Math 222 (Steven Sam), Fall 2016
Homework 4, due October 5

Only the starred problems (7 total) need to be submitted for grading.
Chapter 2.4 (pages 47-48) from book: 14, 16
Chapter 2.6 (pages 55-56) from book: $2,4,5,9^{*}, 11,12,13^{*}, 15,16^{*}$
$(\mathrm{E} 1) *$ Evaluate $\int_{0}^{3} \frac{d x}{x-1}$.
(E2) Evaluate $\int_{1}^{\infty} \frac{d x}{x^{2}-4}$.
(E3) Show that $\int_{1}^{\infty} \frac{1+e^{-x}}{x} d x$ is divergent.
(E4)* Determine all p such that $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{p}}$ converges and calculate its value when it does converge.
(E5) Determine all p such that $\int_{1}^{\infty} \frac{\ln x}{x^{p}} d x$ converges and calculate its value when it does converge.
(E6)* Recall from Math 221 that if $y=f(x)$ is the graph of a function, then the volume of the solid of revolution (from a to b) around the x-axis is given by

$$
V=\pi \int_{a}^{b} f(x)^{2} d x
$$

Its surface area is given by

$$
A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Take $f(x)=\frac{1}{x}, a=1$, and $b=\infty$.
(a) Sketch the graph and imagine what the solid of revolution looks like.
(b) Show that V is finite and compute it.
(c) Show that A is infinite.

So you get a curious shape that "can't hold enough paint to paint itself".
(E7)* Let $x^{3}+c x^{2}+d x+e$ be a polynomial which is nonzero if $x \geq A$.
(a) Use the comparison test to show that $\int_{A}^{\infty} \frac{x^{2}+a x+b}{x^{3}+c x^{2}+d x+e} d x$ diverges for all choices of coefficients a, b.
(b) Use the comparison test to show that $\int_{A}^{\infty} \frac{x+a}{x^{3}+c x^{2}+d x+e} d x$ converges for all choices of a.

