Math 222 (Steven Sam), Fall 2016
Homework 10, due December 7

Note: This is not the final version of HW 10. This covers the material in Chapter 5 from $11 / 22$ and $11 / 29$. I will add a few more exercises for the material in Chapter 6 that will be covered in 11/29 and 12/1 after I get a better sense of how far we'll get by then.

Only the starred problems need to be submitted for grading.

Chapter 5

Chapter 5.6 (pages 107-108): 1, 2, 9^{*}, 13, $14^{*}, 17$
Chapter 5.8 (page 109): 1* ("error term" in (b) means "remainder")
$(\mathrm{E} 1)^{*}$ Determine all p such that $\sum_{k=1}^{\infty}\left(\frac{6 k^{3}+9 k^{2}+2}{2 k^{6}+10 k+9}\right)^{p}$ converges.
(E2)* For each of the following, determine for which values of x the series converges.
(a) $\sum_{k=0}^{\infty} \frac{k^{3} x^{2 k}}{3^{k}}$
(b) $\sum_{k=1}^{\infty} \frac{(-2 x)^{k}}{k}$
(c) $\sum_{k=0}^{\infty} \frac{x^{k}}{(2 k+1)^{4}}$
(E3) Determine for which x we have $T_{\infty} \frac{1}{(1-3 x)^{2}}=\frac{1}{(1-3 x)^{2}}$.
(E4) Let $f(x)=\sin \left(x^{5}\right)$. Show that $T_{\infty} f(x)=f(x)$ for all x.
(E5) Which of the following series converge? Why?
(a) $\sum_{k=1}^{\infty} \frac{\arctan (k)}{k^{2}+1}$
(b) $\sum_{k=1}^{\infty} \frac{2 k^{2}+3 k+5}{\sqrt{k^{5}+k+7}}$
(c) $\sum_{k=1}^{\infty} \frac{3+2 \cos (k)}{3^{k}}$

