
Math 742, Spring 2016
Homework 2
Due: February 5

1. Exercises

(1) Let R be a ring and let 0 → M1 → M2 → M3 → 0 be a short exact sequence of
R-modules. Show that M2 is finitely generated if M1 and M3 are finitely generated.

Furthermore, show that if M2 is finitely generated, then M3 is finitely generated. Give
an example where M2 is finitely generated but M1 is not.

(2) Let R be a ring and let C be the category of R-modules. Let Λ be a set and suppose we
are given modules indexed by Λ: {Mλ}λ∈Λ.
(a) Show that the assignment N 7→

∏
λ∈Λ HomR(Mλ, N) defines a functor C → Set.

Show that it is representable, i.e., isomorphic to hM where M =
⊕

λ∈Λ Mλ.
(b) Consider the inclusions iλ : Mλ → M which sends m ∈ Mλ to the sequence which

is m in position λ and 0 elsewhere. Show that this satisfies the following universal
mapping property: given any other module N and homomorphisms fλ : Mλ → N ,
there is a unique homomorphismM → N such that the following diagram commutes
for all λ ∈ Λ:

Mλ

iλ
//

fλ
%%

⊕
λ∈Λ Mλ

��

N

.

If we’re given another module P and homomorphisms jλ : Mλ → P which satisfy
the same universal mapping property, then show, just using the definition, that M
and P are canonically isomorphic. Reinterpret (a) using Yoneda’s lemma to give
another proof of this fact.
A special case is when Mλ = R for all λ ∈ Λ, in which case we get the universal
mapping property for a free module R⊕Λ.

(c) Similarly, show that the assignment N 7→
∏

λ∈Λ HomR(N,Mλ) defines a functor
C
op → Set. Show that it is representable, i.e., isomorphic to hM ′ where M ′ =∏
λ∈Λ Mλ. Translate this into a universal mapping property for the direct product

as we did for the direct sum (you don’t have to reprove anything).

(3) Let R be a ring and let m,n, p be positive integers.
(a) Show that a homomorphism between free R-modules Rn → Rm is the same thing as

an m×n matrix whose entries come from R, and that composition Rn → Rm → Rp

can be computed using matrix multiplication.
In particular, an endomorphism α : Rn → Rn is the same as a square matrix, so we

can define its determinant in the usual way:

det(α) =
∑

σ∈Sn

sgn(σ)α1,σ(1) · · ·αn,σ(n).

It satisfies all of the familiar properties from linear algebra: it’s independent of choice of
basis for Rn, there’s a Laplace expansion formula, and det(αβ) = det(α) det(β). (You
don’t need to prove this.)
(b) Show that α is bijective if and only if det(α) is a unit.
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(c) Show that α is injective if and only if det(α) is not a zerodivisor.
(d) In particular, injective need not imply bijective. However, show that if α is surjec-

tive, then α is bijective.

(4) Let R be a principal ideal domain. Here are two facts you may use without proof:
• A submodule of a finitely generated R-module is also finitely generated1.
• (Smith normal forms): Given an n×m matrix A with entries in R, there exists an
n × n matrix S and an m ×m matrix T such that SAT is diagonal (i.e., only has
entries in the (i, i) positions), and each element is of the form upd where u is a unit,
p is a prime element, and d ≥ 0 is an integer.

Use them to show the following:
(a) Show that every finitely generated R-module M is isomorphic to the direct sum

of a free R-module and its torsion submodule2 and that, furthermore, the torsion
submodule is isomorphic to a direct sum of modules R/(pd) where p is prime and
d > 0 is an integer.

(b) Let k be a field and let X be an n× n matrix. Describe a k[x]-module structure on
kn where x acts by X. Show that this is a finitely generated torsion module.
Now assume k is algebraically closed. Interpret the decomposition for the module
M from (a) in terms of a normal form for X (this is the Jordan canonical form).

(5) Let R be a ring and suppose we have the following commutative diagram of R-modules:

A //

f

��

B //

g

��

C //

h
��

D

i

��

A′ // B′ // C ′ // D′

Assume the top row and bottom row are both exact.
(a) If g, i are injective and f is surjective, show that h is injective.
(b) If f, h are surjective and i is injective, show that g is surjective.

2. Suggested exercises (don’t submit)

From Altman–Kleiman:

• Chapter 4: 3, 17, 18, 19
• Chapter 5: 14, 16, 22, 29
• Chapter 6: 5, 9
• Chapter 7: 2, 3, 9

1This is better studied in the general context of noetherian rings, which comes later in the course.
2
m is in the torsion submodule if there exists nonzero x ∈ R such that xm = 0
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