Math 222, Fall 2016

Steven Sam

Review packet solution outline
(last updated 12/17/16)
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Initial condition is y(0) = 0, so C' = 0.
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First, figure out where it converges with ratio test. The limit is |z%|, so converges for
|z| < 1 and diverges for |x| > 1. Test endpoints: both diverge.
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So candidates for T, f(z) = f(z) are |z| < 1, so restrict attention here.

1 tn+1
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R4n = ( ) -
1+ 24 1+t

T -1 nx4n+5
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Now take limit:

. z 1 An+5 _
i ’R‘*"“ T~ o e =0,
So T f(z) = f(x) for |z| < 1.
(a)
2 2
/ﬁdw = / (1 + 2721;—;_2) dx (long division)
4/3 1/3
= / (1 + ﬁ — Q:L%—l) dx (partial fractions)

4 1
:x+§ln|x—2|—§1n|m+1|+0

dx 1 1 1 . '
/x(m 1) = / (; T o1 + (@ — 1)2> dx (partial fractions)

1
:ln]x\—ln|x—1]——1+0 (u-sub with u =z — 1)
x_

i( eznp Z( ed-1) (e3p12)n)

n=1 n—1
Sum of two geometric series. First one converges if e®?~! > 1, ie., 3p —1 > 0, i.e.,
p > 1/3 and goes to +o0o otherwise. Similarly, second one converges if p > 2/3 and
goes to 400 otherwise. If at least one goes to oo it diverges (0o + 0o = ), so need
both to converge. This only happens when p > 2/3.

5. (a)

dy .
= tz)y =
s (cotx)y = sinx

First-order equation: a(x) = cotz = >,

cos
Az) = / ——dx = In|sin z| do u-sub with u = sinx
sinx



(b)

6. Use

So m(z) = e = |sinz| is a multiplier. It’s annoying to work with absolute
values in our integrals, so let’s make sure that sinz is also a multiplier (on the
exam you can skip this step). Multiply both sides of our diffeq by sin z:

d
(sin x)% + (cosz)y = sin’x

Left side is the derivative of (sinx)y, so ((sinxz)y) = sin®x. Now integrate and
divide by sin z:

1
Y= — /sin2x dx
sinx

1
=5a / (1 — cos2z)dx (double-angle formula)
sin x
1 sin(2x)
" 2sinz (x TR C)

sin® x cos? z

First-order: a(z) = 1, A(z) = z, m(z) = €, k(z) = %

/ sin® x cos? zdx

sinz(1 — cos® ) cos® wdx

= /(u —u*)du (u-sub with u = cos )
cos’r  cos®x
— e _ C
~(5 )

Taylor polynomial to approximate f(z) = In(1 + x) at = 1/2. Need remainder

to be < 0.02 = &. Trial and error shows n = 1,2 doesn’t work. For n = 3, f®(¢) =

(1+€)4

When we apply Lagrange, we will have 0 < &€ < 1/2, so [f4 ()| < 6.

CrW)l/2)* 6 1 1
’(R?’f)(i)'_ 4! 1624 64 " 50

So approximation is

1 1 (1/2)*  (1/2)* 5
Tsf)(z) = = — = —.
4
Tse™ =1+2° + %
_ 3 af
Tssinx = _§+§



We want coefficient of a:5 of To(e = in x). To get that, multiply the above two
and get coefficient of z° But you don t have to multiply everything out. The
only combinations that glve x° are 1-% 22 (— 3,) and % ' . 2. Sum those up and
get the coefficient is 5 — 3, —|—

So £20) _ 5__Jri,orf ()—1—20+60:41.

5|>

1
Tw = E nt" (take derivative)
_ n—1,_,3n—3 _ 3
Tor—=5 =) n(=1)""z (sub t = —z°)

We get 22" when n = 10, so f(2277),(0) = —10, or f®D(0) = —10-27!.

8. Use ratio test:
(n + 1)%e™* (2n)!
(2n+2)! nzen

lim

n—oo

- r}ii?o(nzl)x (2n+2)e(2n—|— 1)‘

(1 N %) 2n + 2)1(2n 1) ‘

(14 2)® — 1 when n — oo and the second term ( — 0 when n — oo, so the

1
2n+2)(2n+1)
limit is always 0. So the series converges for all z.

9. Produce two vectors parallel to plane by taking difference of points:

0 0 0 ~1 0 —1
3l —(o]=1(3], 1] —lo] =11
1 0 1 2 0 2

Take cross product to get a normal vector (note there are many other options):

0 -1 )
3l x| 1 ]=1]-1
1 2 3
Defining equation: bx —y + 3z = 0.
)
For second part, the normal vector | —1 | is parallel to the normal line (by definition)
3
so (one possible) parametric equation is
2 5
1 1+t -1
—1 3



10. Use integration by parts with du = 7 "dz and v = sinz to get

sinx sinx 1 coS T
dr = — dx
an at1—-n) 1—-nJ an!
Do integration by parts again with du = '™ and v = cos x to get
Ccos T cosx 1 —sinx
dr = — dx
xn—l 2 2(2—-n) 2—-n xn—2

Put them together:

/sinxdx B sinx _ cos T B 1 /sinxdx
gn a1 —n) 2" 2(1-n)(2-n) (1-n)2-n)) zn2

Alternatively:

sinx COS X 1

S T PRy R e ey R ey ey

In—Z

(There is a typo in the answer in the review packet)

sin x
dx has two forms of improperness (at 0 and o0), so

The improper integral / 3
0 T

1 00 1

sin sin x

split it up as / s dr+ / S dx (the choice of 1 is arbitrary). Examine the first
o T 1 X

Lsina

one (and replace it with lim dx).

a—0t J, o3
Using our reduction formula:
1 - . 1 1 -
) sin x _ sinx  cosx 1 sin x
lim -—dr = lim 5 — - = dx
am0t J, T a—0t \ | =22 2¢ |, 2J, =«

sin x

The function is actually continuous at 0, so its integral from 0 to 1 is some finite

number. So we have to see if
. sina cos a
lim 5~
a—0+ \ —2a 2a

exists or not.

. sin a cos @ . sina + acosa
lim 5~ &)= lm ———F—F——
a—0+t \ —2a 2a a—0+ 2a
. cosa + cosa — asina .
= lim — ('Hopital’s rule)
a—0t 4a
2
= —— = —00
0

So the limit does not exist, and our improper integral diverges.
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Toof(z) = Z(—l)nm
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Now let’s deal with remainders:

Rof(x) = / Ry (the")dt — / PR, e tdt
0

0

(—1)nhke=tgn—k
(n—k)!

T (_ nfkefﬁn
Rnf(a:)z/o ((lsz)!tdt.

for some & between 0 and ¢t. Put it together:

By Lagrange, R,_,_1e " =

Hard to work with since £ depends on ¢ (so is not a constant). We should split up
cases of x > 0 and x < 0. First consider x > 0. Then 0 < ¢ <t <z, so |e*5| <1, and

d x tn d xn+1
t < t = .
—/0 -k " (nt Dn—k)

The limit as n — oo is 0 since factorial beats exponentials. So we showed that
Towf(z) = f(x) for x > 0.
Now consider z < 0. In that case we should rewrite

T (—1)rhe g 0 (—1)rhe€pn
st = [ S [ S

(—1)nke=5¢n
(n—k)!

R f(2)] < / i

Now 0 > & >t >, s0 |ef| > |e*], or |[e™¢| < |e™?|. So:

O jaf
dt < e @ dt — ¢ ® .
€ /z(n—k:)! k)

(—1)nke=tgn
(n—k)!

Rt < | 0

Again, the limit as n — oo is 0 since factorial beats exponentials. So we also showed
that T f(z) = f(x) for x < 0.

12. (a) Use alternating series. First, we check the terms go to 0. Replace the sequence

nx
by the function — and use 'Hopital’s rule:

NG

1 1 2
tim B2 = i g 2,
T—00 \/E T—00 5;1;_1/2 T—00 A/ T
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Now, we check the terms are decreasing. Not easy to do directly, so need to

nzr 2—Inz
check where the derivative of — is negative. The derivative is ———-—. The

NS 213/2

numerator is negative when Inx > 2 (which happens for z > 9 since ¢? < 9) and

the denominator is positive for x > 9, so the whole thing is negative for > 9, so

Inz
—— is decreasing once x > 9, and hence the same is true for the sequence.

Vi
. . (=) In(n)
Alternating series test then says the series Z —_
n=9 \/ﬁ

same is true for our original one by the tail theorem.

converges, and the

4

o0
n
(b) Use limit comparison test (the terms are always positive) against Z —
n
n=1
im n4+6n—3+cosn.n_5: 1+ 5% — 3 4 cosp _1
nsoo n®4+3n3 —2n+1 nt 1+5 -2+ %

The series ) -, + diverges by p-test, so same is true for our series.

13. If ¥ and @ are orthogonal, then their dot product is 0, i.e., 2x + 2y — 2 = 0. Solve for
y: y=1—x. Also, ]| =3, and ||¥]] = /22 +y2+4, so need 22 + y> +4 =9, or
22 +y? =5 Pluginy =1—a: 22+ 1—22+2? =5, or 202 — 22 — 4 = (. Factor that:

2(z —2)(x + 1) = 0, so our solutions are x = 2 and # = —1. In each case, y = —1 and
y=2.

2 -1
To summarize: the two vectors ¢ that satisfy the conditions are | —1 | and | 2

2 2



