Math 742, Spring 2016
Homework 2
Due: February 5

1. ExErcises

(1) Let R be a ring and let $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ be a short exact sequence of R-modules. Show that M_{2} is finitely generated if M_{1} and M_{3} are finitely generated.

Furthermore, show that if M_{2} is finitely generated, then M_{3} is finitely generated. Give an example where M_{2} is finitely generated but M_{1} is not.
(2) Let R be a ring and let \mathcal{C} be the category of R-modules. Let Λ be a set and suppose we are given modules indexed by $\Lambda:\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$.
(a) Show that the assignment $N \mapsto \prod_{\lambda \in \Lambda} \operatorname{Hom}_{R}\left(M_{\lambda}, N\right)$ defines a functor $\mathcal{C} \rightarrow$ Set. Show that it is representable, i.e., isomorphic to h^{M} where $M=\bigoplus_{\lambda \in \Lambda} M_{\lambda}$.
(b) Consider the inclusions $i_{\lambda}: M_{\lambda} \rightarrow M$ which sends $m \in M_{\lambda}$ to the sequence which is m in position λ and 0 elsewhere. Show that this satisfies the following universal mapping property: given any other module N and homomorphisms $f_{\lambda}: M_{\lambda} \rightarrow N$, there is a unique homomorphism $M \rightarrow N$ such that the following diagram commutes for all $\lambda \in \Lambda$:

If we're given another module P and homomorphisms $j_{\lambda}: M_{\lambda} \rightarrow P$ which satisfy the same universal mapping property, then show, just using the definition, that M and P are canonically isomorphic. Reinterpret (a) using Yoneda's lemma to give another proof of this fact.
A special case is when $M_{\lambda}=R$ for all $\lambda \in \Lambda$, in which case we get the universal mapping property for a free module $R^{\oplus \Lambda}$.
(c) Similarly, show that the assignment $N \mapsto \prod_{\lambda \in \Lambda} \operatorname{Hom}_{R}\left(N, M_{\lambda}\right)$ defines a functor $\mathcal{C}^{\text {op }} \rightarrow$ Set. Show that it is representable, i.e., isomorphic to $h_{M^{\prime}}$ where $M^{\prime}=$ $\prod_{\lambda \in \Lambda} M_{\lambda}$. Translate this into a universal mapping property for the direct product as we did for the direct sum (you don't have to reprove anything).
(3) Let R be a ring and let m, n, p be positive integers.
(a) Show that a homomorphism between free R-modules $R^{n} \rightarrow R^{m}$ is the same thing as an $m \times n$ matrix whose entries come from R, and that composition $R^{n} \rightarrow R^{m} \rightarrow R^{p}$ can be computed using matrix multiplication.
In particular, an endomorphism $\alpha: R^{n} \rightarrow R^{n}$ is the same as a square matrix, so we can define its determinant in the usual way:

$$
\operatorname{det}(\alpha)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \alpha_{1, \sigma(1)} \cdots \alpha_{n, \sigma(n)}
$$

It satisfies all of the familiar properties from linear algebra: it's independent of choice of basis for R^{n}, there's a Laplace expansion formula, and $\operatorname{det}(\alpha \beta)=\operatorname{det}(\alpha) \operatorname{det}(\beta)$. (You don't need to prove this.)
(b) Show that α is bijective if and only if $\operatorname{det}(\alpha)$ is a unit.
(c) Show that α is injective if and only if $\operatorname{det}(\alpha)$ is not a zerodivisor.
(d) In particular, injective need not imply bijective. However, show that if α is surjective, then α is bijective.
(4) Let R be a principal ideal domain. Here are two facts you may use without proof:

- A submodule of a finitely generated R-module is also finitely generated ${ }^{11}$.
- (Smith normal forms): Given an $n \times m$ matrix A with entries in R, there exists an $n \times n$ matrix S and an $m \times m$ matrix T such that $S A T$ is diagonal (i.e., only has entries in the (i, i) positions), and each element is of the form $u p^{d}$ where u is a unit, p is a prime element, and $d \geq 0$ is an integer.
Use them to show the following:
(a) Show that every finitely generated R-module M is isomorphic to the direct sum of a free R-module and its torsion submodul ${ }^{2}$ and that, furthermore, the torsion submodule is isomorphic to a direct sum of modules $R /\left(p^{d}\right)$ where p is prime and $d>0$ is an integer.
(b) Let k be a field and let X be an $n \times n$ matrix. Describe a $k[x]$-module structure on k^{n} where x acts by X. Show that this is a finitely generated torsion module.
Now assume k is algebraically closed. Interpret the decomposition for the module M from (a) in terms of a normal form for X (this is the Jordan canonical form).
(5) Let R be a ring and suppose we have the following commutative diagram of R-modules:

Assume the top row and bottom row are both exact.
(a) If g, i are injective and f is surjective, show that h is injective.
(b) If f, h are surjective and i is injective, show that g is surjective.

2. SUGGESTED EXERCISES (DON'T SUBMIT)

From Altman-Kleiman:

- Chapter 4: 3, 17, 18, 19
- Chapter 5: $14,16,22,29$
- Chapter 6: 5, 9
- Chapter 7: 2, 3, 9

[^0]
[^0]: ${ }^{1}$ This is better studied in the general context of noetherian rings, which comes later in the course.
 ${ }^{2} m$ is in the torsion submodule if there exists nonzero $x \in R$ such that $x m=0$

