Math 207A, Fall 2023
Homework 1 (corrected on October 20, 2023)
Here are some problems related to our discussion in class. In some sense, they are miscellaneous calculations, but working through them carefully will give you a better handle on the representation theory of semisimple Lie algebras.

If you're doing this for credit, you can skip the optional problems, but they provide some extra context.

1. Spherical harmonics

Recall the notation: our representation is $P=\mathbf{C}\left[z_{1}, \ldots, z_{n}\right]$ and we defined operators on P :

$$
q=\sum_{i=1}^{n} z_{i}^{2}, \quad E=\sum_{i=1}^{n} z_{i} \partial_{i}, \quad \Delta=\sum_{i=1}^{n} \partial_{i}^{2}
$$

We defined a representation $\rho: \mathfrak{s l}_{2} \rightarrow \mathfrak{g l}(P)$ by

$$
\rho(X)=\frac{1}{2} \Delta, \quad \rho(H)=-E-\frac{n}{2} I, \quad \rho(Y)=-\frac{1}{2} q .
$$

(1) For each $d \geq 0$, let P_{d} be the space of homogeneous degree d polynomials and let $q P_{d} \subset P_{d+2}$ denote the image of multiplication of P_{d} by q (i.e., the degree $d+2$ subspace of the ideal generated by q).

Let $P_{d+2}^{\prime} \subset P_{d+2}$ denote the space of harmonic polynomials, i.e.,

$$
P_{d+2}^{\prime}=\left\{f \in P_{d+2} \mid \Delta f=0\right\}
$$

Construct a basis for P_{d+2}^{\prime} and show that we have a direct sum decomposition

$$
P_{d+2}=q P_{d} \oplus P_{d+2}^{\prime} .
$$

We will define $P_{0}^{\prime}=P_{0}$ and $P_{1}^{\prime}=P_{1}$.
(2) (Optional) Show that P_{d}^{\prime} is an irreducible $\mathbf{O}_{n}(\mathbf{C})$-subrepresentation of P_{d}.
(3) Show that the $\mathfrak{s l}_{2}$-subrepresentation V_{d} generated by P_{d}^{\prime} has the following description:

$$
V_{d}=\left\{q^{r} f \mid r \geq 0, f \in P_{d}^{\prime}\right\}
$$

(4) Show that we have a direct sum decomposition of $\mathfrak{s l}_{2}$-representations

$$
P \cong \bigoplus_{d \geq 0} V_{d}
$$

(5) Describe V_{d} in terms of Verma modules.

2. Classical Lie algebras

(6) The Killing form κ is a nondegenerate symmetric bilinear form, so for a semisimple Lie algebra \mathfrak{g}, the image of the adjoint representation ad is contained in $\mathfrak{s o}(\mathfrak{g}, \kappa)$. Show that when $\mathfrak{g}=\mathfrak{s l}_{2}$, this gives an isomorphism ad: $\mathfrak{H l}_{2} \rightarrow \mathfrak{s o}\left(\mathfrak{s l}_{2}, \kappa\right) \cong \mathfrak{s o}_{3}$.
(7) Construct a symplectic form ω on \mathbf{C}^{2} which is stabilized by $\mathfrak{s l}_{2}$ and use this to construct an isomorphism $\mathfrak{s l}_{2} \cong \mathfrak{s p}_{2}$.
(8) Using the notation from the previous problem, define β on $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$ by

$$
\beta\left(\sum_{i} x_{i} \otimes y_{i}, \sum_{j} x_{j}^{\prime} \otimes y_{j}^{\prime}\right)=\sum_{i, j} \omega\left(x_{i}, x_{j}^{\prime}\right) \omega\left(y_{i}, y_{j}^{\prime}\right) .
$$

Show that β is symmetric and nondegenerate. Furthermore, define a representation of $\mathfrak{s l}_{2} \times \mathfrak{s l}_{2}$ on $\mathbf{C}^{2} \otimes \mathbf{C}^{2}$ by

$$
(A, B) \sum_{i}\left(x_{i} \otimes y_{i}\right)=\sum_{i}\left(A x_{i} \otimes y_{i}+x_{i} \otimes B y_{i}\right)
$$

Show that $\mathfrak{s l}_{2} \times \mathfrak{s l}_{2}$ stabilizes β and use this to construct an isomorphism between $\mathfrak{s l}_{2} \times \mathfrak{s l}_{2}$ and $\mathfrak{s o}\left(\mathbf{C}^{2} \otimes \mathbf{C}^{2}, \beta\right) \cong \mathfrak{s o}_{4}$.
(9) Given a representation V of \mathfrak{g}, we have defined a representation of \mathfrak{g} on $V^{\otimes k}$. Show that the subspace of skew-symmetric tensors, denoted $\bigwedge^{k} V$, is a subrepresentation. As usual, for $v_{1}, \ldots, v_{k} \in V$, we define

$$
v_{1} \wedge \cdots \wedge v_{k}=\sum_{\sigma} \operatorname{sgn}(\sigma) v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}
$$

where the sum is over all permutations on k letters.
Now consider the case $\mathfrak{g}=\mathfrak{s l}_{4}$ and $V=\mathbf{C}^{4}$ is the space of column vectors. Consider the usual multiplication map

$$
\beta: \bigwedge^{2} \mathbf{C}^{4} \otimes \bigwedge^{2} \mathbf{C}^{4} \rightarrow \bigwedge^{4} \mathbf{C}^{4}
$$

which is defined on simple tensors by $\left(v_{1} \wedge v_{2}\right) \otimes\left(v_{3} \wedge v_{4}\right) \mapsto v_{1} \wedge v_{2} \wedge v_{3} \wedge v_{4}$. Since $\Lambda^{4} \mathbf{C}^{4}$, we may pick a nonzero element and identify it with \mathbf{C}. Then show that β is a nondegenerate symmetric bilinear form on $\bigwedge^{2} \mathbf{C}^{4}$ which is stabilized by $\mathfrak{s l}_{4}$.

Finally, show that this gives an isomorphism $\mathfrak{s l}_{4} \rightarrow \mathfrak{s o}\left(\bigwedge^{2} \mathbf{C}^{4}, \beta\right) \cong \mathfrak{s o}_{6}$.
(10) (Optional) If we pick a symplectic form ω on \mathbf{C}^{4}, we get an evaluation map $f: \bigwedge^{2} \mathbf{C}^{4} \rightarrow$ \mathbf{C}, namely $f\left(\sum_{i} v_{i} \wedge w_{i}\right)=\sum_{i} \omega\left(v_{i}, w_{i}\right)$. This is a map of $\mathfrak{s p}_{4}$-representations if \mathbf{C} is given the trivial action. Using notation from the previous exercise, β restricts to a symmetric bilinear form on $\operatorname{ker} f$; show that it remains nondegenerate and use it to construct an isomorphism $\mathfrak{s p}_{4} \rightarrow \mathfrak{s o}(\operatorname{ker} f, \beta) \cong \mathfrak{s o}_{5}$.

