
Math 222, Fall 2016
Steven Sam
Review packet solution outline
(last updated 12/17/16)

1.

dy

dx
= x3/2(4− y2)3/2

∫

dy

(4− y2)3/2
=

∫

x3/2dx

For left side do trig sub: y = 2 sin θ,
√

4− y2 = 2 cos θ:

∫

2 cos θdθ

8 cos3 θ
=

2

5
x5/2 + C

1

4
tan θ =

2

5
x5/2 + C

y

4
√

4− y2
=

2

5
x5/2 + C

Initial condition is y(0) = 0, so C = 0.

y =
8

5
x5/2

√

4− y2 (clear denominators)

y2 =
64

25
x5(4− y2) (square both sides)

y2 +
64

25
x5y2 =

256

25
x5

y2 =
256

25

x5

1 + 64
25
x5

y =
16x5/2

√
25 + 64x5

2.

T∞

1

1− t
=

∞
∑

n=0

tn

T∞

1

1 + x4
=

∞
∑

n=0

(−1)nx4n

T∞

x

1 + x4
=

∞
∑

n=0

(−1)nx4n+1

First, figure out where it converges with ratio test. The limit is |x4|, so converges for
|x| < 1 and diverges for |x| > 1. Test endpoints: both diverge.
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So candidates for T∞f(x) = f(x) are |x| < 1, so restrict attention here.

Rn
1

1− t
=

tn+1

1− t

R4n
1

1 + x4
=

(−1)nx4n+4

1 + x4

R4n+1
x

1 + x4
=

(−1)nx4n+5

1 + x4

Now take limit:

lim
n→∞

∣

∣

∣

∣

R4n+1
x

1 + x4

∣

∣

∣

∣

=
1

|1 + x4| lim
n→∞

|x|4n+5 = 0.

So T∞f(x) = f(x) for |x| < 1.

3. (a)

∫

x2

x2 − x− 2
dx =

∫ (

1 +
x+ 2

x2 − x− 2

)

dx (long division)

=

∫ (

1 +
4/3

x− 2
− 1/3

x+ 1

)

dx (partial fractions)

= x+
4

3
ln |x− 2| − 1

3
ln |x+ 1|+ C

(b)

∫

dx

x(x− 1)2
=

∫ (

1

x
− 1

x− 1
+

1

(x− 1)2

)

dx (partial fractions)

= ln |x| − ln |x− 1| − 1

x− 1
+ C (u-sub with u = x− 1)

4.
∞
∑

n=1

(1 + en)en

e3np
=

∞
∑

n=1

(

1

(e3p−1)n
+

1

(e3p−2)n

)

Sum of two geometric series. First one converges if e3p−1 > 1, i.e., 3p − 1 > 0, i.e.,
p > 1/3 and goes to +∞ otherwise. Similarly, second one converges if p > 2/3 and
goes to +∞ otherwise. If at least one goes to ∞ it diverges (∞ +∞ = ∞), so need
both to converge. This only happens when p > 2/3.

5. (a)
dy

dx
+ (cot x)y = sin x

First-order equation: a(x) = cot x = cosx
sinx

,

A(x) =

∫

cos x

sin x
dx = ln | sin x| do u-sub with u = sin x
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So m(x) = eln sinx = | sin x| is a multiplier. It’s annoying to work with absolute
values in our integrals, so let’s make sure that sin x is also a multiplier (on the
exam you can skip this step). Multiply both sides of our diffeq by sin x:

(sin x)
dy

dx
+ (cos x)y = sin2 x

Left side is the derivative of (sin x)y, so ((sin x)y)′ = sin2 x. Now integrate and
divide by sin x:

y =
1

sin x

∫

sin2 x dx

=
1

2 sin x

∫

(1− cos 2x)dx (double-angle formula)

=
1

2 sin x

(

x− sin(2x)

2
+ C

)

(b) First-order: a(x) = 1, A(x) = x, m(x) = ex, k(x) = sin3 x cos2 x
ex

.

y = e−x

∫

sin3 x cos2 xdx

= e−x

∫

sin x(1− cos2 x) cos2 xdx

= −e−x

∫

(u2 − u4)du (u-sub with u = cosx)

= −e−x

(

cos3 x

3
− cos5 x

5
+ C

)

6. Use Taylor polynomial to approximate f(x) = ln(1 + x) at x = 1/2. Need remainder
to be < 0.02 = 1

50
. Trial and error shows n = 1, 2 doesn’t work. For n = 3, f (4)(ξ) =

−6
(1+ξ)4

. When we apply Lagrange, we will have 0 ≤ ξ ≤ 1/2, so |f (4)(ξ)| ≤ 6.

|(R3f)(
1

2
)| = |f (4)(ξ)|(1/2)4

4!
≤ 6

16 · 24 =
1

64
<

1

50
.

So approximation is

(T3f)(
1

2
) =

1

2
− (1/2)2

2
+

(1/2)3

3
=

5

12
.

7. (a)

T5e
x2

= 1 + x2 +
x4

2

T5 sin x = x− x3

3!
+

x5

5!
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We want coefficient of x5 of T∞(ex
2
sin x). To get that, multiply the above two

and get coefficient of x5. But you don’t have to multiply everything out. The
only combinations that give x5 are 1 · x5

5!
, x2 · (−x3

3!
), and x4

2
·x. Sum those up and

get the coefficient is 1
5!
− 1

3!
+ 1

2
.

So f (5)(0)
5!

= 1
5!
− 1

3!
+ 1

2
, or f (5)(0) = 1− 20 + 60 = 41.

(b)

T∞

1

1− t
=

∞
∑

n=0

tn

T∞

1

(1− t)2
=

∞
∑

n=0

ntn−1 (take derivative)

T∞

1

(1 + x3)2
=

∞
∑

n=0

n(−1)n−1x3n−3 (sub t = −x3)

We get x27 when n = 10, so f (27)(0)
27!

= −10, or f (27)(0) = −10 · 27!.

8. Use ratio test:

lim
n→∞

∣

∣

∣

∣

(n+ 1)xen+1

(2n+ 2)!

(2n)!

nxen

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(

n+ 1

n

)x
e

(2n+ 2)(2n+ 1)

∣

∣

∣

∣

= e lim
n→∞

∣

∣

∣

∣

(

1 +
1

n

)x
1

(2n+ 2)(2n+ 1)

∣

∣

∣

∣

(1 + 1
n
)x → 1 when n → ∞ and the second term 1

(2n+2)(2n+1)
→ 0 when n → ∞, so the

limit is always 0. So the series converges for all x.

9. Produce two vectors parallel to plane by taking difference of points:




0
3
1



−





0
0
0



 =





0
3
1



 ,





−1
1
2



−





0
0
0



 =





−1
1
2



 .

Take cross product to get a normal vector (note there are many other options):




0
3
1



×





−1
1
2



 =





5
−1
3





Defining equation: 5x− y + 3z = 0.

For second part, the normal vector





5
−1
3



 is parallel to the normal line (by definition)

so (one possible) parametric equation is




2
1
−1



+ t





5
−1
3



 .
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10. Use integration by parts with du = x−ndx and v = sin x to get

∫

sin x

xn
dx =

sin x

xn−1(1− n)
− 1

1− n

∫

cos x

xn−1
dx

Do integration by parts again with du = x1−n and v = cosx to get

∫

cosx

xn−1
dx =

cos x

xn−2(2− n)
− 1

2− n

∫ − sin x

xn−2
dx

Put them together:

∫

sin x

xn
dx =

sin x

xn−1(1− n)
− cos x

xn−2(1− n)(2− n)
− 1

(1− n)(2− n)

∫

sin x

xn−2
dx

Alternatively:

In =
sin x

xn−1(1− n)
− cos x

xn−2(1− n)(2− n)
− 1

(1− n)(2− n)
In−2

(There is a typo in the answer in the review packet)

The improper integral

∫

∞

0

sin x

x3
dx has two forms of improperness (at 0 and ∞), so

split it up as

∫ 1

0

sin x

x3
dx+

∫

∞

1

sin x

x3
dx (the choice of 1 is arbitrary). Examine the first

one (and replace it with lim
a→0+

∫ 1

a

sin x

x3
dx).

Using our reduction formula:

lim
a→0+

∫ 1

a

sin x

x3
dx = lim

a→0+

(

[

sin x

−2x2
− cos x

2x

]1

a

− 1

2

∫ 1

a

sin x

x
dx

)

The function sinx
x

is actually continuous at 0, so its integral from 0 to 1 is some finite
number. So we have to see if

lim
a→0+

(

sin a

−2a2
− cos a

2a

)

exists or not.

lim
a→0+

(

sin a

−2a2
− cos a

2a

)

= lim
a→0+

−sin a+ a cos a

2a2

= lim
a→0+

−cos a+ cos a− a sin a

4a
(l’Hôpital’s rule)

= −2

0
= −∞

So the limit does not exist, and our improper integral diverges.
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11.

T∞e−t =
∞
∑

n=0

(−1)n
tn

n!

T∞tke−t =
∞
∑

n=0

(−1)n
tn+k

n!

T∞f(x) =
∞
∑

n=0

(−1)n
xn+k+1

n!(n+ k + 1)

Now let’s deal with remainders:

Rnf(x) =

∫ x

0

Rn−1(t
ke−t)dt =

∫ x

0

tkRn−1−ke
−tdt

By Lagrange, Rn−k−1e
−t =

(−1)n−ke−ξtn−k

(n− k)!
for some ξ between 0 and t. Put it together:

Rnf(x) =

∫ x

0

(−1)n−ke−ξtn

(n− k)!
dt.

Hard to work with since ξ depends on t (so is not a constant). We should split up
cases of x ≥ 0 and x ≤ 0. First consider x ≥ 0. Then 0 ≤ ξ ≤ t ≤ x, so |e−ξ| ≤ 1, and

|Rnf(x)| ≤
∫ x

0

∣

∣

∣

∣

(−1)n−ke−ξtn

(n− k)!

∣

∣

∣

∣

dt ≤
∫ x

0

tn

(n− k)!
dt =

xn+1

(n+ 1)(n− k)!
.

The limit as n → ∞ is 0 since factorial beats exponentials. So we showed that
T∞f(x) = f(x) for x ≥ 0.

Now consider x ≤ 0. In that case we should rewrite

Rnf(x) =

∫ x

0

(−1)n−ke−ξtn

(n− k)!
dt = −

∫ 0

x

(−1)n−ke−ξtn

(n− k)!
dt

Now 0 ≥ ξ ≥ t ≥ x, so |eξ| ≥ |ex|, or |e−ξ| ≤ |e−x|. So:

|Rnf(x)| ≤
∫ 0

x

∣

∣

∣

∣

(−1)n−ke−ξtn

(n− k)!

∣

∣

∣

∣

dt ≤ e−x

∫ 0

x

|tn|
(n− k)!

dt = e−x |x|n+1

(n− k)!
.

Again, the limit as n → ∞ is 0 since factorial beats exponentials. So we also showed
that T∞f(x) = f(x) for x ≤ 0.

12. (a) Use alternating series. First, we check the terms go to 0. Replace the sequence

by the function
ln x√
x

and use l’Hôpital’s rule:

lim
x→∞

ln x√
x

= lim
x→∞

1/x
1
2
x−1/2

= lim
x→∞

2√
x
= 0.
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Now, we check the terms are decreasing. Not easy to do directly, so need to

check where the derivative of
ln x√
x

is negative. The derivative is
2− ln x

2x3/2
. The

numerator is negative when ln x ≥ 2 (which happens for x ≥ 9 since e2 < 9) and
the denominator is positive for x ≥ 9, so the whole thing is negative for x ≥ 9, so
ln x√
x

is decreasing once x ≥ 9, and hence the same is true for the sequence.

Alternating series test then says the series
∞
∑

n=9

(−1)n ln(n)√
n

converges, and the

same is true for our original one by the tail theorem.

(b) Use limit comparison test (the terms are always positive) against
∞
∑

n=1

n4

n5
:

lim
n→∞

n4 + 6n− 3 + cosn

n5 + 3n3 − 2n+ 1
· n

5

n4
=

1 + 6
n3 − 3

n4 +
cosn
n4

1 + 3
n2 − 2

n4 +
1
n5

= 1.

The series
∑

∞

n=1
1
n
diverges by p-test, so same is true for our series.

13. If ~v and ~w are orthogonal, then their dot product is 0, i.e., 2x+ 2y − 2 = 0. Solve for
y: y = 1 − x. Also, ‖~w‖ = 3, and ‖~v‖ =

√

x2 + y2 + 4, so need x2 + y2 + 4 = 9, or
x2 + y2 = 5. Plug in y = 1− x: x2 +1− 2x+ x2 = 5, or 2x2 − 2x− 4 = 0. Factor that:
2(x− 2)(x+ 1) = 0, so our solutions are x = 2 and x = −1. In each case, y = −1 and
y = 2.

To summarize: the two vectors ~v that satisfy the conditions are





2
−1
2



 and





−1
2
2



.
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