−1) < log 2 = 1

log α0 + (α0 − 1) log(k − 1) < 1

Since α0 − 1 < log α0 for 1 < α0 < 2, (α0 − 1)(log(k − 1) + 1) < 1. So,

α0 − 1 <
1

log(k − 1) + 1

α0 < 1 +
1

log(k − 1) + 1

which completes the proof of Theorem 4. 2

7

Theorem 5 (See also Bshouty-Cleve-Eberly [2]) Let C be a {⊕,∧, 1}-formula

of leafsize m. Then for all k ≥ 2, there is an equivalent {⊕,∧, 1}-formula C ′

such that

depth(C ′) ≤ (3 ln 2) log m

and

leafsize(C ′) ≤ mα

where α = 1 + 1
1+log(k−1)

.

Proof First notice that if D is a subtree of C , then C is equivalent to:

(D ∧ (C0 ⊕ C1)) ⊕ C0.

This is because if D is 0 then C will have the same value as C0 , and if D is 1

then C will have the same value as C1 which is equivalent to (C0 ⊕C1)⊕C0 .

Consider now Cx which has a new variable x substituted for D . Consider

the branch from x to the root of C as in Figure 3; the A1, . . . , As are

subformulas of C which are inputs to gates having x in their other input.

r
r r

r
r

r

r
r

r

p p p

p p p
¢

¢
¢

A
A
A

¢
¢
¢

A
A
A

¢
¢
¢

A
A
A

⊕/∧

As ⊕/∧

⊕/∧

Ai ⊕/∧

⊕/∧

A1 x

Figure 3

We claim that,

C0 ⊕ C1 ≡ Ai1 ∧ · · · ∧ Air

8

where {Ai1 , · · · , Air} is the subset of {A1, · · · , As} that consists of the inputs

to ∧ gates. To prove this, first suppose that some Aij has value 0: then

C0⊕C1 = 0 because the values of that conjunction in C0 and in C1 are equal,

and therefore C0 and C1 have the same value. On the other hand, suppose

all Aij ’s have value 1: then the values of the ∧-gates will depend on their

other inputs, and thus the value of Cx will depend on the value of x , which

implies that C0 ⊕ C1 has value 1.

Let A be the formula Ai1 ∧ · · · ∧ Air . The leafsize of A is obviously less

or equal than the leafsize of C0 . Now we can use the proof of Theorem 4 to

prove Theorem 5: the only difference is that instead of using the fact that C

is equivalent either to C0 ∨ (D ∧ C1) or to C1 ∨ (¬D ∧ C0), we now use the

fact that C is equivalent to (D ∧A)⊕C0 . The calculations of the bounds on

leafsize and depth of C ′ are identical to those in the proof of Theorem 4. 2

References

[1] R. P. Brent, The parallel evaluation of general arithmetic expressions,

J. Assoc. Comput. Mach., 21 (1974), pp. 201–206.

[2] N. H. Bshouty, R. Cleve, and W. Eberly, Size-depth tradeoffs for

algebraic formulae, in Proceedings of the 32th Annual IEEE Symposium

on Foundations of Computer Science, IEEE Computer Society, 1991,

pp. 334–341.

[3] P. L. II, R. Stearns, and J. Hartmanis, Memory bounds for recogni-

tion of context-free and context-sensitive languages, in Sixth Annual IEEE

Symp. on Switching Circuit Theory and Logical Design, 1965, pp. 191–202.

[4] P.M. Spira, On time hardware complexity tradeoffs for Boolean functions,

in Proceedings of the Fourth Hawaii International Symposium on System

Sciences, 1971, pp. 525–527.

9

