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Steven Sam
Notes for Nov. 29 lecture

Problem 1. Show that 2 < e < 3.

By plugging in x = 1 into the equation ex =
∞
∑

k=0

xk

k!
, we have
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+ · · · .

Each term 1

k!
is positive, and the first two terms are 1, so we get e > 2.

To get the upper bound, we use the inequality n! ≥ 2n−1 for all n ≥ 1.1 Taking reciprocals,
this says 1

n!
≤ 1

2n−1 (the inequality is actually strict for n ≥ 3). So we can also get a bound
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Everything after the first 1 is actually just the geometric series
∑

∞

k=0

1

2k
. From an earlier

example, we know that

1

1− x
= T∞

1

1− x
=

∞
∑

k=0

xk for |x| < 1.

So plug in x = 1/2, and see that our geometric series is 1

1− 1

2

= 2. In conclusion, e < 3.

Problem 2. Show that T∞ arctan x = arctan x for 0 ≤ x ≤ 1.
To do that, we will show that

lim
n→∞

|(Rn arctan)(x)| = 0 for |x| ≤ 1.

The idea is that arctan x is the antiderivative of 1

1+x2 , so we should start from information

about that. Start with2

1

1− u
= Tn

1

1− u
+

un+1

1− u
.

Now substitute u = −t2:

1

1 + t2
= T2n

1

1 + t2
+

(−1)n+1t2n+2

1 + t2
.

Now integrate from 0 to x:

arctan x = T2n+1 arctan x+

∫

x

0

(−1)n+1t2n+2

1 + t2
dt.

So the integral is R2n+1 arctan x. But also, the Taylor series of arctan has no even powers of
x in it, so it’s also equal to R2n+2 arctan x. In symbols:

R2n+1 arctan x = R2n+2 arctan x =

∫

x

0

(−1)n+1t2n+2

1 + t2
dt.

1To see why it is true, note that n! is a product of n − 1 numbers: n · (n − 1) · (n − 2) · · · 3 · 2 and each
one is ≥ 2.

2This uses that Tn

1

1−u
= 1 + u+ u2 + · · ·+ un = 1−u

n+1

1−u
.
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So the sequence Rn arctan x is repeating every 2 terms, so its limit can be computed just
from the odd terms, or just the even ones. (Introducing redundancy into a sequence won’t
change its limit.)

You can evaluate this integral using long division and the different methods from Chapter
1, but that’s more work than is needed. We just want to bound the remainder.

We will use this fact:
∣

∣
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∣
≤

∫
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a
|f(x)|dx if a ≤ b.

So we want to bound the absolute value of the integrand. Since 1 + t2 ≥ 1 for any t, we
get
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Let’s put it together:

|R2n+1 arctan x| =
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2n+ 3
.

Finally,

lim
n→∞

|Rn arctan x| = lim
n→∞

|R2n+1 arctan x| ≤ lim
n→∞

x2n+3

2n+ 3
≤ lim

n→∞

1

2n+ 3
= 0

(the first equality is what we said before about the sequence just repeating every 2 terms
and the second inequality is because x ≤ 1). By the sandwich theorem, this also says that
limn→∞ |Rn arctan x| = 0, so we’re done.

As a consequence, we get the formula3

π

4
= arctan(1) = T∞ arctan(1) =

∞
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2k + 1
,

which can be rewritten as
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.

Bonus: Show that T∞ arcsin(x) = arcsin(x) for x = 1

2
. This gives another infinite sum

formula (though more complicated) for π since arcsin(1
2
) = π

6
.

3tan(π/4) = 1 can be obtained by looking at a right isosceles triangle


