
Math 742, Spring 2016
Homework 3
Due: February 12

1. Exercises

(1) Let I, J be ideals of a ring R and let M be an R-module.
(a) Show that R/I ⊗R M ∼= M/IM .
(b) Show that R/I ⊗R R/J ∼= R/(I + J).
(c) In particular, show that Z/n⊗Z Z/m = 0 if n,m are relatively prime integers.

(2) Let R be a local ring with maximal ideal m. Let M,N be finitely generated R-modules.
(a) Show that if M ⊗R (R/m) = 0, then M = 0.
(b) Show that if M ⊗R N = 0, then either M = 0 or N = 0.

(3) Show that the tensor product of two free R-modules is again free. More specifically,
given sets Λ,Λ′, construct an isomorphism1

R⊕Λ ⊗R R⊕Λ′ ∼=
−→ R⊕(Λ×Λ′).

Conclude that the tensor product of two projective R-modules is again projective.

(4) Given any module M , its dual is the module M∨ = HomR(M,R). Define a map
σM : M → (M∨)∨ by σM(m)(f) = f(m) (where m ∈ M and f ∈ M∨). Show that
σM is an isomorphism if M is a finitely generated projective module.

(5) Let P, P ′ be finitely generated projective modules and let M,M ′ be arbitrary modules.
Construct an isomorphism

HomR(P,M)⊗R HomR(P
′,M ′)

∼=
−→ HomR(P ⊗R P ′,M ⊗R M ′).

Deduce the following isomorphisms:

P∨ ⊗R (P ′)∨
∼=
−→ (P ⊗R P ′)∨,

P∨ ⊗R M ′
∼=
−→ HomR(P,M

′).

(6) Let R be a ring and letM be an R-module. Show that ifM is flat, thenM is torsion-free2.
Show that the converse is true if R is a principal ideal domain.
Conclude that if M is finitely generated and R is a PID, then M is flat if and only if

M is free.

(7) Let R be an integral domain and let α : Rn → Rn be an endomorphism. Show that if α
is nilpotent, i.e., αr = 0 for some r > 0, then in fact, αn = 0. Give an example to show
that this statement can fail if R is not required to be an integral domain.

1It’s instructive to think about how to prove this only using universal mapping properties.
2In general, torsion-free means that if m ∈ M is nonzero and rm = 0 for r ∈ R, then r is a zerodivisor.
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2. Suggested exercises (don’t submit)

From Altman–Kleiman:

• Chapter 8: 12, 19, 24, 26
• Chapter 9: 4, 8, 10, 12, 13, 25
• Chapter 10: 8, 9, 14, 16

3. Further reading

The Tor functor (and more generally, derived functors) are not treated in the text. This
is a useful tool for studying tensor products when the modules aren’t flat, but takes more
time to develop than I think we’ll have. Some discussion can be found in the last page of
§XVI.3 of Lang, but it can also be found in any textbook which treats homological algebra.
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