Deletion-contraction and chromatic polynomials
Math 475

Instructor: Steven Sam

1. DELETION-CONTRACTION

Let G be a graph and e an edge of G. There are two important operations (deletion and
contraction) that we can perform on G using e and which are useful for certain kinds of
induction proofs.

The deletion of e is denoted G \ e and is a graph with the same vertices as G, and the
same edges, except we don’t use e.

The contraction of e is denoted G/e. Let e = {z,y}. To define it, take the vertices of G,
replace the two vertices x,y with a single vertex that we will call z. For each edge in G that
does not use x or y, add it into G/e. For each vertex a different from = and y, the number
of edges between a and z in G/e is the number of edges between a and z plus the number
of edges between a and y.

To visualize this, pretend we are shrinking e until x and y become the same point (hence
the use of the word contraction). However, this is slightly misleading: if there were another
edge between z and y, it would end up becoming a loop at z, but we don’t take these into
consideration. To be more accurate, we would have to allow graphs to have loops, but this
creates a lot of notational headaches, so we throw them away whenever possible.

Here’s a small example to illustrate. Say our graph is as follows (I put numbers on the

edges to denote multiple edges):

Let e be one of the edges between the bottom two vertices. Then

T /T .\4 5/.
etk gl

Visually, G/e is the result of shrinking the bottom edge of G towards its midpoint. As we
said before, the other two bottom edges would end up becoming loops on the bottom, but
we remove them.
2. SPANNING TREES
Let 7(G) (that letter is TAU) be the number of spanning trees of G.
Proposition 2.1. 7(G) = 7(G \ e) + 7(G/e).

Proof. Write e = {z,y}. 7(G \ €) counts the number of spanning trees in G that do not use

the edge e while 7(G/e) counts the number of spanning trees in G that do use the edge e.
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The second requires some more explanation: if we have a spanning tree T of GG that uses e
and we contract e, the remaining edges of T become a spanning tree of G'\ e. We can reverse
this: by the way we defined it, there is a bijection between the edges of G\ e and the edges of
G whose endpoints aren’t {x,y} (because we discarded the loops). So if we have a spanning
tree of G\ e, take the corresponding edges of T" and add e to get a spanning tree of G. We
just defined a bijection between spanning trees of G using e and spanning trees of G/e. One
thing to note: spanning trees never use more than one edge with the same endpoints, and
never use loops; since edges with the same endpoints as e correspond to loops in G/e, it’s
okay that we discarded them in our definition, although we also see that it really makes no
difference if we keep them around or not.

Every spanning tree of GG either uses e or doesn’t, so we get the desired identity. 0

We also proved in class that if we order the vertices so that e is an edge between the first
two vertices, then det(Lg[1]) = det(Le\e[1]) +det(Lg/e[1]), where L is the Laplacian matrix
of G, and the [1] means “delete the first row and first column of the matrix”. Combining
this with the recursion for 7, we proved the matrix-tree theorem: 7(G) = det(Lg[1]). I won’t
recall the details here.

3. CHROMATIC POLYNOMIALS

If G is a graph, and k > 0 is a non-negative integer, a proper k-coloring is a way to
label the vertices of G with the numbers (colors) {1,...,k} so that two vertices that are
connected by an edge have different labels. We are free to use colors multiple times and
we don’t have to use all of them. Let yg(k) (that letter is CHI) be the number of ways to
properly color the vertices with &k colors. The chromatic number of G, denoted x(G), is
the smallest k such that G has a proper k-coloring.

Lemma 3.1. Let x,y be two vertices of G with exactly one edge e between them. Then
xa(k) = xave(k) = xa/e(k).

Proof. By the definitions, a proper k-coloring of GG is the same thing as a proper k-coloring
of G\ e where = and y get different labels. On the other hand, proper k-colorings of G'\ e
where x and y receive the same color are naturally in bijection with proper k-colorings of
G/e: if z is the result of contracting = and y, make its color the common color of x and
y. The identity xc(k) = xa\e(k) — xa/e(k) is a translation of what we just said: proper
k-colorings of G are the same thing as proper k-colorings of G \ e once we subtract off all of
those that give x and y the same color. 0

The assumption about x and y having exactly one edge between them is a little bit
annoying, but it’s easy to get around. Let G be a graph. Construct a simple graph G whose
vertices are the same as G and where 2 and y have an edge in G if they have at least one
edge in G. In other words, multiple edges in G get replaced by a single edge in G.

Lemma 3.2. xq(k) = xg(k).

Proof. The definition of proper k-coloring only involves labeling vertices and the conditions
on them only depend on whether or not two vertices have the same color if they’re connected
by an edge (but we don’t care how many edges). O

Now we’re ready to prove the main result:
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Theorem 3.3. If G is a graph with n vertices, then xg(k) is a polynomial in k of degree n
(more precisely, there is a unique polynomial of degree n whose values agree with xg(k) at
all non-negative integer inputs k ).

Proof. By Lemma 3.2, it is enough to prove this for simple graphs G. We proceed by
induction on the number of edges. If there are no edges in G, then any labeling of the
vertices is a proper k-coloring, so xg(k) = k™ which is certainly a polynomial of degree n.
Now assume we’ve proved this for graphs with < m edges and let G be a graph with m
edges. Let e be an edge of G. Then G \ e and G/e both have < m edges. So xe\.(k) is a
polynomial in %k of degree n and G/e is a polynomial in k of degree n — 1. By Lemma 3.1,
xa(k) = xXa\e(k) — xa/e(k), so xa(k) is a polynomial in k of degree n. O

For notation, we will write yg(z) for this polynomial (z is now a variable) and we will
use k to denote non-negative integers. This is the chromatic polynomial of G. Then the
chromatic number is the smallest positive integer k such that xq(k) # 0.

Here are some easy properties:

Proposition 3.4. (1) G has at least one vertex if and only if xc(0) = 0.

(2) G has at least one edge if and only if xg(1) = 0. (The converse is clearly true.)

(3) If G has an odd length cycle, then x(2) = 0. (The converse is also true, as we will see
when we discuss bipartite graphs.)

How about a property that determines if x¢(3) = 07 This is an NP-complete problem, so
there likely isn’t a simple criterion to determine this for a general graph.

Example 3.5. Let’s compute xg(z) for the square:

2—3

G_1—14

It will follow that x(G) = 2 (or you can figure that out by staring at the square). Here are
some different approaches:

(1) For the first way, we just use the definition. If we want to properly k-color G, then 1
can be colored anything, so there are k choices for it. Now the color on 2 and 4 have
to be different from the color assigned to 1, so there are k — 1 choices for each. There
are two cases to consider: if the colors of 2 and 4 are the same, then the color for 3
has k — 1 choices. If they’re not the same, then the color for 3 has k — 2 choices. So
the total number of colorings is: k(k —1)* 4 k(k —1)(k — 2)2. (The first term counts
the number of colorings where 2 and 4 have the same color and the second counts
the number of colorings where 2 and 4 have different colors.) We can simplify it to
get

xa(k) = k(k — 1)(k* — 3k + 3).



(2) For the second way, we’ll use deletion-contraction. Let e = {1,4}. Then

22— 3

G\ezl 4

Its chromatic polynomial is simple to compute: for a proper k-coloring, 1 has k
choices, 2 has k — 1 choices (any color different from the one given to 1), similarly 3
has k — 1 choices, and similarly, 4 has k£ — 1 choices. So

xove(k) = k(k —1)°.

2—3
Gle= 5
I called the new vertex 5. This is also easy to compute: for a proper k-coloring, 5

has k choices, 2 has k& — 1 choices, and 3 has k — 2 choices (any color different from
the one given to 2 and 5 which are different from each other). So

Xafe(k) = k(k = 1)(k —2).

So using Lemma 3.1, we get

The contraction by e is

xa(k) = xa\e (k) — xaye(k)
=k(k -1 —k(k—1)(k—2)
= k(k —1)(k* — 3k + 3).

(3) A third way (which is sometimes easier but usually harder) is to use polynomial
interpolation. That is, we know that x¢(z) is a polynomial in z of degree 4, so
to determine it, we just need to compute 5 of its values. Some of those are easy:
Xc(0) = 0 (for any G), xg(1) = 0 (since G has an edge). Actually, this is already
enough to say that x¢(z) is divisible by z(z — 1). You could also compute by hand
that x¢(2) = 2, x¢(3) = 18, and x(4) = 84 and then determine the coefficients of
X (z) from this information using linear algebra (though this is a lot of work for this
example). O

Example 3.6. Here are some families of graphs where we can give explicit formulas for
Xc(z) and x(G). T won’t explain how to get the derivation, you should see if you can figure
out how to do it.

(1) The complete graph on n vertices is denoted K, and is defined so that every pair
of vertices has an edge between them. Then

Xk, (2)=z2(z=1)(z=2)---(z—=n+1),
X(K,) = n.



(2) The cycle C,, of length n has vertices vy, ..., v, and edges {i,i+1} fori =1,...

and {1,n}. Then
z—1)"+(z—1) if niseven
Xc, () = ( >n (==1) o ,
(z—1)"—=(2—1) ifnisodd
2 if n is even
X(C) =41 ifn=1 .
3 ifnisoddandn >3
(3) If G is a tree with n vertices, then
xa(z) = z2(z = 1)
1 ifn=1
X(G) = {

2 ifn>1"

n—1



	1. Deletion-contraction
	2. Spanning trees
	3. Chromatic polynomials

