Math 222, Fall 2016 (Steven Sam) Final review guide

LIST OF TOPICS TO KNOW FOR THE FINAL EXAM

- (1) Methods of integration
 - (a) Double-angle formulas
 - (b) Integration by parts, reduction formulas
 - (i) Repeated integration: Example 5.4, Example 6.2
 - (ii) Taking dv = 1: Example 5.6
 - (iii) Solving for integral: Example 5.7, Example 6.3
 - (c) Partial fractions (only degree 2 and degree 3 denominators)
 - (i) Long division
 - (ii) Repeated roots, irreducible degree 2 polynomial
 - (d) Trigonometric substitutions, completing the square
- (2) Improper integrals
 - (a) Two types of improperness (domain goes to $\pm \infty$ and function goes to $\pm \infty$), always split up integral so each one only has one form of improperness (improperness can be in middle of domain)
 - (b) Key examples: *p*-test (Example 3.2) and exponential function (Example 3.1)
 - (c) Convergence tests (remember to check hypotheses of tests)
 - (i) Tail theorem
 - (ii) Comparison test
 - (iii) Limit comparison test
- (3) Differential equations
 - (a) Separable equations
 - (b) First-order equations
- (4) Taylor polynomials (from now on, always centered at a = 0)
 - (a) If m < n, to get $T_m f(x)$ from $T_n f(x)$, delete all powers of x strictly bigger than m
 - (b) If p(x) is polynomial of degree d and $n \ge d$, then $T_n p(x) = p(x)$
 - (c) Know examples in $\S3$
 - (d) Lagrange's formula for remainder
 - (i) Know how to use this to bound remainder
 - (ii) Approximating functions using Taylor polynomials with bound on error
 - (e) Little-o notation
 - (i) $R_n f(x)$ is $o(x^k)$ for $k \le n$ (Theorem 8.2)
 - (ii) Basic properties with addition and multiplication (p.85)
 - (iii) Reading little-o from Taylor polynomials (Theorem 8.8)
 - (f) Getting new Taylor polynomials from known ones
 - (i) Addition: $T_n(f+g) = T_n f + T_n g$
 - (ii) Substitution (Example 8.10)
 - (iii) Multiplication (Example 8.11)
 - (iv) Derivatives: $T_{n-1}f'(x) = (T_nf(x))'$ (Theorem 10.1)

- (v) Antiderivatives: $T_{n+1}(\int_0^x f(t)dt) = \int_0^x (T_n f(t))dt$ (Example 10.3)
- (5) Sequences and series
 - (a) Limits of sequences
 - (i) Definition 2.2 (I won't test using this formal definition, but you should intuitively understand what it means)
 - (ii) Limit of powers of a number (Example 2.4)
 - (iii) Basic laws (Theorem 2.5)
 - (iv) Sandwich theorem (Theorem 2.6)
 - (v) Applying functions (Theorem 2.7)
 - (vi) If $\lim_{x\to\infty} f(x)$ exists and $a_k = f(k)$, then $\lim_{k\to\infty} a_k = \lim_{x\to\infty} f(x)$.
 - (vii) Factorial beats exponential (Example 2.11)
 - (b) Convergence of series
 - (i) Definition 4.1: it is limit of partial sums
 - (ii) Geometric series (Example 4.2)
 - (iii) Basic laws (Theorem 4.4)
 - (iv) If $\lim_{n\to\infty} |a_n|$ is not 0, then $\sum_{k=1}^{\infty} a_k$ diverges.
 - (v) Convergence tests from handout (alternating, integral, comparison, limit comparison, ratio)
 - (c) Convergence of Taylor series
 - (i) To check where Taylor series converges, can use ratio test, then test endpoints using alternating series or something else. See Example 6 from handout.
 - (ii) To check if $T_{\infty}f(x) = f(x)$, need to show that $\lim_{n\to\infty} |R_nf(x)| = 0$. Good examples to study:
 - (A) $\frac{1}{1-x}$ (Example 5.1)
 - (B) e^x (Example 5.2)
 - (C) $\sin x$ (Example 7 from handout)
 - (D) $\ln(1+x)$ (Section 5.7)
 - (iii) $R_n f(x)$ compatible with addition, derivatives, substitutions, antiderivatives, just like $T_n f(x)$. Multiplication is more subtle, but you have $T_{\infty}(fg) = (T_{\infty}f)(T_{\infty}g)$.
- (6) Vectors
 - (a) Vector algebra (adding, scalar multiplication, length, etc.) and basic laws (§6.1.5)
 - (b) Geometric interpretation of vectors
 - (c) Parametric equations for lines
 - (d) Dot product
 - (i) Basic laws $(\S6.5.2)$
 - (ii) Using normal vector to get equation of lines and planes
 - (e) Cross product
 - (i) Basic laws $(\S6.6.5)$
 - (ii) Finding normal of plane
- (7) Miscellaneous
 - (a) convergent + convergent = convergent

(b) divergent + convergent = divergent a^{b}

(c) For
$$a \le b$$
, $\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$.

THINGS IN THE BOOK, BUT NOT ON THE FINAL

- Rational substitutions
- \S 3.7–3.8: Direction fields, Euler's method
- §3.10: Differential equations word problems
- Binomial formula (in §4.3)
- Fibonacci numbers (§§4.8.12–4.8.13)
- Proofs from chapter 4 (\S 4.12–4.13)
- Example 5.5.13
- §6.4: Vector bases
- Relation of dot product to angles (Theorem 5.7)
- Theorem 6.5.5
- Orthogonal projection (§6.5.8)
- Distance to line (§6.5.11)
- Triple products, determinants
- Area of parallelogram