Math 742, Spring 2016 Homework 3 Due: February 12

1. Exercises

- (1) Let I, J be ideals of a ring R and let M be an R-module.
 - (a) Show that $R/I \otimes_R M \cong M/IM$.
 - (b) Show that $R/I \otimes_R R/J \cong R/(I+J)$.
 - (c) In particular, show that $\mathbf{Z}/n \otimes_{\mathbf{Z}} \mathbf{Z}/m = 0$ if n, m are relatively prime integers.
- (2) Let R be a local ring with maximal ideal m. Let M, N be finitely generated R-modules.
 (a) Show that if M ⊗_R (R/m) = 0, then M = 0.
 - (b) Show that if $M \otimes_R N = 0$, then either M = 0 or N = 0.
- (3) Show that the tensor product of two free *R*-modules is again free. More specifically, given sets Λ, Λ' , construct an isomorphism¹

$$R^{\oplus \Lambda} \otimes_R R^{\oplus \Lambda'} \xrightarrow{\cong} R^{\oplus (\Lambda \times \Lambda')}.$$

Conclude that the tensor product of two projective R-modules is again projective.

- (4) Given any module M, its **dual** is the module $M^{\vee} = \operatorname{Hom}_R(M, R)$. Define a map $\sigma_M \colon M \to (M^{\vee})^{\vee}$ by $\sigma_M(m)(f) = f(m)$ (where $m \in M$ and $f \in M^{\vee}$). Show that σ_M is an isomorphism if M is a finitely generated projective module.
- (5) Let P, P' be finitely generated projective modules and let M, M' be arbitrary modules. Construct an isomorphism

 $\operatorname{Hom}_{R}(P, M) \otimes_{R} \operatorname{Hom}_{R}(P', M') \xrightarrow{\cong} \operatorname{Hom}_{R}(P \otimes_{R} P', M \otimes_{R} M').$

Deduce the following isomorphisms:

$$P^{\vee} \otimes_R (P')^{\vee} \xrightarrow{\cong} (P \otimes_R P')^{\vee},$$
$$P^{\vee} \otimes_R M' \xrightarrow{\cong} \operatorname{Hom}_R(P, M')$$

(6) Let R be a ring and let M be an R-module. Show that if M is flat, then M is torsion-free². Show that the converse is true if R is a principal ideal domain.

Conclude that if M is finitely generated and R is a PID, then M is flat if and only if M is free.

(7) Let R be an integral domain and let $\alpha \colon \mathbb{R}^n \to \mathbb{R}^n$ be an endomorphism. Show that if α is nilpotent, i.e., $\alpha^r = 0$ for some r > 0, then in fact, $\alpha^n = 0$. Give an example to show that this statement can fail if R is not required to be an integral domain.

¹It's instructive to think about how to prove this only using universal mapping properties.

²In general, torsion-free means that if $m \in M$ is nonzero and rm = 0 for $r \in R$, then r is a zerodivisor.

2. Suggested exercises (don't submit)

From Altman–Kleiman:

- Chapter 8: 12, 19, 24, 26
- Chapter 9: 4, 8, 10, 12, 13, 25
- Chapter 10: 8, 9, 14, 16

3. Further reading

The Tor functor (and more generally, derived functors) are not treated in the text. This is a useful tool for studying tensor products when the modules aren't flat, but takes more time to develop than I think we'll have. Some discussion can be found in the last page of SVI.3 of Lang, but it can also be found in any textbook which treats homological algebra.