Math 222, Fall 2016
Steven Sam
Review packet solution outline
(last updated $12 / 17 / 16$ )
1.

$$
\begin{aligned}
\frac{d y}{d x} & =x^{3 / 2}\left(4-y^{2}\right)^{3 / 2} \\
\int \frac{d y}{\left(4-y^{2}\right)^{3 / 2}} & =\int x^{3 / 2} d x
\end{aligned}
$$

For left side do trig sub: $y=2 \sin \theta, \sqrt{4-y^{2}}=2 \cos \theta$ :

$$
\begin{aligned}
\int \frac{2 \cos \theta d \theta}{8 \cos ^{3} \theta} & =\frac{2}{5} x^{5 / 2}+C \\
\frac{1}{4} \tan \theta & =\frac{2}{5} x^{5 / 2}+C \\
\frac{y}{4 \sqrt{4-y^{2}}} & =\frac{2}{5} x^{5 / 2}+C
\end{aligned}
$$

Initial condition is $y(0)=0$, so $C=0$.

$$
\begin{array}{rlr}
y & =\frac{8}{5} x^{5 / 2} \sqrt{4-y^{2}} & \text { (clear denominators) } \\
y^{2} & =\frac{64}{25} x^{5}\left(4-y^{2}\right) & \text { (square both sides) } \\
y^{2}+\frac{64}{25} x^{5} y^{2} & =\frac{256}{25} x^{5} & \\
y^{2} & =\frac{256}{25} \frac{x^{5}}{1+\frac{64}{25} x^{5}} \\
y & =\frac{16 x^{5 / 2}}{\sqrt{25+64 x^{5}}} &
\end{array}
$$

2. 

$$
\begin{aligned}
T_{\infty} \frac{1}{1-t} & =\sum_{n=0}^{\infty} t^{n} \\
T_{\infty} \frac{1}{1+x^{4}} & =\sum_{n=0}^{\infty}(-1)^{n} x^{4 n} \\
T_{\infty} \frac{x}{1+x^{4}} & =\sum_{n=0}^{\infty}(-1)^{n} x^{4 n+1}
\end{aligned}
$$

First, figure out where it converges with ratio test. The limit is $\left|x^{4}\right|$, so converges for $|x|<1$ and diverges for $|x|>1$. Test endpoints: both diverge.

So candidates for $T_{\infty} f(x)=f(x)$ are $|x|<1$, so restrict attention here.

$$
\begin{aligned}
R_{n} \frac{1}{1-t} & =\frac{t^{n+1}}{1-t} \\
R_{4 n} \frac{1}{1+x^{4}} & =\frac{(-1)^{n} x^{4 n+4}}{1+x^{4}} \\
R_{4 n+1} \frac{x}{1+x^{4}} & =\frac{(-1)^{n} x^{4 n+5}}{1+x^{4}}
\end{aligned}
$$

Now take limit:

$$
\lim _{n \rightarrow \infty}\left|R_{4 n+1} \frac{x}{1+x^{4}}\right|=\frac{1}{\left|1+x^{4}\right|} \lim _{n \rightarrow \infty}|x|^{4 n+5}=0
$$

So $T_{\infty} f(x)=f(x)$ for $|x|<1$.
3. (a)

$$
\begin{aligned}
\int \frac{x^{2}}{x^{2}-x-2} d x & =\int\left(1+\frac{x+2}{x^{2}-x-2}\right) d x \\
& =\int\left(1+\frac{4 / 3}{x-2}-\frac{1 / 3}{x+1}\right) d x \quad \text { (long division) } \\
& =x+\frac{4}{3} \ln |x-2|-\frac{1}{3} \ln |x+1|+C
\end{aligned}
$$

(b)

$$
\begin{array}{rlr}
\int \frac{d x}{x(x-1)^{2}} & =\int\left(\frac{1}{x}-\frac{1}{x-1}+\frac{1}{(x-1)^{2}}\right) d x & \quad \text { (partial fractions) } \\
& =\ln |x|-\ln |x-1|-\frac{1}{x-1}+C \quad(u \text {-sub with } u=x-1)
\end{array}
$$

4. 

$$
\sum_{n=1}^{\infty} \frac{\left(1+e^{n}\right) e^{n}}{e^{3 n p}}=\sum_{n=1}^{\infty}\left(\frac{1}{\left(e^{3 p-1}\right)^{n}}+\frac{1}{\left(e^{3 p-2}\right)^{n}}\right)
$$

Sum of two geometric series. First one converges if $e^{3 p-1}>1$, i.e., $3 p-1>0$, i.e., $p>1 / 3$ and goes to $+\infty$ otherwise. Similarly, second one converges if $p>2 / 3$ and goes to $+\infty$ otherwise. If at least one goes to $\infty$ it diverges $(\infty+\infty=\infty)$, so need both to converge. This only happens when $p>2 / 3$.
5. (a)

$$
\frac{d y}{d x}+(\cot x) y=\sin x
$$

First-order equation: $a(x)=\cot x=\frac{\cos x}{\sin x}$,

$$
A(x)=\int \frac{\cos x}{\sin x} d x=\ln |\sin x| \quad \text { do } u \text {-sub with } u=\sin x
$$

So $m(x)=e^{\ln \sin x}=|\sin x|$ is a multiplier. It's annoying to work with absolute values in our integrals, so let's make sure that $\sin x$ is also a multiplier (on the exam you can skip this step). Multiply both sides of our diffeq by $\sin x$ :

$$
(\sin x) \frac{d y}{d x}+(\cos x) y=\sin ^{2} x
$$

Left side is the derivative of $(\sin x) y$, so $((\sin x) y)^{\prime}=\sin ^{2} x$. Now integrate and divide by $\sin x$ :

$$
\begin{array}{rlr}
y & =\frac{1}{\sin x} \int \sin ^{2} x d x \\
& =\frac{1}{2 \sin x} \int(1-\cos 2 x) d x & \text { (double-angle formula) } \\
& =\frac{1}{2 \sin x}\left(x-\frac{\sin (2 x)}{2}+C\right) &
\end{array}
$$

(b) First-order: $a(x)=1, A(x)=x, m(x)=e^{x}, k(x)=\frac{\sin ^{3} x \cos ^{2} x}{e^{x}}$.

$$
\begin{array}{rlr}
y & =e^{-x} \int \sin ^{3} x \cos ^{2} x d x \\
& =e^{-x} \int \sin x\left(1-\cos ^{2} x\right) \cos ^{2} x d x \\
& =-e^{-x} \int\left(u^{2}-u^{4}\right) d u \quad \quad(u \text {-sub with } u=\cos x) \\
& =-e^{-x}\left(\frac{\cos ^{3} x}{3}-\frac{\cos ^{5} x}{5}+C\right) &
\end{array}
$$

6. Use Taylor polynomial to approximate $f(x)=\ln (1+x)$ at $x=1 / 2$. Need remainder to be $<0.02=\frac{1}{50}$. Trial and error shows $n=1,2$ doesn't work. For $n=3, f^{(4)}(\xi)=$ $\frac{-6}{(1+\xi)^{4}}$. When we apply Lagrange, we will have $0 \leq \xi \leq 1 / 2$, so $\left|f^{(4)}(\xi)\right| \leq 6$.

$$
\left|\left(R_{3} f\right)\left(\frac{1}{2}\right)\right|=\frac{\left|f^{(4)}(\xi)\right|(1 / 2)^{4}}{4!} \leq \frac{6}{16 \cdot 24}=\frac{1}{64}<\frac{1}{50} .
$$

So approximation is

$$
\left(T_{3} f\right)\left(\frac{1}{2}\right)=\frac{1}{2}-\frac{(1 / 2)^{2}}{2}+\frac{(1 / 2)^{3}}{3}=\frac{5}{12}
$$

7. (a)

$$
\begin{aligned}
T_{5} e^{x^{2}} & =1+x^{2}+\frac{x^{4}}{2} \\
T_{5} \sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
\end{aligned}
$$

We want coefficient of $x^{5}$ of $T_{\infty}\left(e^{x^{2}} \sin x\right)$. To get that, multiply the above two and get coefficient of $x^{5}$. But you don't have to multiply everything out. The only combinations that give $x^{5}$ are $1 \cdot \frac{x^{5}}{5!}, x^{2} \cdot\left(-\frac{x^{3}}{3!}\right)$, and $\frac{x^{4}}{2} \cdot x$. Sum those up and get the coefficient is $\frac{1}{5!}-\frac{1}{3!}+\frac{1}{2}$.
So $\frac{f^{(5)}(0)}{5!}=\frac{1}{5!}-\frac{1}{3!}+\frac{1}{2}$, or $f^{(5)}(0)=1-20+60=41$.
(b)

$$
\begin{array}{rlr}
T_{\infty} \frac{1}{1-t} & =\sum_{n=0}^{\infty} t^{n} \\
T_{\infty} \frac{1}{(1-t)^{2}} & =\sum_{n=0}^{\infty} n t^{n-1} & \quad \text { (take derivative) } \\
T_{\infty} \frac{1}{\left(1+x^{3}\right)^{2}} & =\sum_{n=0}^{\infty} n(-1)^{n-1} x^{3 n-3} & \quad\left(\text { sub } t=-x^{3}\right)
\end{array}
$$

We get $x^{27}$ when $n=10$, so $\frac{f^{(27)}(0)}{27!}=-10$, or $f^{(27)}(0)=-10 \cdot 27$ !.
8. Use ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{x} e^{n+1}}{(2 n+2)!} \frac{(2 n)!}{n^{x} e^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\left(\frac{n+1}{n}\right)^{x} \frac{e}{(2 n+2)(2 n+1)}\right| \\
& =e \lim _{n \rightarrow \infty}\left|\left(1+\frac{1}{n}\right)^{x} \frac{1}{(2 n+2)(2 n+1)}\right|
\end{aligned}
$$

$\left(1+\frac{1}{n}\right)^{x} \rightarrow 1$ when $n \rightarrow \infty$ and the second term $\frac{1}{(2 n+2)(2 n+1)} \rightarrow 0$ when $n \rightarrow \infty$, so the limit is always 0 . So the series converges for all $x$.
9. Produce two vectors parallel to plane by taking difference of points:

$$
\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right) .
$$

Take cross product to get a normal vector (note there are many other options):

$$
\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right) \times\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right)
$$

Defining equation: $5 x-y+3 z=0$.
For second part, the normal vector $\left(\begin{array}{c}5 \\ -1 \\ 3\end{array}\right)$ is parallel to the normal line (by definition) so (one possible) parametric equation is

$$
\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)+t\left(\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right)
$$

10. Use integration by parts with $d u=x^{-n} d x$ and $v=\sin x$ to get

$$
\int \frac{\sin x}{x^{n}} d x=\frac{\sin x}{x^{n-1}(1-n)}-\frac{1}{1-n} \int \frac{\cos x}{x^{n-1}} d x
$$

Do integration by parts again with $d u=x^{1-n}$ and $v=\cos x$ to get

$$
\int \frac{\cos x}{x^{n-1}} d x=\frac{\cos x}{x^{n-2}(2-n)}-\frac{1}{2-n} \int \frac{-\sin x}{x^{n-2}} d x
$$

Put them together:

$$
\int \frac{\sin x}{x^{n}} d x=\frac{\sin x}{x^{n-1}(1-n)}-\frac{\cos x}{x^{n-2}(1-n)(2-n)}-\frac{1}{(1-n)(2-n)} \int \frac{\sin x}{x^{n-2}} d x
$$

Alternatively:

$$
I_{n}=\frac{\sin x}{x^{n-1}(1-n)}-\frac{\cos x}{x^{n-2}(1-n)(2-n)}-\frac{1}{(1-n)(2-n)} I_{n-2}
$$

(There is a typo in the answer in the review packet)
The improper integral $\int_{0}^{\infty} \frac{\sin x}{x^{3}} d x$ has two forms of improperness (at 0 and $\infty$ ), so split it up as $\int_{0}^{1} \frac{\sin x}{x^{3}} d x+\int_{1}^{\infty} \frac{\sin x}{x^{3}} d x$ (the choice of 1 is arbitrary). Examine the first one (and replace it with $\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{\sin x}{x^{3}} d x$ ).
Using our reduction formula:

$$
\lim _{a \rightarrow 0^{+}} \int_{a}^{1} \frac{\sin x}{x^{3}} d x=\lim _{a \rightarrow 0^{+}}\left(\left[\frac{\sin x}{-2 x^{2}}-\frac{\cos x}{2 x}\right]_{a}^{1}-\frac{1}{2} \int_{a}^{1} \frac{\sin x}{x} d x\right)
$$

The function $\frac{\sin x}{x}$ is actually continuous at 0 , so its integral from 0 to 1 is some finite number. So we have to see if

$$
\lim _{a \rightarrow 0^{+}}\left(\frac{\sin a}{-2 a^{2}}-\frac{\cos a}{2 a}\right)
$$

exists or not.

$$
\begin{aligned}
\lim _{a \rightarrow 0^{+}}\left(\frac{\sin a}{-2 a^{2}}-\frac{\cos a}{2 a}\right) & =\lim _{a \rightarrow 0^{+}}-\frac{\sin a+a \cos a}{2 a^{2}} \\
& =\lim _{a \rightarrow 0^{+}}-\frac{\cos a+\cos a-a \sin a}{4 a} \quad \text { (l'Hôpital's rule) } \\
& =-\frac{2}{0}=-\infty
\end{aligned}
$$

So the limit does not exist, and our improper integral diverges.
11.

$$
\begin{aligned}
T_{\infty} e^{-t} & =\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{n}}{n!} \\
T_{\infty} t^{k} e^{-t} & =\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{n+k}}{n!} \\
T_{\infty} f(x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+k+1}}{n!(n+k+1)}
\end{aligned}
$$

Now let's deal with remainders:

$$
R_{n} f(x)=\int_{0}^{x} R_{n-1}\left(t^{k} e^{-t}\right) d t=\int_{0}^{x} t^{k} R_{n-1-k} e^{-t} d t
$$

By Lagrange, $R_{n-k-1} e^{-t}=\frac{(-1)^{n-k} e^{-\xi} t^{n-k}}{(n-k)!}$ for some $\xi$ between 0 and $t$. Put it together:

$$
R_{n} f(x)=\int_{0}^{x} \frac{(-1)^{n-k} e^{-\xi} t^{n}}{(n-k)!} d t
$$

Hard to work with since $\xi$ depends on $t$ (so is not a constant). We should split up cases of $x \geq 0$ and $x \leq 0$. First consider $x \geq 0$. Then $0 \leq \xi \leq t \leq x$, so $\left|e^{-\xi}\right| \leq 1$, and

$$
\left|R_{n} f(x)\right| \leq \int_{0}^{x}\left|\frac{(-1)^{n-k} e^{-\xi} t^{n}}{(n-k)!}\right| d t \leq \int_{0}^{x} \frac{t^{n}}{(n-k)!} d t=\frac{x^{n+1}}{(n+1)(n-k)!}
$$

The limit as $n \rightarrow \infty$ is 0 since factorial beats exponentials. So we showed that $T_{\infty} f(x)=f(x)$ for $x \geq 0$.

Now consider $x \leq 0$. In that case we should rewrite

$$
R_{n} f(x)=\int_{0}^{x} \frac{(-1)^{n-k} e^{-\xi} t^{n}}{(n-k)!} d t=-\int_{x}^{0} \frac{(-1)^{n-k} e^{-\xi} t^{n}}{(n-k)!} d t
$$

Now $0 \geq \xi \geq t \geq x$, so $\left|e^{\xi}\right| \geq\left|e^{x}\right|$, or $\left|e^{-\xi}\right| \leq\left|e^{-x}\right|$. So:

$$
\left|R_{n} f(x)\right| \leq \int_{x}^{0}\left|\frac{(-1)^{n-k} e^{-\xi} t^{n}}{(n-k)!}\right| d t \leq e^{-x} \int_{x}^{0} \frac{\left|t^{n}\right|}{(n-k)!} d t=e^{-x} \frac{|x|^{n+1}}{(n-k)!}
$$

Again, the limit as $n \rightarrow \infty$ is 0 since factorial beats exponentials. So we also showed that $T_{\infty} f(x)=f(x)$ for $x \leq 0$.
12. (a) Use alternating series. First, we check the terms go to 0 . Replace the sequence by the function $\frac{\ln x}{\sqrt{x}}$ and use l'Hôpital's rule:

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{1 / x}{\frac{1}{2} x^{-1 / 2}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0
$$

Now, we check the terms are decreasing. Not easy to do directly, so need to check where the derivative of $\frac{\ln x}{\sqrt{x}}$ is negative. The derivative is $\frac{2-\ln x}{2 x^{3 / 2}}$. The numerator is negative when $\ln x \geq 2$ (which happens for $x \geq 9$ since $e^{2}<9$ ) and the denominator is positive for $x \geq 9$, so the whole thing is negative for $x \geq 9$, so $\frac{\ln x}{\sqrt{x}}$ is decreasing once $x \geq 9$, and hence the same is true for the sequence. Alternating series test then says the series $\sum_{n=9}^{\infty} \frac{(-1)^{n} \ln (n)}{\sqrt{n}}$ converges, and the same is true for our original one by the tail theorem.
(b) Use limit comparison test (the terms are always positive) against $\sum_{n=1}^{\infty} \frac{n^{4}}{n^{5}}$ :

$$
\lim _{n \rightarrow \infty} \frac{n^{4}+6 n-3+\cos n}{n^{5}+3 n^{3}-2 n+1} \cdot \frac{n^{5}}{n^{4}}=\frac{1+\frac{6}{n^{3}}-\frac{3}{n^{4}}+\frac{\cos n}{n^{4}}}{1+\frac{3}{n^{2}}-\frac{2}{n^{4}}+\frac{1}{n^{5}}}=1 .
$$

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by $p$-test, so same is true for our series.
13. If $\vec{v}$ and $\vec{w}$ are orthogonal, then their dot product is 0 , i.e., $2 x+2 y-2=0$. Solve for $y: y=1-x$. Also, $\|\vec{w}\|=3$, and $\|\vec{v}\|=\sqrt{x^{2}+y^{2}+4}$, so need $x^{2}+y^{2}+4=9$, or $x^{2}+y^{2}=5$. Plug in $y=1-x: x^{2}+1-2 x+x^{2}=5$, or $2 x^{2}-2 x-4=0$. Factor that: $2(x-2)(x+1)=0$, so our solutions are $x=2$ and $x=-1$. In each case, $y=-1$ and $y=2$.
To summarize: the two vectors $\vec{v}$ that satisfy the conditions are $\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)$.

