Journal article:

    Samuel R. Buss, Grigori Mints.
    "The Complexity of the Disjunction and Existence Properties in Intiotionistic Logic."
    Annals of Pure and Applied Logic 99 (1999) 93-104.

    Download: postscript or PDF.

    Introduction: This paper considers the computational complexity of the disjunction and existential properties of intuitionistic logic. We prove that the disjunction property holds feasibly for intuitionistic propositional logic; i.e., from a proof of $A\lor B$, a proof either of~$A$ or of~$B$ can be found in polynomial time. For intuitionistic predicate logic, we prove superexponential lower bounds for the disjunction property, namely, there is a superexponential lower bound on the time required, given a proof of $A\lor B$, to produce one of $A$~and~$B$ which is true. In addition, there is superexponential lower bound on the size of terms which fulfill the existential property of intuitionistic predicate logic. There are superexponential upper bounds for these problems, so the lower bounds are essentially optimal.

Back to Sam Buss's publications page.